NIST DSR Model Appendix

Contents:
Packet DeSCIHIPIIONS ..o 3
Eata N T, 3
U A a1 L PP — 4
_Eeply POk s 6
(RO e o) - (P TTR T T T — 8

RS D R LT O T T T 10
FUNCEION ASE FOULE TNTT() veivviiieiiiieieeeee ettt ettt e et e et e et e e ssbeeasteeasbessnreseresannesssresensenesses 10
ROULE DISCOVEIY FUNCHIONScv.voveveseerereseevereseeveseeeesesesseseseesesesesseseesseesessssesessesessssessesssesesessessesssesseesens 11
Eunction OSI EFANSIIE TEOUBST.....iiiviiieeiisieeieetieeeteeete e ettt eettessteeesateesseeesaeessseeesnsesssreesreseeessnsesessesanserans 11
unction dsr tranSMit reqUESE TTOM BITOTcueivueiiiiiiieieeiieeceiee et ete st e et e eteeeateesteesabeesbeesareeans 11
UNCLION ASI NANAIE TEOUESTE ...c.vvviieieeeie ettt eae st e et e e sateesstessseessnsessntessnresssseesnsesans 11
Eunction ASI TEQUESE AITEAAY SEEIMveeeiieiiie ittt ettt e ettt e e ettt e e ettt e e sttt e e s eataaessabaeassebaeeesans 12
UNCEION ASI_TOTWAIT TEOUESEveeeiieviiieieeiiesittieesseseieessasesessssteesssssesesssesessssssssssssessssssessesssssnessssensesans 12
Function dsr transmit reply frOM TAIGEEeeiieeiie ettt ettt et e et e e e ertae e 12
Function dsr_transmit [0 VAR LT =) N 2 —— 13
FUNCLION AST NANAIE TEPIY ...ttt ettt ettt e e ettt e ettt e s et e e s st eeeeenteneesarens 13
FUNCLION dAST TEPIY AITEAAY SEEM ...vviiiieieeeeie ettt e et eeeeaeesessneeaessasteeesaneessssanens 13
Function [A oY RN e e B0y o) 1 2 — 14
Eunction ASI INSEIt FOULE 1N CACNE ...ttt et teeetee e et e e eaeeasrveasreeesneessnenesnreas 14
UNCLION dSI PrOMUSCUOUS TEPIYvviiiviiiieiieitiiecttieettee sttt eettee sttt eeateesateeertessateesatessstessnsessstessnressreesresans 14
@éa TrANSMISSION FUNCLIONS.....iiviiieeiiiieieeetii et eeteeeteeeteeeteeeetteesteeestteesseeesseeessesessseassessssesessesesseeessereses 15}
unction dsr upper layer data ArfiValccviivuiiiiiiiieciic ettt e tee et e e 15
UNCEION ASI trANSIIE ALA.....eecviiiieiiieeiiiieiieceii e eee et eeateesaeessatessaeeessresssressnresseeseresssseesnsesans 15}
Eunction A AT [N T — 15
unction dsr_SChEAUIE NO ACK BVENTeeieiiviieieetiiieseetiiesstteeeeetteeesebesessssbeessssbasessbessesssbenssssensesns 15
FUNCLION ASI data AIrEAAY SEEIMvviiiieieeeeeetie ettt et e ettt ettt e e ettt e e ettt e s et e e s st aeeseataneesares 16
[UTaTe o Tl Y oY Y M N T 16
Route MaintENANCE FUNCLIONS.eeveeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeeseeeseeeseeeseeesessensseesssssesesssasressesneneeens 16
Eunction OST ETANSINIE BITOT ...ttt e ettt e s et e s sttt e e sesetsessabesessasesessasessessanesesssssesesans 16
UNCLION ASI NANAIE BITONvviiviiiceieccee ettt ettt e st et e st e eate e e teesatesstaesabessbeesaresan 7|

Eunction dsr ckeck gratuitous TEDIY 1.ttt ettt eete st e et e s et esteeseteeereesbesereeareeareeans 11
unction dsr transMit gratuitouS TEPIYccuviiieiiiiiiiiicceiee ettt ete e e e e e e st e steesbeesbeesaree e 17

FUNCEION AST N0 100D TN TOULE ...ttt ettt ettt e ettt e e ettt e e ettt e s st e e e st a e e eentaneesares 19
FUNCEION AST SENT L0 IMAC ..ottt e et e e st e e s eateaessateesesasessessnnesessseseesansessssnees 19
Function dsr TYIESSATE ...ttt ieeeeeeseetteeeeateteestteeessstte e e ettt e e et e e e e eatt e e e ettt e e e nt et e eate e e e et a e e e enttn e e natanaeeentanenan 20
FUNCEION AST 8N SIMUIALIONeivvieceiicceieeeee ettt e et e st essteessbeesnresasressssesssresensenesees 20
Variable DeSCriPIONS..... .. e 21

NN RO TV N O ol 1=V T T — 21

Nist DSR model appendix 1

The Route Request Table (request Seen & rEQUESE SEN)........ccuvvicueeieuiiierieiriiiereeicteeeereesereeeereresreeaereeanes 22
The Route Reply Table (reply SeeNn) ... 23
The Data Packet Queue (received packet 1 FiTO)c.oeoieuiiiiiiiiiiiiie ettt eee e e ste e 23
The Send BUFFEr.......ccuvvevviieieiiiieeeeeei BSOSO P PO PO P PO PO U PO PO PSP PO R POTPOPPTPPTPIPPIO 24
The Acknowledgment Timer Queue (N0 aCK FIT0)c..iciicuiiiiiiie ettt 24
The Scheduled Reply QUEUE (TEPIY FITO) wuvviiuuiiiiiiiiiiiie ettt e e e st s e s saeeessaeeneesan 25
IMODel FIlES e 2
Nist DSR model appendix 2

Packet Descriptions

Data Packet

This packet is used to transmit data through the network, and is defined in the filename
Dsr_Data.pk.m.

