
A Simulation-based Study of TCP Dynamics

over HFC Networks

Omar Elloumi a;1;2, Nada Golmie b;3, Hossam A�� c;4 and

David Su b;5

aAlcatel Corporate Research Center, Francis Wellesplein 1, 2018 Antwerp,

Belgium

bNational Institute of Standards and Technology, Gaithersburg, Maryland 20899,

USA

cEcole Nationale Sup�erieure des T�el�ecommunications de Bretagne, BP 78, 35512

Cesson S�evign�e, France

Abstract

New broadband access technologies such as Hybrid Fiber Coaxial (HFC) are likely

to provide fast and cost e�ective support to a variety of applications including Video

on Demand (VoD), inter-active computer games, and internet-type applications such

as Web browsing, ftp, email, and telephony. Since most of these applications, use

TCP as the transport layer protocol, the key to their eÆciency largely depends on

TCP protocol performance.

We investigate the performance of TCP in terms of e�ective throughput in an

HFC network environment using di�erent load conditions and network bu�er sizes.

We �nd that TCP experiences low throughput as a result of the well known problem

of ACK compression. An algorithm that controls ACK spacing is introduced to

improve TCP performance.

Key words: Congestion avoidance; TCP; ATM; ACK compression; HFC;

1 This work was partially done while Omar Elloumi was a guest researcher at NIST
2 Corresponding author, email: Omar.Elloumi@alcatel.be, Tel: +32 3 240 78 33,

Fax: +32 3 240 99 32
3 email: Nada.Golmie@nist.gov
4 email: Hossam.A��@enst-bretagne.fr
5 email: David.Su@nist.gov

Preprint submitted to Elsevier Preprint 8 December 1999

1 Introduction

The emergence of the HFC technology has a signi�cant impact on already

deployed Cable TV networks. As a return path from the stations to the head-

end becomes available, Cable network operators are able to add more services

to television broadcast. A Medium Access Control (MAC) layer protocol is

implemented at the root (or headend) and at each of the cable network nodes

(or stations) to allow various nodes to share resources. It also controls the

upstream (from the stations to the headend) and the downstream link trans-

missions. MAC protocol speci�cations are being drafted by the IEEE 802.14

working group to accommodate the needs of current and future network ap-

plications.

The IEEE 802.14 Draft document [7] contains various MAC characteristics

such as, frame format, station addressing, timing and synchronization proce-

dures, and the ternary-tree mechanism to resolve collisions resulting from two

or more stations transmitting at the same time. The MAC draft also provides

the necessary \hooks" to support higher layer services such as CBR, VBR and

ABR services for ATM. Performance evaluation studies have been conducted

on MAC protocol elements such as contention resolution and bandwidth al-

location [10]. Also, some preliminary work has been presented on improving

the ABR service over HFC in [11]. But so far, little work has been done in

studying the details and evaluating the performance of the TCP protocol in

an HFC network environment.

The performance of TCP in networks with slow ACKs channel is studied in

[4] and [15]. In [15], the authors focus on the e�ect of asymmetric networks

on TCP performance and show, by means of analysis and simulation, the

performance degradation of TCP Reno, due to frequent timeouts. However this

study does not consider a speci�c MAC protocol in the reverse path (upstream

channel). This model is appropriate for ADSL modems, or con�gurations that

use a telephone line or cellular phone medium in the reverse channel where the

only delay is the sum of the queuing delay and the propagation delay. However,

in the case of multiple access media, such as HFC, it is important to study

the e�ect of MAC protocol and bandwidth reservation on TCP performance.

Finally a study on the e�ect of random losses on TCP performance in an HFC

environment [3] proposes some solutions to improve the performance but again

does not take into account the e�ect of the MAC layer.

We propose an algorithm that improves TCP performance under di�erent

o�ered loads and TCP data bu�er sizes.

The rest of the paper is structured as follows. Section 2 presents the MAC

model as speci�ed in [7]. Sections 3 and 4 give background information on

2

TCP and describe the simulation model respectively. Section 5 presents TCP

performance results. In section 6 a new algorithm for requesting bandwidth

for TCP ACK packets on HFC upstream channel is described along with

some performance results. Concluding remarks are presented in Section 7.

Additional details on TCP dynamics are given in the Appendix.

2 HFC MAC Protocol Overview

The frame format of the MAC protocol de�ned in [7] is shown in Figure 1. The

upstream channel is divided into discrete basic time slots, called minislots. A

variable number of minislots are grouped to form a MAC layer frame as shown

in Figure 1. The headend determines the frame format by setting the number

of data slots (DS) and contention slots (CS) in each frame and sends this

information to the stations on the downstream using a CS Allocation message.

Several minislots can be grouped together in order to form a DS that carries

a MAC Packet Data Unit (MPDU) which is assumed to be an ATM cell plus

the MAC layer overhead. In Figure 1 four minislots carry one MPDU. The DS

are explicitly allocated to a speci�c station by the headend using DS Grant

messages sent on the downstream. CS �t into one minislot and are used by the

stations to transmit requests for bandwidth. Since more than one station can

transmit a request at the same time, CS are prone to collisions. The headend

controls the initial access to the CS slots as well as manages the CRP by

assigning a Request Queue (RQ) number to each CS.

....

Upstream frames

C C C C D

Station

Headend

Upstream {Contention Slots, Data Slots}

Downstream Data & Control Information {feedback, grant, allocation}

Downstream frames

C: Contention Slot

D: Data Slot

n1 n2

D D....C C C C D D D....

....

n1: number of contention slots per frame

n2: number of data slots per frame

Fig. 1. Frame format of 802.14 MAC protocol

The basic MAC operation is as follows. Upon the arrival of the �rst data

packet, a station generates a Request Minislot Data Unit (RMDU) and waits

for a CS Allocationmessage from the headend that reserves a group of CS with

RQ = 0 for newcomer transmission. The station randomly selects a CS in that

group and transmits its RMDU. Since multiple stations may attempt to send

their RMDUs in the same upstream CS a collision may occur. A Feedback

message is sent to the station after a round trip time (which is also equal to

3

a frame length) informing it of the status of the CS used (note that a station

has no means of knowing the status of its request since its transmitter and

receiver are tuned on di�erent frequencies).

