
Bluetooth Adaptive Frequency Hopping and
Scheduling

N. Golmie, O. Rebala, N. Chevrollier
National Institute of Standards and Technology

Gaithersburg, Maryland 20899
Email: nada.golmie@nist.gov

Abstract— In this paper, we investigate the use of Adaptive Frequency
Hopping (AFH) techniques aimed at modifying the Bluetooth frequency
hopping sequence in the presence of WLAN direct sequence spread spec-
trum devices. We examine the conditions such as the applications, topolo-
gies, and scenarios under which AFH techniques improve performance that
is measured in terms of packet loss, TCP delay, and channel efficiency. We
also compare the results obtained with AFH to others obtained using a
scheduling technique that consist in delaying the transmission of a Blue-
tooth packet until the medium is ”idle”. Our results show that an obvious
performance improvement with AFH is in terms of delay and throughput.
AFH brings the delay down to the same level than when no interference is
present. On the other hand, AFH is rather slow in responding to changes
in the environment and the packet loss is more significant than with the
scheduling. This is probably due to the limitations imposed by the commu-
nication overhead. The main difficulty for AFH is having to dynamically
communicate the changes to all slaves in the piconet in order to keep the
synchronization.

I. INTRODUCTION

The deployment of different wireless devices for mobile,
home, and enterprise networks, all operating in the 2.4 GHz
unlicensed band, is met with growing concerns about signal
interference and performance degradation. To address these
challenges, a number of industry led activities have focused
on the coexistence of these devices in the same environment.
For example, the IEEE 802.15.2 Coexistence Task Group and
the Bluetooth Special Interest Group (SIG) are looking at tech-
niques for alleviating the impact of interference between IEEE
802.11b and Bluetooth devices.

A solution that has gained acceptance in both groups is based
on modifying the frequency hopping sequence of Bluetooth in
order to make it avoid direct sequence spread spectrum devices
such as IEEE 802.11b. This so-called Adaptive Frequency Hop-
ping (AFH) has gained momentum especially after the Fed-
eral Communications Commission, a US government agency in
charge of telecommunication regulations, has relaxed the min-
imum frequency hop requirement to 15 (down from 75). AFH
is expected to be included in the new release of the Bluetooth
specifications, Version 1.2.

Other proposals considered by the groups range from collab-
orative schemes intended for Bluetooth and IEEE 802.11 proto-
cols to be implemented in the same device to fully independent
solutions that rely on interference detection and estimation. Ex-
cept for a Time Division Multiple Access (TDMA) technique
aimed at time sharing the Bluetooth and 802.11 signals [1],
most mechanisms considered do not require any direct commu-
nication between the protocols. For example, Bluetooth Inter-
ference Aware Scheduling (BIAS) is a MAC scheduling tech-
nique [2] that is aimed at delaying packet transmission if the

medium is used by other devices. Another technique known as
OverLap Avoidance (OLA) [3] uses different Bluetooth encap-
sulations to avoid a frequency collision between Bluetooth and
802.11.

Our goals in this paper are to investigate the use of AFH tech-
niques aimed at modifying the Bluetooth frequency hoping se-
quence in the presence of WLAN direct sequence spread spec-
trum devices. Mainly, under what conditions – i.e., interference
levels, topologies, scenarios, and applications – is it practical to
use either AFH or BIAS? Which mechanisms is more effective
for a given application? How fast can either technique adjust
to changes in the environment? We conduct numerous simula-
tion experiments to evaluate and quantify the operation range of
AFH and BIAS. To answer the question of application sensitiv-
ity, we consider four applications, namely, voice, video, HTTP,
and FTP. We set the application profiles available in the OPNET
library including the details of the entire TCP/IP stack.

In section II, we describe an AFH algorithm implementation.
In section III, we describe BIAS. Section IV discusses channel
estimation techniques and their use with interference mitigation
schemes. In section V, we consider several experiments to eval-
uate the performance of AFH and how it compares to BIAS. In
section VI, we offer concluding remarks.