Type SRC DEST RELAY | Seg_left | Size_Route
Node_0 Node_1 Node_2 Node 3 | Node 4 | Node 5 Node_6 Node_ 7
Data

TR_Source Packet_ID

Field Type

Type: 8 bits integer

Description:

This field contains the type of the packet, encoded as a number. Since the packet is a
data packet, this field takes the value of the DATA_PACKET_TYPE constant.

Field SRC

Type: 8 bits integer

Description:

This field is used to store the DSR address of the data packet initiator node.

Field DEST

Type: 8 bits integer

Description:

This field is used to store the DSR address of the data packet final destination.

Field RELAY

Type: 8 bits integer

Description:

This field is used to store the DSR address of the next node on the source route contained
in the header of the packet. That is, the next “supposed” destination of the data packet.

Field Seq_Left

Type: 8 bits integer

Description:

This field contains the number of hops remaining in the source route in order to reach the
final destination. The value is decreased by one when a node forwards the packet to the
next node.

Nist DSR model appendix 3

Field Size_Route

Type: 8 bits integer

Description:

This field contains the size of the source route (in number of nodes).

Fields NodeO, Nodel, ... , Node7

Type: 8 * 8 bits integers

Description:

These fields contain the source route leading the data packet from the source node to the
destination node. Each node is represented by its DSR address stored in an 8-bit integer,
and obviously the route maximal size is 8 nodes, i.e. 7 hops. As a design choice, we
choose to consider only routes whose sizes don’t exceed 7. However it can be changed
easily depending on the network studied.

Field Data

Type: 16 bits integer

Description:

This field is used to store the data provided by the upper layer and that this packet must
carry through the network.

Field TR_Source

Type: 16 bits integer

Description:

This field is a hidden field used for the simulation of the transmission range. This field
contains the transmitter node Object id, which is used in the receiver through the
dsr_in_transmission_range(...) function to compute the distance between the two nodes.

Request Packet

This packet is used in order to perform the Route Discovery mechanism and is defined in
the filename Dsr_Request.pk.m.

Type SRC DEST Seq_Number | Seg_Left Creation_Time Size_Route

Node 0 Node 1 Node 2 Node_3 Node 4 Node 5 Node 6 Node 7

TR_Source

Field Type

Type: 8 bits integer

Description:

This field contains the type of the packet. Since the packet is a Route Request packet,
this field takes the value of the REQUEST PACKET_TYPE constant.

Field SRC
Type: 8 bits integer

Nist DSR model appendix 4

Description:
This field is used to store the DSR address of the Route Request packet initiator.

Field DEST

Type: 8 bits integer

Description:

This field is used to store the DSR address of the target node of the Route Request.

Field Seq Number

Type: 8 bits integer

Description:

This field contains the sequence number associated with the request. The Route Request
initiator sets this number, which will be used to identify the request.

Field Seq_Left

Type: 8 bits integer

Description:

This field contains the number of hops remaining for the Route Request packet to be
propagated. When a node receives a request packet with a Seg_Left field equal to 0, it
does not forward it. That is why for a non-propagating request this field is set to 0 by the
Route Request initiator. Obviously, each time a node forwards a Route Request packet it
must decrease this field by one.

Field Creation_Time

Type: 8 bits integer

Description:

This field contains the creation time of the Route Request packet. It is used in the
dsr_handle_request(...) function in order to discard Route Request packets that are too
“old”. Thus in addition to the Seg_Left field, the Creation_Time parameter is also used
to control the lifetime of the request packets.

Field Size_Route

Type: 8 bits integer

Description:

This field contains the size of the route (in number of nodes). Each time a node forwards
a Route Request packet, it must update this field by increasing it by one.

Fields NodeO, Nodel, ... , Node7

Type: 8 * 8 bits integers

Description:

These fields contain the actual route leading from the initiator to the current node. Thus,
each time a node forwards a request packet, it must add its own DSR address in the first
“route” field that is empty.

Field TR_Source
Type: 8 bits integer

Nist DSR model appendix 5

Description:

This field is a hidden field used for the simulation of the transmission range. This field
contains the transmitter node Object id, which is used in the receiver through the
dsr_in_transmission_range(...) function to compute the distance between the two nodes.

Reply Packet

This packet is used to return a route in response to a Route Request packet, and is defined
in the filename Dsr_Reply.pk.m.

Type SRC DEST Seq_Number RELAY Seg_left Size_Route

Node 0 Node 1 Node 2 Node_3 Node 4 Node 5 Node 6 Node 7

TR_Source Reply_From_Target

Field Type

Type: 8 bits integer

Description:

This field contains the type of the packet. Since the packet is a reply packet, this field
takes the value of the REPLY_PACKET_TYPE constant.

Field SRC

Type: 8 bits integer

Description:

This field is used to store the DSR address of the Route Reply packet initiator.

Field DEST

Type: 8 bits integer

Description:

This field is used to store the DSR address of the Route Reply packet's target node
(which is the Route Request initiator).

Field Seq Number

Type: 8 bits integer

Description:

This field contains the same sequence number that the Route Request, source of this
Route Reply, has.

Field RELAY

Type: 8 bits integer

Description:

This field is used to store the DSR address of the next node that should receive the Route
Reply packet.

Field Seg_Left
Type: 8 bits integer

Nist DSR model appendix 6

Description:

This field contains the number of hops remaining before reaching the target of the Route
Reply. The node must decrease this field by one before forwarding the Route Reply
packet to the next node.

Field Size_Route

Type: 8 bits integer

Description:

This field contains the size of the source route returned by the Route Reply (in number of
nodes).

Fields NodeO, Nodel, ... , Node7

Type: 8 * 8 bits integers

Description:

These fields contain the source route leading from the Route Request initiator to the
Route Reply target. It is important to note that this path is also used in a reverse way in
order to route the Route Error through the network. In these fields, each node is
represented by its DSR address stored in an 8-bit integer, and obviously the route
maximal size is 8 nodes, i.e. 7 hops.