In case of a successful request transmission (Feedback=Successful), the station

activates its data transmission state machine and exits the contention process.

Subsequently a Data Grant message will be sent by the headend. There are

two grant scheduling algorithms considered in this paper: First Come First

Serve (FCFS) and Round Robin (RR). For FCFS, the HE grants each station

the totality of the requested slots before giving any grants to other stations.

For RR, the grants are distributed to stations in a round robin fashion. A

station sends a cell and waits for all the other stations that have successfully

transmitted requests to the HE to send their data. Once a station is assigned

a DS to send its data it may use a special �eld in the MPDU to send other

requests in piggybacking thus bypassing the contention process.

In case of a collided CS, the feedback message contains a particular RQ number

to be used for collision resolution (Feedback=RQ). That is the station needs to

retransmit its request in a CS group with that RQ number. The CS groups are

usually allocated in the order of decreasing RQ values. For each RQ value, the

headend assigns a group of CS. A CS within the group is selected randomly

in the range (0::2).

3 TCP Protocol Background Information

Most of today's internet applications use the TCP protocol as de�ned in [16].

In this section, we describe two basic concepts of TCP related to congestion

avoidance and control.

TCP Congestion Avoidance and Control Mechanisms have signi�-

cantly evolved in the past few years although the protocol packet format and

its state machine have remained unchanged. Most versions of TCP control

mechanisms aim at improving the estimation of available network bandwidth

and preventing timeouts in order to maintain stability and throughput.

The slow start algorithm [12] was proposed by Jacobson as a congestion avoid-

ance and control algorithm for TCP after a congestion collapse of the Inter-

net. This algorithm introduces a congestion window mechanism to control the

number of bytes that the sender is able to transmit before waiting for an ac-

knowledgment. For each received acknowledgment, two new segments are sent.

When the window size reaches a threshold value, SSThreshold, the algorithm

operates in Congestion Avoidance mode. The slow start is triggered every

retransmission timeout by setting SSThreshold to half the congestion win-

4

dow and the congestion window to one segment. In the Congestion Avoidance

phase, the congestion window is increased by one segment every Round Trip

Time (RTT). Thus when the mechanism anticipates a congestion, it increases

the congestion window linearly rather than exponentially. The upper limit for

this region is the value of the receiver's advertised window. If the transmit-

ter receives three duplicate acknowledgments, SSThreshold is set to half of

the preceding congestion window size while this latter is set to one packet for

TCP Tahoe and half of the previous congestion window for TCP Reno. At this

point the algorithm assumes that the packet is lost, and retransmits it before

the timer expires. This algorithm is known as the fast-retransmit mechanism.

TCP Tahoe experiences low throughput when packets are lost because of the

slow-start algorithm. TCP Reno performs better in the case of single packet

loss within one window of data because the congestion window is decreased

by half rather than set to one. However, in the case of multiple packet losses,

TCP Reno also experiences low throughput since it can easily be subject to

timeouts leading to long idle periods. This is outlined in [6] and [15]. In [6], the

author proposes the so-called \New-Reno" algorithm to avoid this problem.

TCP Self-clocking Principle [12] estimates the bottleneck bandwidth by

letting the sender rate exactly match the available bandwidth along the net-

work path. Thus if the time to process packets at the receiver is constant,

ACKs are spaced according to the bottleneck in the forward path. If the net-

work is symmetric, the ACK spacing is preserved in the backward direction

since the ACK packet size is much smaller than the data packet size and thus

less likely to encounter congestion. When the sender transmits a packet for

each arriving ACK, the packet sending rate matches the bottleneck service

rate and this constitutes a \self-clocking" mechanism, an \idealized state" as

mentioned in [14], [19] and [22]. However, this mechanism fails in the case

of delay variations in both the forward and backward directions. In partic-

ular, in the case of two-way TCP traÆc, ACK spacing is not preserved due

to the interaction between data packets and ACKs: ACKs accumulate behind

large data packets and then leave the bottleneck with a smaller spacing than

the spacing corresponding to their data packets (called ACK compression)

[14], [22]. Furthermore, ACK compression may lead to a rapid network queue

build-up and a high packet loss percentage as shown in [22]. Even with in�nite

bu�ers, the network utilization is expected to drop considerably.

4 Simulation model

In this section we provide a description of the simulation environment and
parameters. We use the NIST ATM Network Simulator [8] to implement TCP
Tahoe and TCP Reno as described in [21]. The simulator also features a MAC

5

TCP Source

TCP

TCP data flow

TCP ACKs flow

ON/OFF Background Traffic
(Sources)

EPD
thresold

DDDD

ON/OFF Background Traffic
(Destinations)

TCP Destination

Headend
 Station

ATM switch
 (SW1)

ATM switch
 (SW2)

S S S S....

TCP

Upstream Contention Channel

Fig. 2. Simulation model

protocol for HFC networks as described in [7]. The network model considered is
illustrated in Figure 2. It consists of a hybrid ATM-HFC con�guration where
a TCP source in the ATM network sends packets to a TCP destination in
the HFC network. We believe that this set-up re
ects a typical usage in an
HFC network environment since most applications in HFC networks serving
residences, such as Web browsing (HTTP) or �le downloads (FTP), suggest
that the amount of data sent by the stations is much less than the amount of
data received.
The selected network topology is chosen with one TCP connection for a better
understanding of TCP dynamics. Link capacity between TCP source and SW1
is set to 155 Mbits/s, while the link capacity between SW1 and SW2 is set
to 6 Mbits/s to represent the bottleneck link. The propagation delay between
SW1 and SW2 is set to 1:25 ms. SW1 and SW2 implement the Early Packet
Discard strategy (EPD) [17].
The TCP source is assumed to have an in�nite number of packets to send. In
order to stress contention on the upstream channel, we consider 200 stations
with on-o� sources sending data upstream. This constitutes the background
traÆc. Sources generate �xed size 48-byte packets (encapsulated in ATM cells)
according to a Poisson distribution with a mean arrival rate of � = L�UR�48

53�N
.

