
1/31/2002 1

Defining a Technical Basis for Comparing and Defining a Technical Basis for Comparing and
Contrasting Emerging Dynamic Discovery ProtocolsContrasting Emerging Dynamic Discovery Protocols

Christopher Dabrowski Kevin Mills
Software Diagnostics & Advanced Networked
Conformance Testing Division Technologies Division
cdabrowski@nist.gov kmills@nist.gov

PC2001 Conference
May 2, 2001

A Project in the ITL Pervasive Computing Portfolio

1/31/2002 2

Modeling Function, Structure, and Behavior

Products
• Rapide specifications of Jini, Universal Plug and Play

(UPnP), and Service Location Protocol (SLP)
• Scenarios and topologies for evaluating discovery protocols
• Suggested consistency properties for service discovery

protocols
• Suggested metrics, based on partially ordered sets

(POSETs), for comparing and contrasting discovery protocols
• Paper identifying inconsistencies and ambiguities in service

discovery protocols and describing how they were found
• Paper proposing consistency conditions for service discovery

protocols, and evaluating how Jini, UPnP, and SLP fare
• Paper comparing and contrasting Jini, UPnP, and SLP at

the level of POSET metrics

Objectives
(1) Provide increased understanding of the competing

dynamic discovery services emerging in industry
(2) Develop metrics for comparative analysis of

different approaches to dynamic discovery and assuring
quality and correctness of discovery protocols

(3) Assess suitability of architecture description languages to
model and analyze emerging dynamic discovery protocols

Technical Approach
Develop ADL models from selected specifications for service
discovery protocols and develop a suite of scenarios and
topologies with which to exercise the ADL models
Propose a set of consistency conditions & constraints that

dynamic discovery protocols should satisfy
Propose a set of metrics, based on partially ordered sets,
with which to compare and contrast discovery protocols
Analyze ADL models to assess consistency condition

satisfaction, and to compare and contrast protocols

Status as of May 1, 2001

• Developed a generic UML model encompassing the
structure and function of Jini, UPnP, SLP, Bluetooth,
and HAVi

• Projected specific UML models for Jini, UPnP, and SLP
• Completed a Rapide Model of Jini structure, function,

and behavior
• Drafted and implemented a scenario language to drive

the Rapide Jini Model.
• Developed a set of consistency conditions and

constraints for Jini behavioral model; currently being
tested using scenarios.

• Discovered significant architectural issue in interaction
between Jini directed discovery and multicast discovery

1/31/2002 3

What is a dynamic discovery protocol?

Discovery protocols contain logic intended to provide resilience
in the face of process, node, and link failures of both a
temporary and permanent nature.

Dynamic discovery protocols enable dynamic elements in a network
(including software clients and services, as well as devices):
(1) to discover each other without pre-arrangement,
(2) to express opportunities for collaboration, and
(3) to compose themselves into larger collections that cooperate

to meet an application need.

What about robustness in the face of change?

1/31/2002 4

Various Protocols for Dynamic Discovery
are Emerging in the Commercial Sector

Universal

Plug and Play

1/31/2002 5

Why are various dynamic discovery protocols
emerging?

• Some industry groups approach the problem from a vertically
integrated perspective, coupled with a narrow application focus
but targeting a different application domain. (e.g., HAVi, Salutation
Consortium, and Bluetooth Service Discovery)

• Sun has designed Jini as a general service-discovery mechanism
atop Java, which provides a base of portable software technology.

• Some suspect that the Jini approach will prove too inefficient for
use in consumer appliances and in other low-cost, low-
performance computing platforms; thus, some propose a different
set of protocols.

1/31/2002 6

1) Use Architectural Description Languages (ADLs) and
associated tools to analyze Discovery Protocol specifications
assessing consistency and completeness w.r.t. conditions of
dynamic change.

2) Compare and contrast emerging commercial service
discovery technologies with regard to function, structure,
behavior, performance and scalability in the face of dynamic
change.

To provide industry with metrics to compare and contrast emerging
dynamic discovery protocols and to strengthen the quality and
correctness of those protocols.

Our Motivation?

Our General Approach?

1/31/2002 7

Particulars of Our Approach
Define a Generic UML Model that Encompasses Jini, UPnP,
SLP, HAVi, and Bluetooth Service Discovery and that provides a
common terminology for discussing discovery protocols, and then
derive Specific UML Models for Jini, UPnP, & SLP (expressed in
the common terminology)

From the UML models and the specifications, encode executable
Rapide models of the structure and behavior of Jini, UPnP, & SLP

Define consistency conditions and constraints that should be
satisfied by discovery protocols in general and by specific discovery
protocols, and define some behavioral metrics

Define a scenario language and scenarios to drive the
executable models, and then exercise the models while evaluating
satisfaction of consistency conditions and constraints and assessing
the behavior exhibited by the executable models

1/31/2002 8

Generic UML Structural Model of
Service Discovery Protocols

Notif ication Request

(from Data View)

<<repository entry >>

Parameter Notif ication Request

(from Data View)