II. BLUETOOTH ADAPTIVE FREQUENCY HOPPING

We devise an AFH algorithm that modifies the original Blue-
tooth frequency hopping scheme as follows.

bad frequency

W
FH

N
BF
=3

NBF Number of bad frequencies

Bluetooth Segment

Default segment_size = 32

Fig. 1. Resizing the Frequency Hopping Window, WFH

Given a sorted list of odd and even frequencies, and a segment
of 32 frequencies, WFH = 32, including “good” and “bad” fre-
quencies, the algorithm visits each “good” frequency exactly
once. While the segment size is the same as the one used in
the current Bluetooth specifications [4], in order to filter out
the so-called “bad” frequencies, the window, WFH , over which
frequencies are selected is increased by the number of “bad”
frequencies, NBF , in WFH . Thus, the main difference between
the scheme we propose and the current Bluetooth specifications

is the resizing of the interval over which frequencies are ran-
domly selected for each segment as illustrated in Figure 1.

Note that in order for a frequency to be classified “bad”, it has
to be “bad” for at least one device in the piconet. Thus, NBF

represents the union of the sets of “bad” frequencies collected
from of all devices.

1: WFH = segment size; // Initialize the hopping algorithm window size
2: WFH+ = NBF ; // Increase by the number of “bad” frequencies
3: If (WFH > 79)
4: WFH = 79; // limit to the list size
5: NBF = min(NBF ; 79�Hmin)

6: //use at least Hmin different frequencies

After, each “good” frequency is visited once, a new segment
is set including 16 frequencies of the previous segment and 16
new frequencies in the sorted list.

When WFH is greater than 79, the number of “good” fre-
quencies may be less than 32 and therefore there are not enough
“good” frequencies to fill in the segment. In that case, we al-
low each “good” frequency to be visited more than once, with
the condition to use at least Hmin different frequencies. In
other words, we impose the minimum hop set to be at least
equal to Hmin different frequencies. In our simulations, we
set Hmin = 15.

In summary, the difference between AFH and the original
Bluetooth hopping sequence algorithm is the dynamic resizing
of WFH based on the frequency classification status. The other
requirement for AFH is the exchange of LMP messages be-
tween the master and the slaves in the piconet in order to ad-
vertise the new hopping sequence.

Finally, it is worth pointing out that the details presented here
give an example of how ”bad” frequencies can be eliminated
from the Bluetooth hopping sequence. Other variants are also
possible. For example, the IEEE 802.15.2 Task Group on co-
existence considers a more general algorithm that allows one to
choose which ”bad” frequencies to keep and which to eliminate.
However, for all practical scenarios considered, most AFH algo-
rithms will give comparable performance. In fact, this is easily
verified by implementing the AFH in [5], denoted by AFH-
IEEE, and comparing the results obtained to the algorithm pro-
posed in this paper.

III. BLUETOOTH INTERFERENCE AWARE SCHEDULING

The Bluetooth Interference Aware Scheduling (BIAS) algo-
rithm [6] is a delay policy implemented at the master device
that postpones the transmission of a packet until a slot asso-
ciated with a ”good” frequency becomes available. The master
device, which controls all data transmissions in the piconet, uses
information about the state of the channel in order to avoid data
transmission to a slave experiencing a ”bad” frequency. Fur-
thermore, since a slave transmission always follows a master
transmission, using the same principle, the master avoids re-
ceiving data on a ”bad” frequency, by avoiding a transmission
on a frequency preceding a ”bad” one in the hopping pattern.

This simple scheduling scheme needs only be implemented
in the master device and translates into the following transmis-
sion rule. The master transmits in a slot after it verifies that

both the slave’s receiving frequency and its own receiving fre-
quency are ”good”. Otherwise, the master skips the current
transmission slot and repeats the procedure over again in the
next transmission opportunity.

Additional considerations including bandwidth requirements
and quality of service guarantees for each master/slave connec-
tion in the piconet can also be combined with the channel state
information and mapped into transmission priorities given to
each direction in the master/slave communication. Details on
assigning transmission priorities are given in [6].

The algorithm’s general steps are summarized below.