Field TR_Source

Type: 8 bits integer

Description:

This field is a hidden field used for the simulation of the transmission range. This field
contains the transmitter node Object ID, which is used in the receiver through the
dsr_in_transmission_range(...) function to compute the distance between the two nodes
(see Section V.4.).

Field Reply From_Target

Type: 8 bits integer

Description:

This field is used only for statistical purposes in order to indicate whether the reply was
generated by the Route Reply target node or by a relay. It allows the user to evaluate the
efficiency of the “reply from relay” mechanism.

Nist DSR model appendix 7

Error Packet

This packet is used to inform a data packet generator and all the nodes along the path that
there is a broken link in the packet’s source route. It is used to perform the Route
Maintenance mechanism, and it is defined in the filename Dsr_Reply.pk.m.

Type SRC DEST RELAY | Pb_Node | Unreachable_Node | Seg Left | Size_Route

Node 0 | Node_1 | Node_2 | Node 3 | Node_4 | Node_5 Node_6 Node_7

TR_Source

Field Type

Type: 8 bits integer

Description:

This field contains the type of the packet. Since the packet is a Route Error packet, this
field takes the value of the ERROR_PACKET_TYPE constant.

Field SRC

Type: 8 bits integer

Description:

This field is used to store the DSR address of the node that detects the broken link and
generates the Route Error packet.

Field DEST

Type: 8 bits integer

Description:

This field is used to store the DSR address of the Route Error packet destination node,
that is, the data packet generator with the broken link on its route.

Field RELAY

Type: 8 bits integer

Description:

This field is used to store the DSR address of the next node that should receive the Route
Error packet.

Field PbNode

Type: 8 bits integer

Description:

This field is used to store the DSR address of the node that has not received the data
packet correctly. The couple (field SRC, field PbNode), identifies the broken link.

Field Unreachable Node

Type: 8 bits integer

Description:

This field is used to store the intended final destination node (its DSR address) of the
failed data packet. Thus the couple (field DEST, field Unreachable_Node) identifies, like

Nist DSR model appendix 8

a couple (source, destination), the invalid route. The Route Error packet destination,
which is the data packet generator, must use this couple to activate a new route discovery
process.

Field Seq_Left

Type: 8 bits integer

Description:

This field contains the number of hops remaining before reaching the target of the Route
Error. The node must decrease this field by one before forwarding the Route Error
packet to the next node.

Field Size_Route

Type: 8 bits integer

Description:

This field contains the size of the route (in number of nodes). See below the fields
NodeO, Nodel, ..., Node7, which define the route.

Fields NodeO, Nodel, ... , Node7

Type: 8 * 8 bits integers

Description:

These fields contain the route leading from the node that discovered the broken link to
the data packet generator. This is a reversed part of the source route assigned to the data
packet.

Field TR_Source

Type: 8 bits integer

Description:

This field is a hidden field used for the simulation of the transmission range. This field
contains the transmitter node Object ID, which is used in the receiver through the
dsr_in_transmission_range(...) function to compute the distance between the two.

Nist DSR model appendix 9

Function Descriptions

Initialization Functions

Function dsr_pre_init

Header:

void dsr_pre_init()

Description:

This function pre-initializes the DSR process state machine, that is, initializes the MAC
and the DSR addresses, and all Objids used by the node. Note that this address
management is done through the dsr_support package.

Function dsr_user_parameter_init

Header:

void dsr_user_parameter_init()

Description:

This function initializes every parameter defined by the user.

Function dsr_tables_init

Header:

void dsr_tables_init()

Description:

This function initializes every table and variable using by the routing protocol (such as
the route_cache and the request_seen tables).

Function dsr_stats_init

Header:

void dsr_stats_init()

Description:

This function initializes and declares every statistic that will be calculated and collected
during the simulations by the DSR process model.

Function dsr_route_init

Header:

void dsr_route_init(sRoute* cache, int n)

sRoute cache: the cache in which the route must be initialized

int n: the index of the route (nth) to initialize

Description:

This function initializes the nth route of the sRoute table given as a parameter.

Nist DSR model appendix 10

Route Discovery Functions

Function dsr_transmit_request

Header:

void dsr_transmit_request(int destination_dsr_address)

int destination_dsr_address: the dsr address of the Route Request destination node
Description:

This function builds and sends a Route Request packet. It also activates a timer that is
the time before renewing a request. When this timer expires this function is called back
in order to send a new request. Note that this function includes the non-propagating
Route Request mechanism.

Function dsr_transmit_request from_error

Header:

void dsr_transmit_request_from_error(int destination_dsr_address)

int destination: the dsr address of the Route Request destination node

Description:

After a node has generated and sent a data packet, it may receive a Route Error packet
giving notice of a broken link along the route associated with the data packet. Then the
node must call this function in order to find a new path to the destination.

This function calls the dsr_transmit_request (...) in order to start a new discovery
process. However this function simulates the fact that a non-propagating request has
been already sent. Thus the dsr_transmit_request (...) function starts the new discovery
mechanism without sending any useless non-propagating request, but by creating and
sending directly a new propagating request.

Function dsr_handle_request
Header:
void dsr_handle_request(Packet * pk_ptr)
Packet* pk_ptr: a pointer to the request packet to process
Description:
This function is called when a node receives a Route Request packet. If the node is the
destination node specified in the Route Request, then a Route Reply is sent using the
dsr_transmit_reply_from_target (...) function. Otherwise, if the node can reply to the
request by using information in its Route Cache, the dsr_transmit_reply from_relay (...)
function is called. Finally, if the node cannot reply and if the packet is not too old (time
& number of hops), the request is forwarded through the dsr_forward_request (...)
function to the node neighbors.

All this processing is done only if the packet is received for the first time, a
condition checked by the function dsr_request_already_seen (...), in order to avoid the
propagation of redundant Route Request packets in the network.