<<repository entry >>
Serv ice Cache
<<repository >>

Notif ication Cache
<<repository >>

0..*0..*

Aggregates

Serv ice Cache
<<repository >>

Serv ice Repository
<<repository >>

Serv ice Parameter Change Notif ication
<<repository >>

0..*0..*
LOCAL CACHE MANAGER
Start Aging Task()

11

SERVICE PROVIDER

SERVICE DESCRIPTION

Identif y
Ty pe
API
GUI
Attributes

(from Data View)

<<repository entry >>

0..*0..*

Aggregates

11 owns

SERVICE CACHE MANAGER
discov er Network Context()
<<not shr>> activ ate Manager Discov ery ()
activ ate Announce Processing()
start Matching Task()
start Aging Task()
Serv ice Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discov er Network Context()
<<not shr>> Cache Manager Discov ery ()
<<OPT>> Announce Serv ice Processing()
<<not shr>> start Renewal Task()
Serv ice Manager()
<<not shr>> start Serv ice Parameter Matching Task()

11

Contains

0..10..1

0..*0..*

manages

0..*0..*

+inf o cache

0..*

+serv ice inf o
source

0..*

service information collection

SERVICE USER
discov er Network Context()
Serv ice Discov ery ()
<<not shr>> start Renewal Task()
Serv ice User()

0..10..1

0..*

0..*

0..*

0..*

invokes operations

0..*0..*

queries information from

0..*

0..*

0..*

0..*

service availabilty
requests

0..*

0..*

0..*

0..*

service
availability
requests

Service
Cache
Manager

Service
User

Service
Manager

Service
Description

1/31/2002 9

Projected UML Structural Model of Jini

Notification Request
(from Data V iew)

<<repository entry>>

N ot ifi cat ion Cache
<<repository>>

0..*0. .*

Aggregates

Ser vi ce C ache
<<repository>>

Service Repository
<<r epos itory>>

SERVICE PROVIDER

SERVICE DESCRIPTION

Identify
Type
API
GUI
Attributes

(from Data V iew)

<<repository entry>>

0..*0..*

Aggregates

11

owns

SERVICE CACHE MANAGER
discover Network Context()
activate Manager Discovery()
activate Announce Processing()
start Matching Task()
start Aging Task()
Service Cache Manager()

0..10..1

Contains

11

Contains

SERVICE MANAGER
discover Network Context()
Cache Manager Discovery()
Announce Service Processing()
start Renewal Task()
Service Manager()

11

Contains

0..*0..*

manages

0..*0..*

+info cache

0..*
+service info

source

0..*
service information collection

SERVICE USER
discover Network Context()
Service Discovery()
start Renewal Task()
Service User()

0..*

0..*

0..*

0..*

invokes operations

0..*0..*
queries information from

0..*

0..*

0..*

0..*

service availabilty
reques ts

0..*

0..*

0..*

0..*

service
availability
requests

Service
User

Service
Manager

Service
Cache
Manager

Service
Description

1/31/2002 10

Architecture Description Languages and Tools

Allow us to model the essential complexity of discovery protocols,
while ignoring the incidental complexity

Incidental complexity represented by the code: for example consider
Core Jini – an 832 page commentary on the massive amount of Java
code that comprises Jini, which also depends on complex underlying
code for Remote Method Invocation, Distributed Events, Object
Serialization, TCP/IP, UDP, HTTP, and Multicast Protocol
Implementation.

Jini is documented in a 385 page specification; however, the static
nature captures only the normative complexity because most of the
essential complexity arises through interactions among distributed,
independently acting Jini components.

1/31/2002 11

Architectural Description Languages

• Provide effective abstractions for representing and analyze
software architectures (components, connections, behavior,
constraints, etc.)
– Using Rapide (Stanford) because of POSET paradigm & constraint

language
• ADLs provide a framework and context

– to more easily pinpoint where inconsistencies and ambiguities
may exist within software implementing specifications & to
understand how they arise

– to define metrics that yield qualitative and quantitative measures
of dynamic component-based software

• ADLs provide basis to compare and contrast dynamic
discovery protocols (Jini, UP&P, SLP)

1/31/2002 12

Rapide, an Architecture Description Language and Tools
Developed for DARPA by Stanford

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Model Specification in Rapide

Execute with Raptor Engine

Analyze Generated POSETs

MODELING
ESSENTIAL
COMPLEXITY

Assess Consistency
Condition
Satisfaction &
Constraint Violations

1/31/2002 13

Define Executable JINI Architectural Model in Rapide

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

JINI
Entities

Service
Manager

Entity
Major
Functions

Lazy Discovery

Directed
Discovery
Client (s,ra)

Aggressive Discovery
Directed
Discovery

Functional
Subcomponents

Network
Node Communication

Links

Network
Topological
Entities

Legend
Type of

Part of

Legend
Type ofType of

Part ofPart of

SCM
Multicaster

SM
Multicaster

Unicaster

Service
Cache

Manager

Service
User

Service
Repository

SCM
Discovery

SCM
Beacon &
Response

SCM
Matching

Cache

Notification
Repository

Multicast
Request
Server

Callback (ra)