1: Every Even TSf // Master transmits on frequency f
2: if TSf + ldn is good // Master can receive in next slot
3: f

4: A
f

data
= fset of slaves s.t. ((f ”good”) and (qsize > 0) g

5: if (Af
data

6= ;)
6: select slave i //according to a priority criteria
7: transmit data packet of size ldn to slave i
8: g

where ldn is the length of the packet from the master to the
slave and TSf is the transmission slot using frequency f.

IV. CHANNEL ESTIMATION

Channel estimation methods include BER calculation, packet
loss, or frame error rate measurements performed by each re-
ceiver (master and slave device). Since in a Bluetooth piconet,
the master device controls all packet transmission, the measure-
ments collected by the slave devices are sent to the master that
decides to (1) either avoid data transmission to a slave experi-
encing a ”bad” frequency, and/or (2) modify the frequency hop-
ping pattern. While in the former case the decision remains lo-
cal to the master, in the latter case, the master needs to commu-
nicate the change to all slaves in the piconet in order to maintain
synchronization. Also, the former method falls into the schedul-
ing policy category, while the latter is in the AFH category.

Channel estimation is based on measurements conducted on
each frequency in order to determine the presence of interfer-
ence. Although our discussion exclusively focuses on packet
loss, other measurements can be used. In a nutshell, channel
estimation works as follows. Each Bluetooth receiver maintains
a Frequency Status Table (FST) where a percentage of pack-
ets dropped due to errors, Pr(PLoss), is associated to each fre-
quency offset, f , as shown in Figure 2. Frequencies are clas-
sified “good” or “bad” depending on whether their packet loss
rate is below or above a threshold value respectively. In Figure 2
the threshold value is equal to 0.5. Each slave has its own FST
maintained locally. However, the master has in addition to its
FST, a copy of each slave’s FST.

At regular time intervals each slave updates its FST copy kept
at the master using a status update message that can be defined
in the Layer Management Protocol (LMP). Alternatively, the
master can derive information about each slave’s FST by keep-
ing track of the ACK bit sent in the slave’s response packet.

First, we define two phases in the channel estimate proce-
dure. During the Estimation Window, EW, packets are sent on
all frequencies regardless of their classification. EW is followed

Frequency Offset Pr[PLoss]Status

0

1

 2

3

...

78

77

76

10-3

0.75

1

0.89

10-4

10-3

10-3

bad

good

bad

good

bad

good

good

Fig. 2. Frequency Status Table

by an interval, EI, in which slaves have updated their FST at the
master (refer to Figure 3). The master uses the channel informa-
tion collected during EW in order rearrange the frequency hop-
ping pattern in case of AFH and/or selectively avoid to transmit
packets on so-called ”bad” frequencies. In order to avoid hav-
ing to manually compute or pick an arbitrary value for EW, we
use a technique to dynamically adjusts the window based on
the number of times, Nf , each frequency in the band should be
visited. Further details on channel estimation parameter tun-
ing are available in [6]. In our simulations, we use Nf = 1,
EImin = 2s, EImax = 100s.

Estimation Interval, EIEstimtation Window, EW

Estimation Phase Online Phase

Slave sends LMP message to Master
to update its FST at Master

Fig. 3. Explicit Estimation

Note that during both phases, Pr(PLoss) is measured and con-
tinuously updated. Although the local FSTs can be updated ev-
ery time a packet is received, the copy of the slave FST kept
at the master is updated either at the end of each EW using an
LMP defined message, or every time a packet acknowledgement
(ACK) is received by the master. It is important to point out that
for scheduling purposes, the master can make use of the ACK
feedback information as soon as it becomes available. On the
other hand, AFH requires a master to slave message exchange
in order to keep the piconet synchronized. In our study, we as-
sume that updates are based on ACK feedback for BIAS and
LMP messages for AFH sent at the end of each EW.

V. PERFORMANCE EVALUATION

In this section we present simulation results to evaluate the
performance of AFH in a realistic environment. We ran several
experiments using different applications, and network topolo-
gies. We consider four application profiles, namely, FTP, HTTP,
voice, and video. We use the TCP(UDP)/IP stack implemented
in the OPNET library and configure the application parameters
provided. For the FTP profile, the parameters are the percentage
of put/get, the inter-request time, and the file size. The percent-
age of put/get represents the number of times the put command
is executed in an FTP connection over the total number of put
and get commands, i.e., a fifty percent indicates that half of the
FTP commands executed are put, and the other half are get. The
inter-request time is the interval between two FTP commands,
and the file size represents the size of the file requested in bytes.