Nist DSR model appendix 11

Function dsr_request_already seen

Header:

int dsr_request_already seen (int source_dsr_address, int destination_dsr_address, int
sequence_number)

int source_dsr_address: the dsr address of the request source

int destination_dsr_address: the dsr address of the request destination

int sequence_number: the sequence number of the request

Return:1 if the request packet has been already seen

0 otherwise

Description:
This function returns OPC_FALSE the first time it is called for a Route Request packet
identified by its initiator node, its target node, and its sequence number. These
parameters are stored in the request_seen table in order to return OPC_TRUE if it is
called back with the same parameters.

Note that only the last sequence number received for an origin/destination pair is
stored in memory. Every request with a sequence number lower than the one in memory
is considered “already seen”, since a request with a lower sequence number must be older
than the one stored.

Function dsr_forward request

Header:

void dsr_forward_request(Packet* pk_ptr)

Packet* pk_ptr: a pointer to the request packet to forward

Description:

This function forwards the request packet to its neighbors. But before this operation it
updates the recorded source route by adding its DSR address and by decreasing the
allowed maximum number of hops remaining of the Route Request by one (field
seg_left)

Function dsr_transmit_reply from_target
Header:
void dsr_transmit_reply_from_target(Packet* pk_ptr)
Packet* pk_ptr: a pointer to the request packet to reply
Description:
This function builds the Route Reply that the target node specified in a Route Request
needs to send to return the route to the request initiator. The node knows the route from
the request initiator to itself through the recorded source route contained in the request
packet. Note that this path is also used in a reverse way in order to route the reply packet,
thus allowing only the use of bi-directional links.

Then, when the Route Reply packet is constructed, it is sent immediately since the
reply from target packets have the priority with their entirely confirmed route.

Nist DSR model appendix 12

Function dsr_transmit_reply from_relay

Header:

void dsr_transmit_reply_from_relay(Packet *pk_ptr)

Packet* pk_ptr: a pointer to the request packet to reply

Description:

For a relay node able to reply by using information in its Route Cache, this function
builds the Route Reply packet that the node needs to send in order to return the route to
the request initiator. The node computes the route from the request initiator to the target
node by adding the route from itself to the target node stored in its cache, to the recorded
source route contained in the request packet. Note that this second route is also used in a
reverse way in order to route the reply packet. It is also important to notice that the
dsr_no_loop_in_route (...) function is then called to ensure that the calculated route is
loop free. This function removes every loop from the route. That is why a last checking
is done to ensure that the current node is still in the path, and was not located within a
loop.

When the Route Reply packet construction is finished, a delay is calculated
depending on the calculated route size. A timer is activated with this delay, and the
packet will be sent only at this timer's expiration in order to avoid reply storms and to
ensure that only the shortest reply route will be considered.

Function dsr_handle_reply
Header:
void dsr_handle_reply(Packet* pk_ptr)
Packet* pk_ptr: a pointer to the request packet to process
Description:
First, this function checks, through dsr_reply_already_seen (...), whether it is the first
time the node has received the packet. If this condition is true, then the route contained
in the reply packet is used to update the node Route Cache by calling the
dsr_insert_route_in_cache (...) function. If the node is a relay, it transmits the packet to
the next node by using the function dsr_forward_reply (...).

If the node receiving the Route Reply is not in the packet route, then it uses the
reply packet in promiscuous mode through the function dsr_promiscuous_reply (...).

Function dsr_reply already seen
Header:
Boolean int dsr_reply_already_seen (int source_dsr_address, int destination_dsr_address,
int sequence_number)
int source_dsr_address: the dsr address of the reply source
int destination_dsr_address: the dsr address of the reply destination
int sequence_number: the sequence number of the reply
Return:1 if the reply packet has been already seen
0 otherwise or if it is a gratuitous reply
Description:
This function returns OPC_FALSE the first time it is called for a Route Reply packet
identified by its source, its destination and its sequence number. These parameters are

Nist DSR model appendix 13

stored by the function in the reply_seen table in order to return OPC_TRUE if it is called
back with the same parameters.

Note that only the last sequence number received for a specific source is stored in
memory. Thus every reply with a sequence number lower than the one in memory is
considered “already seen”, since a reply with a lower sequence number must be older
than the one stored.

Function dsr_forward_reply

Header:

void dsr_forward_reply (Packet* pk_ptr)

Packet* pk_ptr: a pointer to the reply packet to forward

Description:

This function forwards the Route Reply packet to the next node contained in the packet’s
route.

Function dsr_insert route in_cache

Header:

void dsr_insert_route_in_cache(Packet* pk_ptr)

Packet* pk_ptr: a pointer to the Route Reply packet from which the route is extracted
Description:

This function fills in the Route Cache of a node that is on the path and receives a Route
Reply packet. In fact, it extracts all the information contained in the source route of the
Route Reply packet that could be useful for itself, and that is confirmed bi-directional.
That is, the source route from itself to the final destination but also all the paths from
itself to any intermediate node on the way toward the final destination of the source route.

Function dsr_promiscuous_reply

Header:

void dsr_promiscuous_reply (Packet* pk_ptr)

Packet™* pk_ptr: a pointer to the reply packet to process

Description:

This function is called when a node receives a Route Reply and it is neither a relay nor
the target for this packet. In this case, it uses the packet to process a mechanism avoiding
reply storms. Actually, if the current node was planning to reply to the Route Reply
corresponding to the same route discovery sequence identified by the triple (source,
destination, sequence_number), then it must cancel the transmission of its own Route
Reply.