L is the percentage of the o�ered load, UR is the upstream channel rate and
N is the number of stations.
Figure 3 illustrates the protocol stack for a TCP connection end system. We
use an AAL5 encapsulation of IP packets. After segmentation, cells are queued
in a FIFO queue inside the MAC layer. In this paper, unlike what is described
in [15], we assume that the FIFO queue inside the MAC layer is large enough
to accommodate all incoming ACKs from a single TCP connection. This is a

6

TCP/IP

Rx application

ACKs packetsDATA packets

A
pp

lic
at

io
n

la
ye

r

T
C

P
/IP

la
ye

r

M
A

C
la

ye
r

Cells

A
T

M
 la

ye
r

P
hy

si
ca

l
la

ye
r

AAL5
SAR

ATM

Cells

Adaptation

Fig. 3. TCP End Node Model

realistic assumption since for a 1 Kbyte packet size and a 64 Kbyte maximum
congestion window, a maximum of 64 ACKs can accumulate in the FIFO
queue (we believe that losses should not happen in a transmitter). Also, we
assume that driver interface bu�ers can hold up to 50 IP packets of 1 Kbyte
each [20].
Simulation parameters for both the MAC and TCP protocols are given in
Table 2 and 3 respectively.

5 Performance of TCP over HFC

In this section we analyze the dynamics of TCP traÆc for the network con�g-

uration previously described. We consider the e�ective throughput of a single

TCP connection as a function of the EPD 6 threshold in SW1 (the bottleneck

6 we assume that the switch bu�er is large enough to ensure that if the �rst cell

of a packet is accepted (based on the EPD algorithm), all remaining cells from the

7

Table 1

MAC Model Parameters

Simulation Parameter Value

Number of active stations 200

Distance from nearest/furthest station to headend 25/200 km

Downstream data transmission rate 30 Mbits/s

Upstream data transmission rate 3 Mbits/s

Propagation Delay 5 �s/km

Length of Simulation Run 15 s

Length of run prior to gathering statistics 1 s

Guardband and preamble between transmissions Duration of 5 bytes

Data Slot Size 64 bytes

Contention Slot Size 16 bytes

DS/CS Size Ratio 4:1

Cluster Size 2.27 ms

Maximum Request Size 32

Headend Processing Delay 1 ms

Table 2

TCP parameters

Simulation Parameter Value

Maximum Transfer Unit (MTU) 1 KB

Timeout granularity 500 ms

Packet processing time 100 �s

Congestion avoidance algorithm TCP Reno

Maximum congestion window size 64 KB

Initial SSThreshold 8 KB

switch) for di�erent upstream o�ered loads and grant scheduling algorithms,

namely, FCFS, and RR (see Section 2). We de�ne the e�ective throughput,

as the throughput that is usable by higher layer protocols [17]. It does not

account for packets discarded by the EPD algorithm nor successfully retrans-

mitted TCP packets. A detailed analaysis of TCP congestion window and

bottleneck switch bu�er dynamics is given in the Appendix.

same packet are queued.

8

5.1 Simulation results

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 4. TCP E�ective Throughput vs EPD Threshold, FCFS HE Grant Allocation

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 5. TCP E�ective Throughput vs EPD Threshold, RR HE Grant Allocation

The e�ective throughput for FCFS and RR scheduling is depicted in Figure

4 and 5 respectively. The y-axis gives the throughput as a percentage of the

maximum throughput on the bottleneck link (6Mbits/s), (this includes 5 bytes

of ATM header overhead). We note that throughput is low in Figure 4 and

5 meaning that the TCP connection is unable to �ll the network pipe. This

behavior could be caused by a high bandwidth-RTT product. However the

bandwidth-RTT product computed in Table 3 doesn't con�rm this assump-

tion. For di�erent upstream o�ered loads with a maximum congestion window

size of 64 Kbytes, we �nd that the maximum window size is greater than all

mean products (with the exception of 50% load).

5.2 Results analysis

The dynamics of the TCP congestion window suggest that the TCP source

su�ers from frequent timeouts and fast retransmit fast recovery periods. This

9

Table 3

Bandwidth-RTT Product

Percentage of O�ered Load Mean (Kbytes) Max (Kbytes) �

10% 11.794 26.236 2.715

20% 13.316 28.923 3.253

30% 15.300 34.426 4.081

40% 27.433 103.663 11.262

50% 193.019 462.776 97.942

prevents the congestion window from reaching its optimal value and com-

pletely �lling the forward link. ACK compression is known to break down the

TCP self-clocking algorithm because compressed ACKs clock out data packets

at a rate equal to their arrival rate. The ACK compression behavior is usually

observed when ACKs encounter non empty queues (in the backward direc-

tion). When ACKs leave the bottleneck bu�er their spacing is smaller than

the original spacing at queue entry [2] [22]. To depict this problem we plot

0

1

2

3

4

5

6

7

8

6.5 7 7.5 8 8.5 9

In
te

r
A

C
K

s
ar

riv
al

 (
m

s)

time (s)

Fig. 6. ACK Interarrival Time with FCFS HE Grant Scheduling, Upstream O�ered

Load = 30%

the interarrival time of consecutive ACKs for 30% o�ered load with FCFS and

RR in Figure 6 and 7 respectively. In Figure 6, we can identify two groups

of ACK interarrival times at y = 0:34ms and y = 1:19ms. The interval be-

tween two data packets sent back to back, is given by Packet size=�1 = 1:55

ms where Packet size is the size of the data packet and �1 is the forward

link capacity. This is also equal to the minimum spacing between two TCP

data packets. In our simulation we assume that the time to process a TCP

packet and send its corresponding ACK is constant. Thus the spacing be-

tween ACKs should be equal to the spacing between their corresponding data

packets. However, in Figure 6 and 7 for a large number of received ACKs,

the spacing between them is less than the minimum spacing between the

data packets. This con�rms that ACK compression is the main reason for the

low e�ective throughput observed. Further investigations and studies of the

10

0

1

2

3

4

5

6

7

8

9 9.5 10 10.5 11 11.5

In
te

r
A

C
K

s
ar

riv
al

 (
m

s)

time (s)

