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Abstract — Randomly generated points representing
the deployment of  radio terminals (nodes) in an areaR
can be unrealistically close together (clustered) and the
resulting connectivity measure for the wireless network
(such as average number of neighbors per node) can have
a relatively large variance.  When a minimum internode
distance is imposed according to an "inhibition" random
process, the simulated node positions are more regularly
spaced and the connectivity measure has a smaller vari-
ance.  In this paper, analytical methods are presented
that characterize the spatial distribution ("area cover-
age") of the nodes under random and inhibited point gen-
eration processes, and expressions are found for the mean
and variance of the number of neighbors.

I.  INTRODUCTION

The analysis of signaling protocols for mobile radio
networks usually requires making assumptions concerning
the physical connectivity between the radio terminals
(nodes).  Such assumptions may be perfectly appropriate for
the physical scenario even if they ignore or use a simplified
model of the effects of propagation on the strength of a radio
transmission from one node's position that is received at
another node's position.  One level of modeling is simply to
assume that each node can "hear" each other node and that
the effect of the medium is adequately modeled by a propa-
gation delay (e.g., [1]).  Another level of modeling assumes
that mobile nodes within a certain distance from a trans-
mitting node can hear it, and that the probable number of
terminals in a particular area is proportional to the area (e.g.,
[2]).  A slightly more detailed level of modeling assumes that
the propagation loss experienced by the signals is propor-
tional to some power of the distance, thus ignoring position-
dependent variations in the loss, and assumes a random
placement of nodes (e.g., [3]) or, in modeling link power
control in a cellular system, that the nodes are distributed
uniformly in either area or distance from a base station ([4]).

When the placement of nodes is modeled, it is often con-
venient to assume that the nodes are uniformly distributed in
some area.  Figure 1 shows the random placement of 100
points on a square grid, assuming uniform distributions for
the  and  components of the node positions, a commonB C
simulation model for the relative positions of radio terminals
(nodes) in a mobile communications network.  Note that the
value of the distance between any pair of nodes in Figure 1
can vary from  to , the diagonal dimension of the grid.! #È

Depending on the scale of the grid relative to the communica-
tions range of the nodes, the example random node
deployment modeled in Figure 1 may or may not provide
connectivity between every pair of nodes, even using relays,
because some groups of nodes are close together ("clus-
tered") while others are isolated.

Noting this possible clustering property of node locations
that are selected randomly using uniform distributions for the
B C and  components of the the locations, Cheng and
Robertazzi [5] investigated an "inhibition point process" due
to Matern [6] as an alternative procedure for selecting
random node locations that is more realistic in terms of mini-
mum separations between nodes and reflects a deployment
strategy that provides better area coverage by spreading the
given number of nodes out more evenly.  According to the
inhibition process, when selecting the location of the th8
node, candidate locations are generated randomly until one is
found that is greater than some minimum distance from each
of the  previously selected node locations.  The result8 � "
of such  a process is illustrated in Figure 2 for R œ "!!
nodes with a minimum relative distance between nodes of
. œ !Þ!(&738 .  As noted in [5], there is a limit to the number
of nodes that can be packed into an area  with a minimumE!

separation of , estimated in [5] as . R ¸738 7+B

E Î .! 738
"
#

#
1ˆ ‰ , the number of nonoverlapping circular areas

in  with radius .  For , this expressionE . R œ "!!! 738 7+B
"
#

corresponds to .   However, since node. ¸ !Þ""#)738
1

positions are assigned randomly, the regular spacing required
to pack the area with nodes efficiently is not preserved, and
some random, generally smaller minimum distance is re-
quired to find positions for  nodes.  For example, in"!!
generating Figure 2, it was found that  must be no greater.738

than  in order to find  random positions in a!Þ!)$ "!!
reasonable amount of time.