Nist DSR model appendix 14

Data Transmission Functions

Function dsr_upper_layer data_arrival

Header:

void dsr_upper_layer_data_arrival (Packet* data_pk_ptr, int destination_dsr_address)
Packet* data_pk_ptr: a pointer to the upper layer data packet

int destination_dsr_address: the dsr address of the upper layer data destination
Description:

This function is called when the node receives some data from the upper layer to
transmit. It creates the DSR data packet in which these data will be transported through
the network. If there is no previous data packet to transmit to the same destination, and if
the node knows a route to this destination then the packet is sent immediately by calling
the dsr_transmit_data (...) function. Otherwise, the packet is stored in a queue buffer via
the dsr_insert_buffer (...) function, and if no route discovery mechanism is currently in
process a new one is activated by calling the dsr_transmit_request (...) function.

Function dsr_transmit_data

Header:

void dsr_transmit_data(Packet* pk_ptr, int destination_dsr_address)

Packet* pk_ptr: a pointer to the data packet to send

int destination_dsr_address: the dsr address of the data packet destination

Description:

This function fills in and sends the DSR data packet destined to the specified destination.

Function dsr_handle data

Header:

void dsr_handle_data(Packet* pk_ptr)

Packet™* pk_ptr: a pointer to the data packet to process

Description:

This function is used when a node receives a data packet. It first checks that the packet is
received for the first time with the dsr_data_already seen (...) function, which means
that it must be processed. Then if the node is the final destination of the packet, the
packet is transmitted to the upper layer process. Otherwise, if the node is the relay of the
data packet, the data packet is forwarded to the next node contained in the source route
by calling the dsr_forward_data (...) function. Finally, if the node is not concerned by
the packet, the promiscuous mode is activated by calling the dsr_ckeck_gratuitous_reply
(...). If a shorter path is found then a Gratuitous Route Reply packet is sent via the
dsr_transmit_gratuitous_reply (...).

Function dsr_schedule no_ack_event

Header:

void dsr_schedule_no_ack_event (Packet* pk_ptr)

Packet* pk_ptr: the data packet that will be transmitted

Description:

This function schedule a "no ack reception™ event associated with a data packet that will
be transmitted. It also associates some information in a structure, in order to be able to
send an error packet if the link on which the data packet is transmitted is broken. This

Nist DSR model appendix 15

error detection is presently done by the 802.11 MAC layer, as well as each
acknowledgement message coming directly from this sub-layer. That is why the “no ack
reception” timer is reset each time a message (error or acknowledgement) is received
from the 802.11 process. Actually, if this timer ends and activates an interruption, that
means that the 802.11 process does not work, resulting in the simulation termination.

Function dsr_data already seen
Header:
int dsr_data_already_seen(int pk_id)
int pk_id: the packet_id of tha data packet
Return:1 if the data packet has been already seen
0 otherwise
Description:
This function returns OPC_FALSE the first time it is called for a data packet identified
by its packet ID. This parameter is stored in the received packet_id_fifo queue in order
to return OPC_TRUE if it is called back with the same parameter.
Note that each time this function is called, it removes every too-old packet ID in
order to free the memory used by information that is not useful anymore.

Function dsr_forward data

Header:

void dsr_forward_data (Packet* pk_ptr)

Packet* pk_ptr: a pointer to the data packet to forward

Description:

This function forwards the data packet to the next node contained in the packet’s route.

Route Maintenance Functions

Function dsr_transmit_error

Header:

void dsr_transmit_error(sRoute route, int error_node_dsr_address)

sRoute route: the route to the error packet destination

int error_node_dsr_address: the address of the node with whom the communication link
is broken (link from myself to him is broken)

Description:

This function builds and sends a Route Error packet. It is called when a node, which tries

to relay a data packet, receives an error message from the 802.11 MAC layer. It uses the

path in a reverse way in order to route the Route Error packet from itself to the initiator of

the data packet. In addition, the Route Cache of the node is updated through the function

dsr_clean_cache (...) in order to remove every route containing the broken link.

Nist DSR model appendix 16

Function dsr_handle_error

Header:

void dsr_handle_error (Packet* pk_ptr)

Packet* pk_ptr: a pointer to the error packet to process

Description:

This function is called when a node receives a Route Error packet. Every node receiving
an error packet must call the dsr_clean_cache (...) function in order to removes all the
routes containing the broken link from its Route Cache. This is the promiscuous mode on
the Route Error packet.

If the node is a relay it forwards the packet to the next node in the source route.
Otherwise, if the node is the target of the error packet, that is the original source node,
then the node must send another Route Request in order to find a new path to the
destination by calling the dsr_transmit_request_from_error (...) function.

Function dsr_check_gratuitous_reply
Header:
int dsr_check_gratuitous_reply(Packet* pk_ptr)
Packet™* pk_ptr: a pointer to the received data packet
Return: the index of the current node in the data packet path if a gratuitous reply is
required
0 otherwise
Description:
This function checks when a data packet is not destined to the current node (neither
destination nor next relay) if a shortest path physically exists and thus if a gratuitous
reply packet is required. It returns the index of the current node in the data packet path if
such a reply is required, OPC_FALSE otherwise.

Function dsr_transmit_gratuitous_reply

Header:

void dsr_transmit_gratuitous_reply (int current_node_index, Packet* pk_ptr)

int current_node_index: the index of the current node in the data packet path

Packet* pk_ptr: a pointer to the data packet that requires a gratuitous reply

Description:

This function builds a gratuitous reply packet by extracting some information from the
data packet. Then it sends this packet immediately if the current node is the data packet
final destination, or after a short delay depending of the calculated reply route size if it is
a relay. This delay mechanism avoids Route Reply storms, and ensures that the only the
shortest route will be considered.

Nist DSR model appendix 17

Function dsr_clean_cache

Header:

void dsr_clean_cache(int first_node_dsr_address,int second_node_dsr_address)

int first_node_dsr_address: the dsr address of the first node identifying the broken link

int second_node_dsr_address: the dsr address of the second node identifying the broken
link

Description:

This function removes from the Route Cache all the routes containing the link identified

by the pair of nodes (first_node_dsr_address, second_node_dsr_address). At this point, it

is important to note that our Route Cache is a path cache (two-dimensional table) that

lists the path from a given source to a given destination. It is different from the tree

structure, also called link cache, which was not the design choice for our OPNET model.