Fig. 7. ACK Interarrival Time with RR HE Grant Scheduling, Upstream O�ered

Load = 30%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

fr
ac

tio
n

Inter ACKs arrival (ms)

FCFS
Round Robin

Fig. 8. Distribution of ACK Interarrival Time for FCFS and RR, Upstream O�ered

Load = 30%

....C C C C D ACK1D D ACK1C C C C ACK2 DACK2 D D

(a)

(b)

....C C C C D DC C C C ACK2 DD D

(c)

ACK1ACK1 ACK2.... D

.... DACK1 ACK2 ACK2....C C C C ACK1

Fig. 9. ACK Compression Scenarios

MAC layer protocol help us determine that the ACK-compression identi�ed

in this case is the result of the grant allocation mechanism that is used to send

ACK packets at the MAC layer. The interval between two ACKs is equal to

ACK size=Rateupstream, where ACK size = NDataSlot � SizeDataSlot. Values

of inter ACK spacing equal to 2 � 64 � 8=3000 = 0:34ms (Figure 6 and 7)

11

correspond to the case where two ACKs are sent back to back in the same

frame (Figure 9-(a)). The second group of points at y = 1:19ms corresponds to

ACKs being sent back to back in two di�erent frames. In this case, the spacing

between two ACKs is equal to two DSs (corresponding to an ACK packet) and

n1 CS (Figure 1). Since each DS corresponds to four CSs, the spacing is given

by 7 � 64 � 8=3000 = 1:19ms. Note that each ACK requires two DSs and there

are 20 CS (or 5 DSs) in each cluster for a total of 7 DSs. This is illustrated

in Figure 9-(b) and 9-(c). With RR scheduling, we note that the minimum

ACK spacing is also equal 0:34ms when the request queue at the HE contains

only one request from the TCP receiver station. Figure 8 shows the distri-

bution of ACK spacing for both FCFS and RR. It is clear that although the

minimum spacing between packets is 1:55ms (for packets sent back to back),

more than 85 % of the ACK spacing is lower than the theoretical minimum

spacing between packets for FCFS. However, for RR scheduling we can see

that the percentage of ACK spacing below 1:55 ms is relatively low since the

RR algorithm introduces spacing during scheduling. This explains why better

throughput is obtained in Figure 5 with RR than with FCFS in Figure 4.

Figure 10 illustrates the HFC grant compression of TCP ACKs. TCP data

packets arrive to the TCP destination at intervals equal to Packet size=�1.

For each TCP packet, an ACK is generated and queued in the MAC layer

FIFO queue. The MAC layer sends requests with a request size equal to its

queue size. Since the time between the �rst request transmission and the re-

ception of grants can be relatively large compared to Packet size=�1 (due to

collisions and contention resolution), the FIFO queue builds up. When a suc-

cessful request is received at the HE, depending on the scheduling algorithm

used, grants for more than one ACK are sent to the station. If we consider the

FCFS grant allocation at the HE, (Figure 10), ACKs are sent with a spacing

equal to ACK size=�2 where �2 is the upstream rate. For FCFS scheduling,

the following condition, Packet size=�1 > ACK size=�2 guarantees ACK

compression. This condition is necessary but not suÆcient for RR scheduling

since in case of multiple requests queued at the HE, the ACK spacing can be

greater than ACK size=�2.

If we denote by Reserv time(t) the time between the �rst ACK arrival (at the

MAC transmitting queue) and the receipt of grants (to send waiting ACKs)

the necessary and suÆcient condition to have an idle period is: W (t)=�1 >

Reserv time(t)+D, whereW (t) is the congestion window size at the time the

packet corresponding to the �rst ACK is sent and D is the propagation delay

between the TCP receiver and sender. This idle period is due to the fact that

TCP must wait for incoming ACKs before sending new data and is equal to

Reserv time(t) + D �W (t)=�1. For FCFS HE grants scheduling, the queue

occupancy q(t) in switch1 after an idle period is characterized by:

8
><
>:
q0(t) = 2��2�Packet size

ACK size
� �1 if TCP is operating in Slow Start phase

q0(t) =
(1+1=W (t))��2�Packet size

ACK size
� �1 if TCP is operating in Congestion Avoidance phase

12

P_Size/ µ1

P_Size/ µ1

P_Size/ µ1

Pi

Pi+1

Pi+2

Pi+3

Pi+4

P_Size/ µ1

ACK i+1

ACK i+2

ACK i+3

ACK i+4

ACK i+5

ACK
i+1

ACK i+2

ACK i+3

ACK i+4

ACK
i+1

ACK i+2

ACK i+3

ACK i+1

ACK i+2

ACK i+1

A_Size/ µ2

ACK
i+1

ACK i+2

ACK i+3

ACK i+4

ACK i+5

Requests are sent in
contention with request size

= queue size

A_Size/ µ2

A_Size/ µ2

A_Size/ µ2

TCP data packets arrivals

MAC transmission queue

ACK arrivals

ACKS are sent upon
receipt of grants from HE

Fig. 10. HFC Grant Compression of TCP ACKs

For RR HE grants scheduling, the queue occupancy q(t) in switch1 after an

idle period is characterized by:

8
><
>:
q0(t) =

2��(t)��2�Packet size

ACK size
� �1 if TCP is operating in Slow Start phase

q0(t) = (1+1=W (t))��(t)��2�Packet size

ACK size
� �1 if TCP is operating in Congestion Avoidance phase

where �(t) is a reduction factor inversely proportional to the number of

requests R(t) being served by the HE scheduler. �(t) is given by �(t) =
1

R(t)
. In all cases the bu�er occupancy in switch1 starts building up when

q0(t) > 0. Thus the necessary condition to have packet losses is given by:
q0(t)

B
> �2�Packet size

ACK size�W (t)
where B is the bu�er size in switch1.