Manipulation of the minimum distance to other nodes
affects the network connectivity.  In [5], the probability
distribution of the number of neighbor nodes per node, as a
function of the number of nodes, was calculated for a two-
dimensional Poisson point process model of node locations
and compared to empirical results for the same distribution
when the inhibition process is used to determine node

1Actually, if an  mesh of nodes "just fits" into aQ ‚ Q
H‚H HÎ Q � " area, the distance between nodes equals .a b
Thus the maximum of the minimum distance between nodes

for  nodes equals  for R HÎ R � " œ HÎ* R œ "!!ÞŠ ‹È



Fig. 1.  Relative positions of 100 randomly placed nodes.

locations.  Any node within the communications range  ofV
a node is considered its neighbor.  Suppose that the prob-
ability of a node's having exactly  neighbors is desiredO
when the average number of neighbors of a node equals ;"!
in [5] the authors reasoned that the probability of this event is
given by e  for the Poisson point process.  The�"! Oa b"! ÎOx
authors simulated  realizations of the inhibition process#!!
such that the average number of nodes in the total area
equaled , and gathered statistics on the number of"!!
neighbors for the various nodes for each realization (ex-
cluding nodes near the edge of the area) .  After averaging2

the statistics over the realizations, it was found that the
distribution for the inhibition process is significantly more
peaked and concentrated around the average value, due to the
more regular pattern of the node positions as determined by
the inhibition process.

In this paper, a simple measure of area coverage is de-
fined that shows the effect of the inhibition process on the
evenness of the node location distribution.  Then, an analysis
of the number of neighboring nodes is performed for uniform
and inhibited node location processes, using  distributional
results for the distances between nodes in a random
deployment of nodes [7, 8].

II.  M   A  CEASURES OF REA OVERAGE

A measure of the area coverage of a random placement of
R H‚H nodes in a  area can be based on the statistical
variation of the number of nodes across regular subdivisions

2The authors of [5] presumably chose  to correspond to.738

an average of  nodes and chose a value for  that corre-"!! V
sponds to one-tenth of the area to make the average number
of neighbors equal to ten.

Fig. 2.  Random placement of 100 nodes using an inhibition
process with .. œ !Þ!(&738

of the area, say "cells" of size .  On the average, for aH ÎR#

random distribution of  node locations, one would expectR
one node per cell.  The variance of the number of nodes per
cell then would reflect the uniformity of the distribution of
the node locations among the cells and hence the degree to
which the node location process produces an even pattern of
coverage for the area.

A.  EXAMPLES OF AREA COVERAGE MEASURES

For example, the difference between the distributions of
the nodes in Figures 1 and 2 can be quantified by calculating
for each figure the experimental probability  that one ofT8

the  square cells contains exactly  nodes.  For either the"!! 8
uniform or the inhibited node location process (provided that
the distance between cells is greater than ), the place-.738

ment of a node into one cell or not is a binomial trial, with
probability of success on each trial of  and: œ "ÎR œ !Þ!"
the expected value and variance of the number of nodes in a
particular one of the areas equal  and7 œ R: œ "Þ!!
5# œ R: " � : œ !Þ**a b .  Another statistic that is not quite
binomial because the numbers of nodes in the different cells
are slightly correlated (they must add up to  for a givenR
trial of selecting  node locations) is the number of nodes inR
any cell.  By counting the numbers of nodes in the cells in
Figures 1 and 2 and in a similar figure for which . œ738

!Þ!&, the data in Table 1 are obtained in comparison to the
binomial distribution.  As expected, for each case the sample
mean of the number of nodes in any cell is very close to ,7
but the sample variances for these examples are much
different: the variance for the uniform node location process
is close to , while that for the inhibition process is5#

significantly  less.    Also  as  expected,  the sample variances



Table 1.  Statistics for number of nodes in a cell for   (Fig. 1), , and  (Fig. 2) when , . œ !Þ! !Þ!& !Þ!(& H œ " R œ "!!738
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decrease in proportion to the degree of inhibition, that is, in
proportion to the value of ..738

B.  DIRECT ANALYSIS OF SPATIAL DISTRIBUTION

Without loss of generality, we assume a unit area ( )H œ "
and the case of  points generated by the inhibition processR
and calculate the probabilities of various numbers of points
falling into a particular cell with area .  Let the normal-"ÎR
ized minimum distance be denoted  and let 0! 738œ . ÎH E
denote the area surrounding a selected point that is excluded
in the selection of locations for subsequent points.  Then, ig-
noring the location-dependent effects of the edges of the cells
and the total area on , the first several probabilities areE
given by
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compact way, we can express the probabilities by

       const.Pr œ ‚ � 3E8
R "

8 R
e f Œ � Œ �$

3œ!