However, the updating operation is equivalent to the one described in the third DSR

specification, that is, each route containing the hop in error must be truncated at this hop.

Other Functions

Function dsr_in_transmission_range
Header:
int dsr_in_transmission_range(Packet* pk_ptr)
Packet* pk_ptr: a pointer to the received packet
Return:1 if the packet is within transmission range

0 otherwise
Description:
This function is called each time a node receives a packet in order to simulate the
transmission range of the nodes. The function computes the distance between the
transmitter and the receiver of the current packet (by using the hidden TR_Source field
contained in each packet), and if this distance is greater than the maximal transmission
range the packet is rejected, otherwise it is accepted and processed.

Function dsr_insert_buffer

Header:

void dsr_insert_buffer(Packet* pk_ptr, int destination_dsr_address)

Packet* pk_ptr: a pointer to the data packet to store in the buffer

int destination_dsr_address: the dsr address of the data packet destination

Description:

When a node wishes to transmit a data packet to a destination for which it does not know
the route, it calls this function in order to store the packet in a buffer during the route
discovery process. Note that the OPNET node model is inherited from a queue process,
thus it allocates one subqueue for each destination (see the OPNET subqueue package).

Nist DSR model appendix 18

Function dsr_buffer_empty
Header:
int dsr_buffer_empty(int destination_dsr_address)
int destination_dsr_address: the dsr address of the eventual data packet destination
Return:1 if the buffer is empty
0 otherwise
Description:
This function checks if the node buffer is empty for the given destination and returns 1 if
it is the case.

Function dsr_extract_buffer

Header:

Packet™ dsr_extract_buffer(int destination_dsr_address)

int destination_dsr_address: the dsr address of the data packet destination

Return:a pointer to the data packet extract from the buffer

Description:

Once a node has discovered a route to a specific destination, it must send every packet
that has been stored in this destination’s subqueue during the route discovery process.
For that purpose it extracts the data packets one by one from the subqueue using this
dsr_extract_buffer (...) function.

Function dsr_no_loop_in_route

Header:

void dsr_no_loop_in_route (sRoute* route)

sRoute* route: a pointer to the route that will be free from all eventual loops

Description:

This function checks and removes every loop in the given route. It is called by a node
that has just constructed a route replying to a Route Request by using its route cache, and
wants to ensure that its route is loop free.

Function dsr_send _to_mac

Header:

void dsr_send_to_mac(Packet* pk_ptr, int destination_mac_address)

Packet™* pk_ptr: a pointer to the packet to send to the MAC LAYER

int destination_mac_address: the MAC address of the packet destination

Description:

This function is called as soon as the dsr process model wishes to send a packet on the
physical layer. Thus this function is like is the interface with the 802.11 MAC layer,
since it communicates the address and the packet to send to it.

Nist DSR model appendix 19

Function dsr_message

Header:

void dsr_message (const char* message)

const char* message: the node message to display

Description:

This function displays the name of the talking node (thus the name of the current node)
following by its message. It is used only in order to inform our DSR model user, what the
model is currently doing.

Function dsr_end_simulation

Header:

void dsr_end_simulation()

Description:

This function is called at the end of the simulation. Its purpose is to free the memory used
by the dsr process, to terminate the statistics collection, and to store all these statistics in a
Text file.

Nist DSR model appendix 20

Variable Descriptions

The Route Cache

Definition:

sRoute* route_cache

where:

sRoute is a structure describing a path with a maximal size equal to 8 nodes (design
choice), and defined as follow:

typedef struct
{
int route[MAX_SIZE_ROUTE]; /I the route = array of integer (dsr addresses)
int size_route; /I the size of the route
} sRoute;
#define MAX_SIZE_ROUTE 8 /I maximum number of nodes in a route
Description:

In our OPNET implementation of DSR, the Route Cache of each node is a dynamic table
indexed by the destination node DSR address. This table lists the path from the current
node to each possible destination, and thus is allocated dynamically with a size equal to
the “number of nodes located the network.” Consequently, this table matches with the
Path Cache described in the last DSR specification, except that only one route for each
destination can be stored. Obviously, as described in the specification, this route is the
shortest one known leading to the destination.

This Route Cache variable is different from the tree structure, also called Link
Cache, more recommended in the DSR specification, which is easier to understand and to
maintain, but more difficult to manipulate.

As mentioned in our overview of this model, we chose this cache strategy for
certain reasons. On the one hand, our main goal is to evaluate the basic DSR
mechanism’s behavior and performances, and not the influence of its different route
cache strategies. Moreover, we believe that the real power and interest of a multiple
route cache is located in its ability to be used in order to choose a route considering other
metrics than the shortest path.

Nist DSR model appendix 21

The Route Request Table (request seen & request sent)

Definition:

SRequestSent* request_sent

int** request_seen

where:

sRequestSent is a structure containing every useful information about the sent request,
and defined as follow:

typedef struct
{
int sequence_number; /I the sequence number of the request
double scheduling_time; /I the time when a new request should be sent
double waiting_time; // the total time we have to wait before scheduling_time
Evhandle evt; /I the event associated with the scheduling_time timer
} sRequestSent;

Description:

In the DSR specification, a route request table is defined in order to collect information
about the Route Requests that have been recently forwarded or originated by a node. The
goal is to use this information to avoid a large number of useless Route Requests in the
network. We have “replaced” this table by two variables, one for the requests that have
been recently originated by the node (request_sent), and one for the requests that have
been recently forwarded (request_seen). These two tables are dynamically allocated in
order to optimize the memory used according to the network size.

First, the request_sent table is indexed by the DSR address of the Route Request
destination node. This table, which is located in each node of the network, contains all
the information about the last Route Requests sent by the node to each specific
destination. That is, the sequence number of the last Route Request, the maximal time
that the node must wait for the Route Reply, and the event associated with this time.
Obviously when this timer expires, the node must attempt a new Route discovery process
for this destination.