6 Solutions to the ACK compression behavior

In this section we discuss possible improvements of TCP performance in an

HFC network environment. As explained in Section 5, TCP low throughput is

mainly attributed to ACK compression. For a better TCP throughput, ACKs

spacing in the upstream channel should be equal to the TCP data spacing

in the downstream path. Solutions to this problem vary in complexity and

implementation. In [14], authors propose the use of separate queues for ACKs

13

and data respectively to improve TCP performance over ATM in the case of

two-way traÆc. This ensures that ACKs are not subject to delay and delay

variation caused by TCP data packets. Similarly, a possible improvement of

the TCP e�ective throughput is to prevent ACKs from being subject to delay

and delay variation inside the MAC layer. For example, the HE can predict

the number of data slots needed by a station to send its ACK packets based on

the number of TCP packets it forwards in the downstream direction. However

such scheme would require the processing of each ATM cell header in order

to ensure that the ATM cell is part of a data packet. It also requires a good

estimator for the RTT (between the HE and the station) and the processing

delay at the HE. We believe that other mechanisms for ACK spacing can be

implemented in the station MAC layer with less complexity.

We �rst investigate the performance of TCP over HFC using piggybacked

requests for sending ACK packets. Then we propose an algorithm for ACK

spacing that signi�cantly increases TCP throughput.

6.1 TCP performance using Piggybacking

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 11. TCP E�ective Throughput vs EPD Threshold, FCFS HE Grant Allocation

and Piggybacked Requests

Piggybacking in the MAC layer consists in sending requests for additional

data transmission along with a data packet without having to go through con-

tention. After the �rst request for data transmission (sent in contention), sub-

sequent requests are transmitted in the Extended Bandwidth Request (EBR)

�eld of the MAC data PDU. Since the request is piggybacked in the DS, it is

not subject to contention. We plot in Figure 11 and 12 the e�ective throughput

of a TCP connection, using piggybacking for sending ACK packets, as a func-

tion of the EPD threshold for both FCFS and RR HE scheduling. Note that

in order to keep the o�ered load comparable to the simulations performed in

Section 5, we only use piggybacking for the transmission of TCP ACK packets

(i.e. not for background traÆc). As a direct result of piggybacking the e�ective

14

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 12. TCP E�ective Throughput vs EPD Threshold, RR HE Grant Allocation

and Piggybacked Requests

0

10

20

30

40

50

60

2 4 6 8 10 12 14

R
T

T
 (

m
s)

time (s)

Fig. 13. RTT with RR, EPD threshold = 160 cells, Upstream O�ered Load 30%

0

10

20

30

40

50

60

2 4 6 8 10 12 14

R
T

T
 (

m
s)

time (s)

Fig. 14. RTT with RR + Piggybacking, EPD threshold = 160 cells, Upstream

O�ered Load 30%

throughput increases for both FCFS and RR scheduling (especially for EPD

threshold values larger than 100 cells).

To illustrate this improvement we plot the RTT measured at the TCP sender

for 30% o�ered load with and without piggybacking in Figure 13 and Figure

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

40 60 80 100 120 140 160

R
at

io

EPD threshold (cells)

10 % offered load
20 % offered load
30 % offered load
40 % offered load
50 % offered load

Fig. 15. Ratio of successful Piggybacked Requests over the total number of Requests,

FCFS HE Grant allocation

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

R
at

io

EPD threshold (cells)

10 % offered load
20 % offered load
30 % offered load
40 % offered load
50 % offered load

Fig. 16. Ratio of successful Piggybacked Requests over the total number of Requests,

RR HE Grant allocation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8

fr
ac

tio
n

Inter ACKs arrival (ms)

FCFS
Round Robin

Fig. 17. Distribution of ACK Interarrival Time for FCFS and RR, Upstream o�ered

load = 30%

14 respectively (with EPD threshold set to 160 cells). We �rst observe that the

RTTs obtained are considerably reduced. We also compute the standard delay

deviation with and without piggybacking to be equal to 1:38ms and 4:17ms

respectively. We note that RR scheduling gives better performance results

16

than FCFS scheduling. We attribute this to the spacing introduced by the RR

scheduling that increases the probability to send requests for additional ACK

transmissions in every DS granted. In Figure 15 and Figure 16 the ratio of

successful piggybacked requests over the total number of requests is shown for

FCFS and RR scheduling respectively. As the EPD threshold in the forward

direction is increased, the ratio of successful requests for both scheduling al-

gorithms increases as well. Thus a larger bottleneck bu�er enables larger TCP

congestion window values and leads to a continuous TCP data
ow. How-

ever, with FCFS scheduling we observe that the ratio of successful requests

decreases as the upstream o�ered load increases. The continuity of data
ow

is perturbed with FCFS and the station cannot take full advantage of piggy-

backing. A contrario for the case of RR scheduling where TCP ACKs are sent

with a spacing proportional to the number of stations having data to send.

This spacing allows the station to send requests for subsequent ACKs along

with the ACK packets using piggybacking which improves TCP performance.

Note that the highest ratio of successful piggybacked requests happens at 50%

o�ered load due to the "large" spacing introduced on TCP ACKs. From the

results obtained, we can conclude that piggybacking reduces the contention

percentage in the case of multiple TCP sources and gives a shorter upstream

delay. However, the throughput for 50% o�ered load remains low due to the

relatively large delay incurred. In Figure 17, we plot the interarrival of TCP

ACKs. Compared to Figure 8, we note a reduction in the ratio of ACKs sent

back to back: with a spacing equal to 0:34ms. Moreover a relatively large num-

ber of ACKs arrives with a spacing greater than 1:55ms (which is the minimum

spacing between data packets) and hence further alleviates the ACK compres-

sion phenomenon reported.

Although piggybacking introduces spacing between consecutive acknowledge-

ments, it hardly adapts to variable load (see next section).

6.2 Acknowledgments spacing

Piggybacking does not adapt itself to a situation where the o�ered load peri-

odicity (rate) is di�erent from the arriving packet rate (it does not conserve

the optimal spacing between acknowledgments). In this case requests that are

piggybacked arrive at the HE with a rate relative to the o�ered load and do not

match the packet rate. We logically loose some bandwidth. We present now

a new algorithm that, in addition of reducing the delay using piggybacking,

dynamically controls the spacing between TCP ACKs. It is reactive so that

the interval value is adjusted according to the variation between TCP data

packet arrivals. This interval is chosen as to increase the bandwidth and to

prevent packet losses. We �rst describe the algorithm and give a pseudo code

description of the necessary calculations. We then comment the simulation

results, compare the two solutions and discuss feasibility issues.