8�"

 ,   (2)‚ � 4E 8 Ÿ 8
R � "

R
$ Œ �

4œR�8

R�8�"

7+B

7+B

using the convention that the product equals  if the lower"
limit exceeds the upper limit.  For an "uninhibited", uniform
process,  and ; then this expression reducesE œ ! 8 œ R7+B

to the binomial probability
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For example, let  and let the inhibited area beR œ "!!
specified by the minimum relative distance  such0! œ !Þ!&

that .  Then  and theE œ Þ!& œ !Þ!!()& 8 œ #1a b# 7+B

unnormalized probabilities are
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After normalization, the respective probabilities are ,!Þ"#&$)
!Þ&*!!* !Þ#)%&$ "Þ"&*, and , giving a mean value of  and a
variance of .  The corresponding binomial distribution!Þ$)%'
has a mean of  and a variance of .  Table 2 gives the"Þ!! !Þ**
mean and variance of the number of points in each of  cellsR
as approximated by these procedures, for  andR œ "!!
several values of .  The effect of the approximation is0!

Table 2.  Estimated mean and variance of number of points in
a cell, R œ "!!
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reflected in the variation in the mean, which should be
constant at the value of .  The variance decreases, showing"Þ!
qualitatively how the inhibition process affects the spatial
distribution of the points.

Note that the variance for  calculated from (2) is0! œ !Þ!&
significantly less than the sample value in Table 1.  An
improved estimate can be obtained by using a value for E
that takes into account the fact that the excluded area is
dependent on the position of the previously selected point
within the cell.  It is shown in [7, 8] that the cumulative prob-
ability that the normalized distance  between two nodes. ÎH"

that are randomly positioned in a  area is given byH‚H
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Replacing the area  in (2) by FE E œ "ÎR Ð R Ñw
" !a b È 0

accounts for the effects within a particular cell but ignores
any effects on adjacent cells.  Nevertheless, the resulting esti-
mate  of the mean and variance of the number of nodes=
placed in any cell under the inhibition process is improved
(indicated by less variation in the mean as a function of ),0!
as illustrated by the examples in Table 3.  To provide a
means for evaluating the accuracy of the estimates, the results
of 1000 100-node trials are also given in Table 3.

III.  A  N  NNALYSIS OF THE UMBER OF EIGHBORS

Although the spatial distribution measure discussed in the
previous section is effective in showing how the inhibition
process of selecting node locations results in a more even
dispersion of nodes, it does not indicate directly the
connectivity of the resulting wireless network.  In fact it
cannot, not the least because an additional parameter is
required to characterize connectivity: the communications

Table 3.  Improved estimated mean and variance of number
of points in a cell, R œ "!!

Estimates using (2) Result, 1000 trials
Mean Variance Mean Variance0! 7+B
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range.  Here we denote the range by  and its normalizedV
value by .0 œ VÎH

Frequently the connectivity of a wireless network is
indicated by the fraction of the bidirectional links that  have
distances less than .  The link distance distribution functionV
F  estimates this measure of connectivity for a uniform,"a b0
random deployment of nodes.  A related measure is the
average number of neighbors per node; we denote this
quantity by  and proceed to analyze its distribution for/
uniform and inhibited random node deployments.

A.  MEAN, VARIANCE OF NUMBER OF NEIGHBORS

The cumulative probability distribution function (cdf) for
the normalized link distance , assuming that randomly. ÎH#

generated other-node distances  greater than  are. ." 738

retained under the inhibition process of selecting node
locations, is given by
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Examples of this cdf are shown in Figure 3 for different
values of .  Note that F  F , uniformly, and that0 0 0! # "a b a bŸ
F  in (5) is the special case of  F  when ." # !a b a b0 0 0 œ !