The second table is the request_seen table. It is a two-dimensional table that is
indexed by a pair (source, destination) and located in every node. Each of its entries
contains the sequence number of the last Route Request that has been forwarded by the
node for a given source and a given destination. This second table allows the control of
the broadcasting mechanism: each node can forward only one time a given Route
Request (identified by its source, its destination, and its sequence number).

Nist DSR model appendix 22

The Route Reply Table (reply seen)

Definition:
int** reply_seen

Description:

This structure is not described in the DSR specification. We implemented it in order to
fix the small problem described in the report in the section Route Cache Strategies — Bi-
directional links. Actually, since it happens that a Route Request and its Route Reply
packet do not follow the shortest route, we have implemented a mechanism similar to the
Gratuitous Reply on the Route Reply packet. Since in this case we need to process only
one time the two received Route Reply packets, we have to memorize the fact that a reply
packet was already handled.

In that way, we use a structure similar to the request_seen variable described
above, that is, a two-dimensional table indexed by a pair (source, destination) and located
in every node. Each of its entries contains the sequence number of the last Route Reply
that has been forwarded by the node for a given source and a given destination. Note that
this request_seen variable is also dynamically allocated in order to optimize the memory
used according to the network size.

The Data Packet Queue (received packet id fifo)

Definition:

SFifo received

where:

sFifo is a First In First Out structure provided by our own fifo external library. The main
feature of this fifo or queue is to provide the multiplexing and the multi-type data
handling services. Note that we store in this queue only the Ids (integer) of the last
received data packets.

Description:
This variable is not described in the DSR specification. We built it as a consequence of
our Gratuitous Reply mechanism implementation. Actually, as discussed in our
overview, in the latest DSR specification it is written that a node must wait for the arrival
of the “normal” (following the “normal” path) data packet, even if a shorter path is
detected, in order to forward it. In our implementation, since our goal is to obtain the
best performance possible, we chose to forward the first received packet since we are not
sure to receive later the “normal” one. Thus we need to memorize the fact that the node
has already forwarded the data packet, in order to forward it only one time. That is the
purpose of this queue.

Actually, we store in this queue the Ids of every packet that has been received in
the previous last five seconds. In that way, we are sure to avoid memory overflow, and to
avoid any duplicated data packet in our network.

Nist DSR model appendix 23

The Send Buffer

Definition:
See the OPNET subqueue package.

Description:

This buffer, which is located in each node, is used to store the packets that cannot be
transmitted because the node does not yet have routes leading to their destinations. This
variable is implemented through the OPNET subqueue package. In fact, each node is
“inherited” from the OPNET queue object, and therefore can use this package that
provides a queue for each destination.

The Acknowledgment Timer Queue (no ack fifo)

Definition:

sFifo no_ack_fifo

where:

sFifo is a First In First Out structure provided by our own fifo external library. The main
feature of this fifo or queue is to provide the multiplexing and the multi-type data
handling services. In this queue we store some structures containing some useful
information concerning the last data packets (no ack received yet) sent by the current
node. The following is the definition of this structure:

typedef struct
{
Evhandle evt; /l event indicating that no ack has been received =>
error (either the MAC layer does not reply, or no explicit dsr ack has been received)
double schedule; // time at which this event is scheduled
sRoute route; /l route used by the data packet
Packet* upper_layer_data; // upper layer data transmitted in the data packet
int packet_id; /Il packet_id of the data packet
} sNoAck;
Description:

This queue is filled in by the dsr_schedule_no ack_event (...) function when the node
sends a packet that requires an acknowledgement, that is, a data packet. Thus a timer is
activated, and all information associated with it is stored in a SNoAck structure, which is
put in the queue.

Note that in our present model, all acknowledgement and error messages are
coming from the 802.11 MAC layer. Thus when an error message is received from the
MAC, the information stored in the queue is used to send a Route Error through the
network. Moreover, when a data packet is successfully transmitted, its information
structure is removed from the queue since it is not useful anymore. Finally, it is
important to underline the fact that the timer associated with each sent data packet is
implemented in order to detect broken links at the DSR level in the future. However, we
already use it at a MAC layer controller, and we stop the simulation when neither an

Nist DSR model appendix 24

acknowledgement nor an error message is received by our DSR model, since it means
that the MAC layer does not work.

The Scheduled Reply Queue (reply_fifo)

Definition:
sFifo reply_fifo

where:
sFifo is a First In First Out structure provided by our own fifo external library. The main
feature of this fifo or queue is to provide the multiplexing and the multi-type data
handling services. In this queue we store the following sReply structure containing all
useful information about the scheduled reply:
typedef struct

{

int sequence_number; // the sequence number of the reply

Packet* pk; /I the reply_packet

Evhandle evt; /I the intrpt event which will "say" when to send the reply

} sReply;

Description:

This queue is filled in by the dsr_transmit_reply_from_relay (...) and eventually by the
dsr_transmit_gratuitous_reply (...) functions, when a relay node plans to send a Route
Reply or a Gratuitous Route Reply. It activates a timer that corresponds to the moment
when the node must send this reply packet. Note that this reply can be cancelled when
the promiscuous mode detects a “better” reply on the network, in order to avoid reply
storms.

Nist DSR model appendix 25

Model files

In this section all files included in our DSR OPNET model are listed, and their contents
are described briefly.

dsr_routing_layer: our DSR process model

dsr_interface.*: the DSR interface process model

Dsr_Data.pk.m: the DSR packet used to carry upper layer data through the
network

Dsr_Reply.pk.m: the DSR packet used for the Route Reply
Dsr_Request.pk.m: the DSR packet used for the Route Request

Dsr_Error.pk.m the DSR packet used for the Route Error

Dsr_Upper_Data.pk.m the upper layer data packet that will be transported by our
DSR process model (inside the DSR data packet)

Dsr_Ack_Ici.ic.m: the Ici used by 802.11 to transmit an acknowledgement
message to our Dsr process model
Dsr_Dest_Ici.ic.m: the Ici used by the DSR interface to transmit the random

destination address associated with an upper layer data packet to our DSR process
model

Dsr_Error_Ici.ic.m: the Ici used by 802.11 to transmit an error message to our
Dsr process model.