The HTTP profile is described by parameters characterizing a
web page such as the page interarrival time, the number of ob-
jects in each page and their size in bytes. For the voice applica-
tion, we use the encoding defined in the G.723.1 specifications.
The video application uses a 1 Frame/s rate and a frame size
of 17280 bytes. The application profile parameters are summa-
rized in Table I.

TABLE I

APPLICATION PROFILE PARAMETERS

Parameters Distribution Value
Bluetooth FTP
Percentage of Put/Get 100%
Inter-Request Time (seconds) Exponential 5
File Size (bytes) Constant 2M
Bluetooth HTTP
Page Interarrival Time (seconds) Exponential 5
Number of Objects per page Constant 2
Object 1 Size (bytes) Constant 10K
Object 2 Size (bytes) Uniform (20K,600K)
Bluetooth Voice
Encoder G.723.1
Bluetooth Video
Frame Rate Constant 1 Frame/s
Frame Size (bytes) Constant 17280 (128 x 120 pixels)
WLAN FTP
Percentage of Put/Get 0%
Inter-Request Time (seconds) Exponential 1
File Size (bytes) Constant 2M
Connection Duration (seconds) Exponential 20
Interval between Connections (seconds) Exponential 20

For each network topology considered, we run a set of 16
simulations covering each application and algorithm combina-
tion. None refers to the case when no algorithm is present, while
BIAS and AFH refer to using BIAS and AFH respectively. Note
that AFH-IEEE refers to the AFH algorithm included in the
draft IEEE Recommended Practice on Coexistence [5]. Perfor-
mance is measured in terms of the packet loss, the delay mea-
sured at the TCP layer (in seconds), and the channel efficiency.
The channel efficieny measures the normalized number of data
packets received minus the number of packets lost and pack-
ets ignored in the case of duplicate transmissions. Averages are
obtained and reported for each simulation set consisting of 10
simulation runs. Each simulation is run for 900 seconds. The
packet loss and channel efficiency are measured at the applica-
tion client (master device), while the TCP access delay is mea-
sured at the application server (slave device).

A. Experiment 1: WLAN Interference

We use Topology 1 illustrated in Figure 4 with one WLAN
system (Access Point/Station) and a Bluetooth master/slave
pair. The WLAN access point (AP) is located at (0,15) meters,
and the WLAN station is fixed at (0,1) meters. The Bluetooth
slave device is fixed at (0,0) meters and the master is fixed at
(1,0) meters.

In this case, the WLAN station is ”uploading” files to WLAN
server using the FTP put command. A summary of the applica-
tion profile is described in Table I.

Table II gives the performance of the Bluetooth FTP applica-
tion. First, observe that the results with AFH and AFH-IEEE
are comparable and therefore in our discussion we will not dis-
tinguish between the two algorithms unless specified otherwise.

Bluetooth Slave

(1,0)(0,0)

Bluetooth Master

(0,d)

(0,15)
WLAN Access Point

WLAN Station

Fig. 4. Topology 1 - Two WLAN devices and one Bluetooth piconet

TABLE II

EXPERIMENT 1: BLUETOOTH FTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1633 0.0009 0.0748 0.0721

TCP Delay (seconds) 0.0201 0.0178 0.0167 0.0184
Channel Efficiency 0.6921 0.9981 0.9306 0.9336

When no interference mitigation algorithm is present, which
represents a base case, the packet loss is around 16%. The ef-
fects of BIAS are summarized in comparison to the base case as
follows. First, we observe a decrease in packet loss to negligible
levels, a decrease of 3 ms in the delay (from 20.1 to 17.8 ms),
and an increase of 30% in the efficiency. Similarly the effects of
AFH are characterized by a lower packet loss (to 7%), lower de-
lay (16.7� 18:4ms), and higher efficiency (�93%). The delays
observed with BIAS and AFH are almost comparable, while the
difference in efficiency is more striking. Although more pack-
ets are sent with AFH, they are more likely due to duplicate
transmissions.