17

Dynamic rate tracking algorithm The algorithm tracks the bottleneck

rate capacity �1. It then calculates the adequate ACK rate �p for the measured

�1.

�p = �1=Packet size

Di�erent methods may be used to estimate the bottleneck rate. Some have

been already proposed in rate based
ow control algorithms [13], [18]. We

use a very simple method well adapted to TCP behavior in SlowStart and

Congestion-Avoidance working regions. It measures the minimal interarrival

time � between two back to back packets to decide of the ACK sending rate

(spacing). Since each ACK corresponds to two ATM cells (for Classical IP over

ATM), the requested spacing is then set to �=2. This is adapted to TCP, since

it usually sends packet pairs in both Slow-Start and Congestion-Avoidance

regions. We can measure and always use the shortest interarrival time between

two consecutive packets. The pseudo code for the proposed algorithm is as

follows:

When a new ACK is received
if MAC_queue_is_not_empty()

if τ==0
τ = clock() - last_ack_arrival

else
τ = filter (clock() - last_ack_arrival, τ)
/* filter can be Min, Max or Mean */

last_ack_arrival = clock()

Each time a request for new data transmission is sent:
request queue_size() grants with a transmission rate τ/2
τ=0

Fig. 18. The ACK spacing algorithm

Simulation Results Figure 19 gives the e�ective throughput of TCP over

HFC using the ACK spacing algorithm given. We note that it improves TCP

performance for di�erent o�ered loads. It prevents premature and frequent

packet losses due to ACK compression. As expected, no improvement can be

achieved beyond a load of 50%. This is due to the large bandwidth delay

product incurred at this load. In order to validate the choice of the minimal

interarrival time between two consecutive ACKs, we did simulations using the

18

average and the maximum interarrival values. Results are given in Figure 20

and 21 respectively. Although TCP performance is improved with a mean

value based estimation, it degrades for the maximum value based estimation.

Minimum based estimation proves to be optimal in our case. In Figure 22, we

plot the distributions of ACK interarrival times for the minimum, mean and

maximum based estimations. With the minimum and mean estimation more

than 80% of the ACK interarrival times fall close to 1:55ms, which is also

the minimum spacing between two consecutive TCP data packets. There is

relatively few ACKs compressed (spacing less than 1:55ms). However for the

maximum based estimation, while the ACK compression behavior is corrected,

a large number of ACKs arrive with an interarrival time greater than 1:55ms.

This results from large delays in grant reception increasing ACK spacing and

triggering periods of TCP inactivity.

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 19. TCP E�ective Throughput vs EPD Threshold, RR HE Grant Allocation,

min spacing

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 20. TCP E�ective Throughput vs EPD Threshold, RR HE Grant Allocation,

max spacing

19

0

0.2

0.4

0.6

0.8

1

40 60 80 100 120 140 160

E
ffe

ct
iv

e
th

ro
ug

hp
ut

EPD threshold (cells)

10% offered load
20% offered load
30% offered load
40% offered load
50% offered load

Fig. 21. TCP E�ective Throughput vs EPD Threshold, RR HE Grant Allocation,

mean spacing

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8

fr
ac

tio
n

Inter ACKs arrival (ms)

min
max

mean

Fig. 22. Distribution of ACK Interarrival Time for ACK spacing algorithm

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

S
en

de
r

A
C

K
 s

eq
ue

nc
e

nu
m

be
r

(M
by

te
s)

time (s)

ACK spacing
Piggy backing

Fig. 23. Comparison of Piggy backing and ACK spacing with di�erent bottleneck

rates: 1.5, 2, 2.5 Mbits/s for 20% o�ered load, EPD threshold = 100 cells

Piggybacking vs. ACK spacing As we have mentioned in the beginning

of this paragraph, although piggybacking reduces the ACK compression be-

havior, by introducing some kind of spacing on successive ACKs, it does not

adapt to the o�ered load and it may not match the original spacing between

ACKs. In this situation ACKs spacing can result in ACK compression and

20

bad performance. To show this shortcoming, we simulated di�erent bottle-

neck rates (link capacity between SW1 and SW2): 1.5 Mbits/s from 0 to 10 s,

2 Mbits/s from 10 to 20 s and 2.5 Mbits/s from 20 to 30 s of the simulation

time (see 23). Our goal is to compare the stability of piggybacking and ACK

spacing. We found that ACK spacing algorithm prevents from TCP timeouts

for the three bottleneck rates. For piggybacking, while the performance is sim-

ilar to ACK spacing when the bottleneck rate is under 2.5 Mbits/s, a lot of

timeouts are observed when the bottleneck rate is set to 2 Mbits/s and 1.5

Mbits/s. For 1.5 Mbits/s the throughput degradation is very visible (large pe-

riods of inactivity). The spacing introduced by piggybacking does not always

match the bottleneck rate, and ACKs can be subject to compression.

Feasibility and implementation As far as feasibility and implementation

are concerned, we believe that three conditions are necessary to ensure proper

operation of the proposed algorithm. First the HE grant allocation algorithm

must be able to schedule grants for ACK transmissions at a constant rate. This

can be easily achieved since HE scheduling algorithms are expected to provide

Constant Bit Rate (CBR) service. The second concern is the value of the clock

granularity. As pointed out in [19], clock granularity can biase the estimation

of the interarrival of consecutive packets or ACKs. This problem is likely

to happen in a high speed network environment. However, in this case, the

MAC layer has a very �ne timer granularity: depending on the upstream bit

rate, minislot intervals could be in the order of few �s. Finally, the algorithm

presented can be implemented using an additional option in the HFC MAC

layer that permits to specify an interval for transmitting data. This is achieved

at the cost of a slight increase in the MAC grant request PDU size, namely

an 8-bit �eld containing the transmission rate.

7 Concluding Remarks

This paper gives performance results and improvements of the TCP proto-

col over HFC networks. First we have shown by means of simulations that

poor TCP performance is observed due ACK compression. We compared the

performance of FCFS and RR HE scheduling algorithms and found that RR

scheduling results in better performance due to the "natural" spacing intro-

duced on successive TCP ACKs. This reduces the ACK compression behavior.