Executive

SCM
Database Announcer

(s)

Executive

Multicast
Request
Client (s)

SCM
API

Server (sa)

Announcement
Responder (l,ra)

Multicast
Request

Server (l,sa)

1/31/2002 14

Deploy Instances of Jini Entities and Communication
Channels in a Topology

1/31/2002 15

Drive Model Topology with Scenarios

> StartTime {NodeFail || NodeRecover} NodeID DelayTime.
> StartTime {LinkFail || LinkRestore} NodeID DelayTime FromNode

ToNode.
> StartTime {MProbeFail || MProbeRestore} NodeID DelayTime

FromNode ToNode.
> StartTime {GroupJoin || GroupLeave} NodeID DelayTime.
> StartTime {AddSCM || DeleteSCM} NodeID DelayTime.
> StartTime {AddService ChangeService}NodeID DelayTime ServiceTemplate

ServiceAPI ServiceGUI LeaseTime DurationTime.
> StartTime DeleteService NodeID DelayTime ServiceID.
> StartTime FindService NodeID DelayTime SMNodeID .
> StartTime AddNotificationRequest NodeID DelayTime NotificationID

ServiceTemplate Transitions LeaseTime DurationTime SCMID.
> StartTime DeleteNotificationRequest NodeID DelayTime NotificationID

SCMID.

1/31/2002 16

Analyze Consistency Condition Satisfaction in Real-Time

Sample Consistency Conditions*

For All (SM, SD,SCM): (SM,SD) IsElementOf SCM registered-services
implies SCM IsElementOf SM discovered-SCMs

For All (SU,NR,SCM): (SU,NR) IsElementOf SCM registered-notifications
implies SCM IsElementOf SU discovered-SCMs

*Assuming absence of network failure and normal delays due to updates

• SM is Service Manager
• SD is Service Description
• SCM is Service Cache Manager
• SU is Service User

• NR is Notification Request
• Registered-services is a set of (SM,SD) pairs
• Registered-notifications is a set of (SU,NR) pairs
• Discovered-SCMs is a set of SCM

1/31/2002 17

Analyze POSETs Off-Line to Compare and Contrast
Behaviors Given a Congruent Topology and Scenario

Metrics Based on Numbers of Messages
• Message volume?
• Message intensity?

Metrics Based on Time
• Service latency?
• Service throughput?
• Recovery latency?

Metrics Based on Change
• Derivative of the message intensity?
• Derivative of the service throughput?
• Derivative of the service latency?

Metrics Based on Complexity
• Degree of dependency among messages?
• Rate of consistency & constraint violations?
• Rate of exceptions?

POSET analyses provide basis for defining metrics that provide
quantitative measures of properties of a system

1/31/2002 18

Where do we stand now?

Developed an initial UML model of a generic service discovery
protocol with specific projections for Jini, UPnP, and SLP

Developed and exercised an executable Rapide model of the Jini, including
some consistency conditions, constraints, behavioral metrics

Providing developers of Jini (and of other protocols) with results of analysis

Working on a paper to describe our goals, approach, and interim
results, and to provide recommendations for improving and using ADLs.

What’s to come?
Develop, exercise, and analyze executable specifications for
Universal Plug-and-Play (UPnP) and Service Location Protocol (SLP)

Provide a technical comparison among Jini, UPnP, and SLP

1/31/2002 19

If you want
see a demo, then
please let me know?
cdabrowski@nist.gov

Questions?

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Rapide Model of Jini V1.1 Execute with Raptor Engine

Generate POSETs

-- **
-- ** 3.3 DIRECTED DISCOVERY CLIENT INTERFACE **
-- **
-- This is used by all JINI entities in directed
-- discovery mode. It is part of the SCM_Discovery
-- Module. Sends Unicast messages to SCMs on list of
-- SCMS to be discovered until all SCMS are found.
-- Receives updates from SCM DB of discovered SCMs and
-- removes SCMs accordingly
-- NOTE: Failure and recovery behavior are not
-- yet defined and need reviw.
TYPE Directed_Discovery_Client
 (SourceID : IP_Address; InSCMsToDiscover : SCMList; StartOption : DD_Code;
 InRequestInterval : TimeUnit; InMaxNumTries : integer; InPV : ProtocolVersion)
IS INTERFACE
SERVICE DDC_SEND_DIR : DIRECTED_2_STEP_PROTOCOL;
SERVICE DISC_MODES : dual SCM_DISCOVERY_MODES;
SERVICE DD_SCM_Update : DD_SCM_Update;
SERVICE SCM_Update : SCM_Update;
SERVICE DB_Update : dual DB_Update;
SERVICE NODE_FAILURES : NODE_FAILURES; -- events for failure and recovery.
ACTION
 IN Send_Requests(),
 BeginDirectedDiscovery();
BEHAVIOR
 action animation_Iam (name: string);
 MySourceID : VAR IP_Address;
 PV : VAR ProtocolVersion;

Rapide Model of Jini V1.1 Execute with Raptor Engine

Generate POSETs