Dsr_WIlan_Dest _ici: the Ici used by our DSR process model to transmit the next
destination (next relay) address associated with the a DSR data packet
billard_mobility.*: the process model simulating the node mobility (here the
billard mobility)

complex_intrpt.*: a home made library used in our DSR process for its ability
to associate any type of data with an OPNET event

dsr_sink.*: the upper layer that received the successfully transmitted
packet from our DSR layer

dsr_support.* a home made package used to manage and check the DSR
address attribution process

fifo.* a home made library used in our DSR process model for its
multiplexing and multi-type data handling services.

dsr_node.nd.m: our DSR node model (including DSR routing, and 802.11
MAC layer)

nist_dsr_model-16_nodes_network.*: every files used by OPNET to manage a
scenario. These files describe a network of 500m*500m, containing 16 of our DSR
nodes.

nist_dsr_model.prj: the files that manages an OPNET project. Thus our project
contained the nist_dsr_model-16_nodes_network scenario.

wlan_mac_dsr_Sept00.*: the 802.11 process model (note that this process model is
provided by OPNET, but we made some modification regarding the specificities of
our network and routing layer)

Nist DSR model appendix 26

e wlan_mac_dsr_interface.*: the 802.11 interface process model (note that this
process model is provided by OPNET, but we made some modification regarding the
communication with our routing layer)

e wlan_mac.pk.m: the 802.11 data frame packet (provide with the OPNET
802.11 model)

» wlan_control.pk.m: the 802.11 control packet (provide with the OPNET 802.11
model)

e wlan_mac_ind.ic.m: an information Ici used by the 802.11 process model
(provide with the OPNET 802.11 model)

e wlan_support.ex.c: an external support for the 802.11 address management

(provide with the OPNET 802.11 model)

» wlan_chanmatch.ps.c

» wlan_ecc.ps.m

* wlan_propdel.ps.c

* wlan_rxgroup.ps.c: some C code sources used in the pipeline stage (provide in
the 802.11 OPNET model)

Nist DSR model appendix 27

	Packet Descriptions
	Data Packet
	
	
	
	
	
	Field Type
	Field SRC
	Field DEST
	Field RELAY
	Field Seg_Left
	Field Size_Route
	Fields Node0, Node1, … , Node7
	Field Data
	Field TR_Source

	Request Packet
	
	
	
	
	
	Field Type
	Field SRC
	Field DEST
	Field Seq_Number
	Field Seg_Left
	Field Creation_Time
	Field Size_Route
	Fields Node0, Node1, … , Node7
	Field TR_Source

	Reply Packet
	
	
	
	
	
	Field Type
	Field SRC
	Field DEST
	Field Seq_Number
	Field RELAY
	Field Seg_Left
	Field Size_Route
	Fields Node0, Node1, … , Node7
	Field TR_Source
	Field Reply_From_Target

	Error Packet
	
	
	
	
	
	Field Type
	Field SRC
	Field DEST
	Field RELAY
	Field PbNode
	Field Unreachable_Node
	Field Seg_Left
	Field Size_Route
	Fields Node0, Node1, … , Node7
	Field TR_Source

	Function Descriptions
	
	Initialization Functions
	Function dsr_pre_init
	Function dsr_user_parameter_init
	Function dsr_tables_init
	Function dsr_stats_init
	Function dsr_route_init

	Route Discovery Functions
	Function dsr_transmit_request
	Function dsr_transmit_request_from_error
	Function dsr_handle_request
	Function dsr_request_already_seen
	Function dsr_forward_request
	Function dsr_transmit_reply_from_target
	Function dsr_transmit_reply_from_relay
	Packet* pk_ptr: a pointer to the request packet to reply

	Function dsr_handle_reply
	Function dsr_reply_already_seen
	
	
	Return:	1 if the reply packet has been already seen
	0 otherwise or if it is a gratuitous reply

	Function dsr_forward_reply
	Function dsr_insert_route_in_cache
	Function dsr_promiscuous_reply

	Data Transmission Functions
	Function dsr_upper_layer_data_arrival
	Function dsr_transmit_data
	Function dsr_handle_data
	Packet* pk_ptr: a pointer to the data packet to process

	Function dsr_schedule_no_ack_event
	Function dsr_data_already_seen
	Return:	1 if the data packet has been already seen

	Function dsr_forward_data
	Packet* pk_ptr: a pointer to the data packet to forward

	Route Maintenance Functions
	Function dsr_transmit_error
	Function dsr_handle_error
	Function dsr_check_gratuitous_reply
	Packet* pk_ptr: a pointer to the received data packet

	Function dsr_transmit_gratuitous_reply
	
	Function dsr_clean_cache

	Other Functions
	Function dsr_in_transmission_range
	Packet* pk_ptr: a pointer to the received packet

	Function dsr_insert_buffer
	Function dsr_buffer_empty
	Return:	1 if the buffer is empty

	Function dsr_extract_buffer
	Return:	a pointer to the data packet extract from the buffer

	Function dsr_no_loop_in_route
	Function dsr_send_to_mac
	Packet* pk_ptr: a pointer to the packet to send to the MAC LAYER

	Function dsr_message
	Function dsr_end_simulation

	Variable Descriptions
	The Route Cache
	The Route Request Table (request_seen & request_sent)
	The Route Reply Table (reply_seen)
	The Data Packet Queue (received_packet_id_fifo)
	The Send Buffer
	The Acknowledgment Timer Queue (no_ack_fifo)
	The Scheduled Reply Queue (reply_fifo)

	Model files

