
Understanding Consistency Maintenance in Service Discovery Architectures in
Response to Message Loss

Christopher Dabrowski, Kevin Mills, Jesse Elder
National Institute of Standards and Technology

Gaithersburg, Maryland USA
{cdabrowski, kmills, jelder}@nist.gov

Abstract

Current trends suggest future software systems will
comprise collections of components that combine and
recombine dynamically in reaction to changing
conditions. Service-discovery protocols, which enable
software components to locate available software services
and to adapt to changing system topology, provide one
foundation for such dynamic behavior. Emerging
discovery protocols specify alternative architectures and
behaviors, which motivate a rigorous investigation of the
properties underlying their designs. Here, we assess the
ability of selected designs for service-discovery protocols
to maintain consistency in a distributed system during
severe message loss. We use an architecture description
language, called Rapide, to model two different
architectures (two-party and three-party) and two
different consistency-maintenance mechanisms (polling
and notification). We use our models to investigate
performance differences among combinations of
architecture and consistency-maintenance mechanism as
message-loss rate increases. We measure system
performance along three dimensions: (1) update
responsiveness (How much latency is required to
propagate changes?), (2) update effectiveness (What is
the probability that a node receives a change?), and (3)
update efficiency (How many messages must be sent to
propagate a change throughout the topology?).

1. Introduction

Successful deployment of active middleware services,
which can detect and adapt to changes in topologies of
distributed components, will depend upon a foundation
layer of service-discovery software that can monitor the
state of nearby software services and components and that
can detect changes in network connectivity. Already,
military organizations are investigating the applicability of
commercial service-discovery systems to meet such
requirements in hostile and volatile environments [1]. In
military and civil emergency response situations, software
components in a distributed system may find that
cooperating components disappear due to physical or

cyber attacks, to jamming of communication channels or
to movement of nodes. Such environments demand new
analysis approaches and tools to design and test software
that will be used to provide active middleware services.

In this paper, we use architectural models to assess the
ability of selected designs for service-discovery protocols
to maintain consistency in a distributed system during
severe message loss. (A companion paper investigates
robustness in the face of interference due to node interface
failure [2].) Using an architecture description language
(ADL), we model two different architectures (two-party
and three-party) and two different consistency-
maintenance mechanisms (polling and notification). To
provide our models with realistic behaviors, we
incorporate consistency-maintenance mechanisms adapted
from two specifications: Jini™ Networking Technology1
[3] and Universal Plug-and-Play (UPnP) [4]. We use our
models to investigate performance differences among
combinations of architecture and consistency-maintenance
mechanism as message-loss rate increases. We measure
system performance along three dimensions: (1) update
responsiveness (How much latency is required to
propagate changes?), (2) update effectiveness (What is the
probability that a node receives a change?), and (3) update
efficiency (How many messages must be sent to propagate
a change throughout the topology?).

Our modeling and analysis approach builds on earlier
work [5] where we derived benefits by creating dynamic
models from specifications for service-discovery
protocols. Dynamic models enable us to understand
collective behavior among distributed components, and to
detect ambiguities, inconsistencies and omissions in
specifications. In this paper, we apply the same method:
(1) construct an architectural model of each discovery
protocol, (2) identify and specify relevant consistency
conditions that each model should satisfy, (3) define
appropriate metrics for comparing the behavior of each
model, (4) construct relevant scenarios to exercise the

1 Certain commercial products or company names are identified in this

paper to describe our study adequately. Such identification is not
intended to imply recommendation or endorsement by the National
Institute of Standards and Technology, nor to imply that the products
or names identified are necessarily the best available for the purpose.

models and to probe for violations of consistency
conditions, and (5) compare results from executing similar
scenarios against each model. To implement the method,
we rely on Rapide [6], an ADL developed at Stanford
University. Rapide represents behavior in a form suitable
to investigate distributed systems, and comes with an
accompanying suite of analysis tools that can execute a
specification and can record and visualize system
behavior. In this paper, we use Rapide to understand how
failure-recovery strategies contribute to differences in
performance.

The remainder of the paper is organized in six sections.
We begin, in Section 2, by introducing service-discovery
protocols and architectures, including a description of
procedures to maintain consistency in replicated
information. In Section 3, we outline some techniques,
included in our models, to recover from failures. Section 4
defines an experiment, and related metrics, to compare the
performance and overhead exhibited by selected pairings
of architecture and consistency-maintenance mechanism
while attempting to propagate changes during message
loss. In Section 5, we present results from the experiment,
and we discuss causes underlying some of the results. We
conclude in Section 6.