The observations noted for FTP are also consistent with the
HTTP results given in Table III. Similarly, BIAS reduces the
packet loss to zero, the access delay by 6 ms (to 11 ms), and
increases the efficiency by 30% (to 99%). On the other hand,
AFH gives a packet loss of 5%, reduces the delay by 3 ms (to
� 10 ms) and increases efficiency by 20% (to � 95%).

The results of the video application are shown in Table IV.
Here again, BIAS reduces the packet loss to a negligible level,

TABLE III

EXPERIMENT 1: BLUETOOTH HTTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1487 0.0012 0.0585 0.0445

TCP Delay (seconds) 0.0171 0.0112 0.0109 0.0107
Channel Efficiency 0.6943 0.9976 0.9453 0.9557

TABLE IV

EXPERIMENT 1: BLUETOOTH VIDEO PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1310 0.0043 0.0455 0.0269

Channel Efficiency 0.6974 0.9914 0.9503 0.9611

TABLE V

EXPERIMENT 1: BLUETOOTH VOICE PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.1359 0.0091 0.0400 0.0212

Channel Efficiency 0.6901 0.9840 0.9631 0.9722

and increases the efficiency to 99%. On the other hand, AFH
causes a decrease in packet loss to 4.5% and 2.6% for AFH and
AFH-IEEE respectively (down from 13%).

Table V shows the results of the voice application. We ob-
serve a packet loss of 4 and 2% with AFH and AFH-IEEE re-
spectively compared to 0.9% with BIAS. The channel efficiency
is 98%, 96%, and 97% for BIAS, AFH, and AFH-IEEE respec-
tively.

For AFH, the time it takes to estimate the channel and com-
municate the changes is usually longer than for BIAS leading
to a higher packet loss and a lower channel efficiency. This sig-
nifies that a number of packets transmitted are due to duplicate
transmissions that end up getting discarded at the destination
and therefore do not lead to a higher goodput. This observa-
tion captures the essence of the performance trade-offs between
AFH and BIAS. AFH increases the total number of packets sent
at the cost of higher packet loss, and lower efficiency. This may
be acceptable for some bandwidth hungry applications such as
FTP and HTTP, but perhaps less desirable for real-time appli-
cations such as voice and video. In summary, there are definite
trade-offs for using AFH versus BIAS depending on the appli-
cation considered.

B. Experiment 2: Multi-WLAN Interference

In this experiment, our goal is to study the performance of
AFH in a multi-WLAN environment, where the Bluetooth hop-
ping sequence is further reduced. We use Topology 2 illustrated
in Figure 5, consisting of 2 WLAN systems (source-sink pairs)
operating on non-overlapping frequencies (each WLAN system
operates on a different center channel). We use the same traffic
parameters described in Table I.

Bluetooth
Master

(1,14)
WLAN
AP 2

Bluetooth
Slave

(1,0)(0,0)

(-15,-1)

WLAN
AP 1

(0,-1)

WLAN
Station 1

(1,-1)

WLAN
Station 2

Fig. 5. Topology 2 - Multi-WLANs and Bluetooth piconets interference

Since there are two WLAN systems occupying about 16 fre-
quencies each, that leaves about 47 frequencies in the band to
be used by Bluetooth. With BIAS, the Bluetooth piconet only
transmits on “good” frequencies, and therefore has to skip ap-
proximately 1 in every 3 transmission opportunities. With AFH,

TABLE VI

EXPERIMENT 2: BLUETOOTH FTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.3431 0.0183 0.1524 0.1542

TCP Delay (seconds) 0.0322 0.0213 0.0218 0.0242
Channel Efficiency 0.4500 0.9684 0.8486 0.8552

TABLE VII

EXPERIMENT 2: BLUETOOTH HTTP PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2535 0.0169 0.1350 0.1172

TCP Delay (seconds) 0.0181 0.0191 0.0160 0.0152
Channel Efficiency 0.4725 0.9705 0.8668 0.8849

the frequency hopping sequence is modified in order to include
only “good” frequencies. Therefore, one expects significant
throughput and delay improvements with AFH. Our goals in
this experiment are to verify that our previous conclusions about
AFH and BIAS still hold even in the case of severe interference.