Given the location  of a node in the  deploymentp H‚H
area, the number of neighbor nodes out of a total of  nodesR
is a binomial random variable:

Figure 3.  Examples of cdf F#a b0
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of deployment that surrounds  such that the distance from p p
is greater than  and less than .  The conditional mean. V738

and variance of  therefore are/

  E    (8a)œ R � " +le f a b a b/ p p

and  ar (8b)V œ R � " + " � +le f a b a bc da b/ p p p

The unconditional mean, mean square, and variance of the
number of neighbors are given by

 E E E Eœ l œ R � " +e f e f a b e fe f a b/ /p p p
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From (9) and (11) we observe that  would be a binomial/
random variable if the area  were not a function of .  Be-+ p
cause the area does depend on , the unconditional distribu-p
tion for the number of neighbors has a larger variance than
that of a binomial variable with the same mean.

B.  EMPIRICAL RESULTS FOR MEAN AND VARIANCE OF
THE NUMBER OF NEIGHBORS

Simulated random placements of  nodes on aR œ "!!
unit square were performed with and without an inhibition
based on a minimum distance between nodes.  In Figures 4
and 5, respectively, the empirical mean and variance are
shown for the number of neighbors as functions of the
normalized communications range, , for normalized mini-0
mum distances of  and .  For0! œ !Þ!!ß !Þ!#ß !Þ!%ß !Þ!'ß !Þ!)
each point,  random placements of  nodes were&!! "!!
simulated.  Figure 4 indicates that the mean value of the
number of neighbors for no inhibition is well predicted by
F  for small values of .  In accordance with intuition,# !a b0 0
Figure 5 shows that the variance of the number of neighbors
is close the value for a binomial distribution for small com-
munication ranges (when the area of the "neighborhood" is
small and the edges of the deployment region are less
significant) but becomes much larger as  increases.  Also,0
from Figures 4 and 5 we observe that both the mean and the

Figure 4.  Empirical results for the mean of the number
neighbors with different degrees of inhibition in the selection

of node positions.

Figure 5.  Empirical results for the variance of the number of
neighbors for different degrees of inhibition in the selection

of node positions.

variance of the number of neighbors are inversely propor-
tional to the minimum distance.  A slight increase in  for0
0 0! !� ! œ ! will obtain the same average as for , but with a
smaller variance.

Regressions were performed on the variance calculations
in Figure 5 to find the third-degree polynomials that best fit
the variance values.  The regressions were of the form

  Var (12)¸ + � , � -e f/ 0 0 0# $

and representative values of the coefficients , , and  are+ , -
given in Table 4.



Table 4.  Coefficients in the polynomial fit to the variance of
the number of neighbors

0! + , -
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Additional simulations were performed to determine
example values of the mean and variance of  , the number of/
neighbors per node, for a fixed area:  for 0! œ !Þ!& R œ "!!
and  for .  The scaling down of  for0 0! !œ !Þ!#& R œ %!!
R œ %!! takes into account the increased density of the
nodes.  Figures 6 and 7 demonstrate that (6) can be used
successfully to predict the mean.  In Figure 8, the ratio of the
standard deviation of  to its mean is shown for  sample/ "!!

Figure 6.  Average number of neighbors per node vs. trans-
mission range for  and .R œ "!! œ !Þ!!ß !Þ!&0!

Figure 7.  Average number of neighbors per node vs. trans-
mission range for  and .R œ %!! œ !Þ!!ß !Þ!#&0!

Figure 8.  Ratio of standard deviation to mean value vs  for0
number of neighbors per node,  with andR œ "!!ß %!!

without inhibition.

networks; the fact that  is half as big for  is5 /a b R œ %!!
consistent with there are four times as many nodes being
averaged.  For these examples, the average connectivity of
the sample networks was greater than 90% for 0 ¸ !Þ"&
( ) for networks generated without inhibition and for!Þ!(&
0 ¸ !Þ"$ !Þ!'& ( ) for those generated with inhibition,
respectively for  and  nodes.R œ "!! R œ %!!
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