Second , we investigated the e�ect of piggybacking on TCP performance and

found that it reduces the delay and the delay variation of TCP ACKs. As a

result TCP eÆciency is improved in all cases. However piggybacking can still

result in bad performance when the data path capacity is small.

Finally, an algorithm for ACK spacing is proposed and is shown to give op-

timal performance for di�erent o�ered loads and network bu�er sizes. This

21

algorithm is very simple and aims at conserving the ACKs interarrival time,

to respect the TCP self-clocking mechanism. This algorithm can be general-

ized for other applications, since even if packets are subject to delay (due to

grant requests), it is desirable to conserve, at the MAC layer, the spacing in-

troduced by the applications. However since the MAC layer can handle packets

from di�erent
ows, conserving the delay between packets on a per-
ow basis

is a complex problem, and is in our opinion a good research area in the case

of HFC networks. In practice, in the case of residential access, it is expected

that only one network application is used in each terminal.

In this paper we studied TCP eÆciency, however, we believe that more stud-

ies need to be led in order to investigate other issues such as TCP fairness

and delay over HFC. Although, we used TCP-RENO in our simulations to

re
ect the large majority of TCP/IP stacks, it may be interesting to examine

the performance of di�erent TCP algorithms, such as SACK-TCP and New-

Reno. These algorithms are known to give better performance in the case of

frequent packet losses. Our simulations were made using a single TCP con-

nection since our goal was to focus on the e�ect of the MAC protocol on TCP

performance rather than to study the interaction between di�erent TCP con-

nections. Our future work will also include the interaction between multiple

TCP connections.

References

[1] C. Bisdikian. \msStart: A Random Access Algorithm for the IEEE 802.14 HFC

Network," Technical Report, RC 20466, IBM Research Division, T.J. Watson

Research Center, June 1996.

[2] J.C. Bolot, \Charaterizing End-to-End Packet Delay and Loss in the Internet" ,

Journal of High-Speed Networks, vol. 2, no. 3, pp. 305-323, December 1993.

[3] R. Cohen, S. Ramanathan \TCP for High Performance in Hybrid Fiber Coaxial

Broad-Band Access Networks", IEEE/ACM Transactions on Networking, vol. 6,

no. 1, Feb. 1998, pp. 15-29

[4] O. Elloumi, H. A��, M. Hamdi. \Improving Congestion Avoidance Algorithms

in Asymmetric Networks". Proc. IEEE ICC '97. Montreal. June 1997.

[5] K. Fall, S. Floyd, \Simulation-based Comparisons of Tahoe, Reno and SACK

TCP", Computer Communications Review, V. 26 N. 3, July 1996, pp. 5-21

[6] J. C. Hoe, \Improving the Startup Behavior of a Congestion Control Scheeme

for TCP", Proc. ACM SIGCOMM'96, August 1996, pp 270-280, Stanford, CA.

[7] IEEE 802.14 Working Group, Media Access Control, IEEE Draft Std. 802.14,

Draft 2 R2, October 1997.

22

[8] N. Golmie, A. Koenig, and D. Su, \The NIST ATM Network Simulator,

Operation and Programming," Version 1.0, NISTIR 5703, March 1995.

[9] N. Golmie, S. Masson, G. Pieris, and D. Su:\Performance Evaluation of MAC

Protocol Components for HFC Networks," Proceedings of the International

Society for Optical Engineering, Photonics East'96 Symposium, 18-22 November

1996, Boston, Massachusetts. Also appeared in Computer Communication, June

1997.

[10] N. Golmie, S. Masson, G. Pieris and D. Su:\Performance Evaluation of

Contention Resolution Algorithms: Ternary-tree vs p-Persistence," IEEE 802.14

Standard Group, IEEE 802.14/96-241, October 1996.

[11] N. Golmie, M. Corner, J. Liebherr, D. Su, \Improving the E�ectiveness of ATM

TraÆc Control over Hybrid Fiber-Coax Networks", Proc. of IEEE Globecom 1997,

Phoenix, Arizona.

[12] V. Jacobson, \Congestion Avoidance and Control", Proc. ACM SIGCOMM'88,

pages 314-329, August 1988.

[13] R. Jain, \Rate Based Flow Control", Proc. M SOMM'96, Aust b.c. 22, pp

270-280, Leonides, Gr.

[14] L. Kalampoukas, A. Varma, K. K. Ramakrishnan, \Two-Way TCP TraÆc over

ATM: E�ects and Analysis", Proc. Infocom'97, April 1997, Kobe, Japan.

[15] T. V. Lakshman, U. Madhow, B. Suter, \Window-based error recovery and
ow

control with a slow acknowledgment channel: a study of TCP/IP performance",

Proc. Infocom'97, April 1997, Kobe, Japan.

[16] J. Postel, \Transmission control protocol", Request for comment 793, DDN

Network Information Center, SRI International, September 1981.

[17] A. Romanow, S. Floyd, \ Dynamics of TCP TraÆc over ATM Networks", IEEE

JSAC, V. 13 N. 4, May 1995, p. 633-641.

[18] S. Keshav, \Packet Pair Flow Control", to appear in IEEE/ACM Transactions

on Networking, available from http://www.cs.cornell.edu/skeshav/papers.html

[19] V. Paxson, \Measurements and Analysis of End-to-End Internet Dynamics",

Ph.D. Thesis, LBNL-40319, UCB//CSD-97-945, University of California, Berkley.

[20] W. R. Stevens, \TCP/IP Illustrated, volume 1", Addison-Wesley Publishing

Compagny, 1994.

[21] W. R. Stevens, \TCP Slow Start, Congestion Avoidance, Fast Retransmit, and

Fast Recovery Algorithms", Request for Comments 2001, January 1997.

[22] L. Zhang, S. Shenker, D. D. Clark, \Observations on the dynamics of

a congestion control algorithm: the e�ects of 2-way traÆc", Proc. ACM

SIGCOMM'91, pp 133-147, Sept 1991, Zurich, Switzerland.