Table VI gives the performance results for the Bluetooth FTP
application. The packet loss when no algorithm is present is
around 34% for Bluetooth. Note that it is more than double the
packet loss obtained in Experiment 1. The packet loss is 1.8%,
15.24%, 15.42% with BIAS, AFH, and AFH-IEEE respectively.
Delays with AFH and BIAS are comparable (21 ms). On the
other hand, the channel efficiency is only 84% and 85% with
AFH, while it is around 96% with BIAS.

Table VII gives the results for the Bluetooth HTTP applica-
tion. The results are consistent with the FTP results for the most
part. There are additional delay improvements with AFH.

Tables VIII and IX give the results for the video and voice
applications respectively. The general trends observed in Exper-
iment 1 are still valid. In general, BIAS leads to lower packet
loss and higher or equal channel efficiency than AFH.

VI. CONCLUDING REMARKS

In this paper, we study using adaptive frequency hopping for
Bluetooth devices when operating in close proximity to WLAN
systems. We present the details of an AFH algorithm and com-
pare its performance to BIAS, a delay transmission method
aimed at interference mitigation.

A summary of our findings is as follows. For the applications

TABLE VIII

EXPERIMENT 2: BLUETOOTH VIDEO PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2725 0.0230 0.1070 0.0750

Channel Efficiency 0.2079 0.9803 0.8485 0.8878

TABLE IX

EXPERIMENT 2: BLUETOOTH VOICE PERFORMANCE

None BIAS AFH AFH-IEEE
Packet Loss 0.2126 0.0433 0.0940 0.0564

Channel Efficiency 0.4543 0.9269 0.9088 0.9300

considered, BIAS leads to a lower packet loss and an equal or
higher channel efficiency than AFH. Basically, when the chan-
nel estimation has to be performed often, the synchronization
overhead associated with AFH leads to an additional packet
loss. In fact, our results indicate that this packet loss is often
accompagnied with additional duplicate packet transmissions,
which in turn lead to a lower channel efficiency. Thus, the num-
ber of additional packets transmitted with AFH is often offset by
an additional number of packets lost or ignored. In other words,
the adaptive part of AFH is constrained by the channel estima-
tion and how often to synchronize the devices in the piconet.
That in turn determines the response time and the performance.

Having said that, AFH may be more suitable for slow-
changing environments where the same sequence could be used
for a long period of time. On the other hand, in environments
where the interference levels vary more rapidly, BIAS would be
the interference mitigation solution of choice.

An area of future investigations would be combining BIAS
and AFH within the same scenario, where BIAS would be used
to respond quickly to a change in the environment, before an
AFH policy is put in place if the interference persists for a long
period of time.

REFERENCES

[1] J. Lansford, A. Stephens, and R. Nevo, “Wi-Fi (802.11b) and Blue-
tooth: Enabling Coexistence,” in IEEE Network Magazine, Sept/Oct. 2001,
vol. 15, pp. 20–27.

[2] N. Golmie, “Interference Aware Bluetooth Scheduling Techniques,” in
IEEE P802.11 Working Group Contribution, IEEE P802.15-01/143r0,
Hilton Head, NC, March 2001.

[3] Carla F. Chiasserini, and Ramesh R. Rao, “ Coexistence mechanisms for
interference mitigation between IEEE 802.11 WLANs and bluetooth ,” in
Proceedings of INFOCOM 2002, 2002, pp. 590–598.

[4] Bluetooth Special Interest Group, “Specifications of the Bluetooth System,
vol. 1, v.1.0B ’Core’ and vol. 2 v1.0B ’Profiles’,” December 1999.

[5] IEEE Std. 802-15 Task Group on Coexistence, “Draft Recommended Prac-
tice for Information Technology, Part 15.2: Coexistence of Wireless Per-
sonal Area Networks with Other Wireless Devices Operating in the Unli-
censed Frequency Bands,” March 2003.

[6] N. Golmie, “Bluetooth Dynamic Scheduling and Interference Mitigation,”
in ACM Mobile Network, MONET, 2002.