23

Appendix: Analysis of TCP behavior

In this Appendix we examine TCP congestion window and SW1 bu�er (cor-

responding to the bottleneck link) dynamics for 30% of the upstream o�ered

load using di�erent MAC layer algorithms: 1)\pure RR", 2) RR + piggyback-

ing and, 3)RR + ACK spacing. In Figure 24 we identify two pathological

0

5000

10000

15000

20000

25000

30000

7 8 9 10 11 12

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(B
yt

es
)

time (s)

Fig. 24. TCP Congestion Window for 30% Upstream O�ered Load

0

20

40

60

80

100

120

140

160

180

7 8 9 10 11 12

qu
eu

e
si

ze
 (

ce
lls

)

time (s)

Fig. 25. SW1 Bu�er Dynamics for 30% Upstream O�ered Load

problems with the TCP congestion window. We note that TCP su�ers from

frequent timeouts leading to large periods of inactivity. As pointed out by Hoe

in [6], if more than one packet belonging to a window of data is lost, TCP

Reno retransmits only one packet using the fast retransmit algorithm. The

remaining lost packets are retransmitted after a timeout. This is depicted in

Figure 24 at t = 8s and t = 10s. Multiple packet losses are the result of ACK

compression as explained in Section 5. The second problem leading to TCP

low throughput can be observed from Figure 24 at t = 8:35s and t = 8:63s.

Immediately after a fast retransmit of a lost packet, multiple ACK packets

are received in a burst due to grant compression at the MAC layer leading

to additional packet losses. This results in setting the congestion window and

the slow start threshold to a fourth of its initial value (when the �rst packet

24

loss is detected). As shown in [5], this slows down the TCP connection since

TCP operates in the congestion avoidance phase with a very small congestion

window.

0

5000

10000

15000

20000

25000

30000

7 8 9 10 11 12

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(B
yt

es
)

time (s)

Fig. 26. TCP Congestion Window for 30% Upstream O�ered Load, Piggybacking

0

20

40

60

80

100

120

140

160

180

7 8 9 10 11 12

qu
eu

e
si

ze
 (

ce
lls

)

time (s)

Fig. 27. SW1 Bu�er Dynamics for 30% Upstream O�ered Load, Piggybacking

In Figure 25, we note that the frequency of the bu�er occupancy cycles is high.

The queue size drops frequently to zero, due to the size of the window that is

frequently reduced to half or fourth of its size and never reaching its optimal

value. In Figure 26, we plot the dynamics of the congestion window using pig-

gybacking. Timeouts are less frequent than those observed in Figure 24. This

explains why piggybacking improves TCP performance by reducing the delay

and the delay variation in the backward direction. However the congestion

window is still at half of its optimal size. The study of the bu�er behavior,

in Figure 27, reveals less burstiness than with \pure RR". However the queue

size still drops down to zero frequently due to the premature reduction of the

congestion window.

Figure 28, gives the dynamics of the congestion window when using the ACK

spacing algorithm speci�ed in Section 6. The congestion window reaches higher

value than with \pure RR" and \RR+ piggybacking" (Figure 24 26). Further-

more, since there is no ACK compression, timeouts are avoided. The corre-

sponding bu�er dynamics in Figure 29 exhibit a rather stable periodic behavior

25

0

5000

10000

15000

20000

25000

30000

7 8 9 10 11 12

co
ng

es
tio

n
w

in
do

w
 s

iz
e

(B
yt

es
)

time (s)

Fig. 28. TCP Congestion Window for 30% Upstream O�ered Load, ACK Spacing

0

20

40

60

80

100

120

140

160

180

7 8 9 10 11 12

qu
eu

e
si

ze
 (

ce
lls

)

time (s)

Fig. 29. SW1 Bu�er Dynamics for 30% Upstream O�ered Load, ACK spacing

where the bu�er size is rarely equal to zero.

26

Omar Elloumi has obtaind the engineering degree in computer science from

the Ecole Nationale des Sciences de l'Informatique, Tunisia and the Ph.D. from

the University of Rennes I, France in 1995 and 1999, respectively. During his

Ph.D. studies he was with the Networks and Multimedia department of the

Ecole Nationale Sup�erieure des T�el�ecommunications de Bretagne working on

architectural and performance aspects of TCP/IP and ATM integration.

Since April 1999, he has been a member of the TraÆc and Routing Technolo-

gies project, Network Architecture Department, Alcatel Corporate Research

Center. His research interests are in the area of traÆc analysis, QoS in the

Internet and
ow admission control.

Nada Golmie received the M.S. degree in Electrical and Computer Engi-

neering from Syracuse University, New York, in 1993 and the B.S. in Computer

Engineering from the University of Toledo, Ohio, in 1992.

Since 1993, she is a research engineer in the high speed networks technologies

group at the National Institute of Standards and Technology (NIST). Her

research interests include modeling and performance evaluation of network

protocols, media access control, and quality of service for ATM, IP, HFC,

WDM and wireless network technologies.

Hossam A�� has graduated from Cairo University. He obtained the DEA

and Ph.D. from University of NICE - France in the INRIA laboratories. After a

Post.Doc in Washington University St. Louis , he joined the ENST Bretagne,

Rennes-France as assistant professor. He obtained his tenure in September

1999 and he is now involved in Internet telephony protocols and performance

evaluation for �xed and mobile infrastructures.

David Su is the manager of the High Speed Network Technologies group

of the Information Technology Laboratory at the National Institute of Stan-

dards and Technology. His main research interests are in modeling, testing,

and performance measurement of communications protocols. He has been in-

volved in modeling and evaluation of protocols as they are being developed by

standardization organizations. These include protocols for the Asynchronous

Transfer Mode (ATM) networks, Hybrid Fiber-Coaxial networks, optical net-

works, and pico-cell wireless networks. He has also participated in the devel-

opment of standard conformance test suites for testing of X.25, Integrated

Services Digital Network (ISDN), Fiber Distributed Data Interface (FDDI),

and ATM network protocols.

27

Before joining NIST in 1988, Dr. Su was with GE Information Service Com-

pany as the manager of internetworking software for support of GE's world

wide data network. From 1973-1976, he was an Assistant Professor in Com-

puter Science at the Florida International University in Miami, Florida.

Dr. Su received his Ph.D. degree in Computer Science from the Ohio State

University in 1974.

28