2. Service discovery systems

Service-discovery protocols enable software
components in a network to discover each other, and to
determine if discovered components meet specific
requirements. Further, discovery protocols include
consistency-maintenance mechanisms, which can be used
by applications to detect changes in component
availability and status, and to maintain, within some time
bounds, a consistent view of components in a network.
Many diverse industry activities explore different
approaches to meet such requirements, leading to a variety
of proposed designs for service- discovery protocols [3, 4,
7-10]. Some industry groups approach the problem from a
vertically integrated perspective, coupled with a narrow
application focus. Other industry groups propose more
widely applicable solutions. For example, a team of
researchers and engineers at Sun Microsystems designed
Jini Networking Technology [3], a general service-
discovery mechanism atop JavaTM, which provides a base
of portable software technology. As another example, a
group of engineers at Microsoft and Intel conceived
Universal Plug-and-Play [4] in an attempt to extend plug-
and-play, an automatic intra-computer device-discovery
and configuration protocol, to distributed systems. The
proliferation of service-discovery protocols motivates
deeper analyses of their designs.

To help us compare designs, we developed a general
structural model, documented using the UML (Unified

Modeling Language). Our general model provides a basis
for comparative analysis of various discovery systems by
representing the major architectural components with a
consistent and neutral terminology (see first column in
Table 1). The main components in our general model
include: (1) service user (SU), (2) service manager (SM),
and (3) service cache manager (SCM). The SCM is an
optional element not supported by all discovery protocols.
These components participate in the discovery,
information-propagation, and consistency-maintenance
processes that comprise discovery protocols. A SM
maintains a database of service descriptions, (SDs), each
SD encoding the essential characteristics of a particular
service or device (Service Provider, or SP). Each SD
contains the identity, type, and attributes that characterize
a SP. Each SD also includes up to two software interfaces
(an application-programming interface and a graphical-
user interface) to access a service. A SU seeks SDs
maintained by SMs that satisfy specific requirements.
Where employed, the SCM operates as an intermediary,
matching advertised SDs of SMs to requirements provided
by SUs. Table 1 shows how these general concepts map
to specific concepts from Jini, UPnP, and the Service
Location Protocol (SLP) [9]. The behaviors by which SUs
discover and maintain consistency in desired SDs depend
partly upon the service-discovery architecture employed.

2.1 Alternative architectures
Broadly speaking, system architecture comprises a set

of components, and the connections among them, along
with the relationships and interactions among the
components. In our application, we represent the
architecture of a discovery system using an architectural
model, which expresses structure (as components,
connections, and relations), interfaces (as messages
received by components), behavior (as actions taken in
response to messages received, including generation of
new messages), and consistency conditions (as Boolean
relations among state variables maintained across different
components). Our initial analysis of six distinct discovery
systems revealed that most designs use one of two
underlying architectures: two-party or three-party.

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Service RegistrationDevice/Service DescriptionService ItemService Description (SD)

Directory Service Agent
(optional)

not applicableLookup ServiceService Cache
Manager (SCM)

Service URL
Service Type
Service Attributes
Template URL
Template URL

Universal Unique ID
Device/Service Type
Device/Service Schema
Presentation URL
Control/Event URL

Service ID
Service Type
Attribute Set
Service Applet
Service Proxy

Identity
Type
Attributes
User Interface
Program Interface

ServiceDevice or ServiceServiceService Provider (SP)

Service AgentRoot DeviceService or
Device Proxy

Service Manager (SM)

User AgentControl PointClientService User (SU)

SLPUPnPJiniGeneric Model

Table 1. Mapping concepts among service-
discovery systems.

2.1.1 Two-party architectures. A two-party
architecture consists of two major components: SMs and
SUs. In this study, we use a two-party architecture
arranged in a simple topology consisting of one SM and
five SUs, as depicted in Figure 1. To animate the
architecture, we chose behaviors for discovery,
information propagation, and consistency maintenance, as
described in the specification for UPnP. Upon startup,
each SU and SM engages in a discovery process to locate
other relevant components within the network
neighborhood. In a lazy-discovery process, each SM
periodically announces the existence of its SDs over the
UPnP multicast group, used to send messages from a
source to a group of receivers. Upon receiving these
announcements, SUs with matching requirements use a
HTTP/TCP (HyperText Transfer Protocol/transmission-
control protocol) unicast link (for message exchanges
between two specific parties) to request, directly from the
SM, copies of the SDs associated with relevant SPs. The
SU stores SD copies in a local cache. Alternatively, the
SU may engage in an aggressive-discovery process, where
the SU transmits SD requirements, as Msearch queries, on
the UPnP multicast group. Any SM holding a SD with
matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter
delay) directly to the SU. Whenever a UPnP SM responds
to an Msearch query (or announces itself using the lazy
discovery process), it does so with a train of (3 + 2d + k)
messages, where d is the number of distinct devices and k
is the number of unique service types managed by the SM.
For each appropriate response, the SU uses a HTTP/TCP
unicast link to request a copy of the relevant SDs, caching
them locally.

To maintain a SD in its local cache, a SU expects to
receive periodic announcements from the relevant SM. In
UPnP, the SM announces the existence of SDs at a
specified interval, known as a Time-to-Live, or TTL. Each
announcement specifies the TTL value. If the SU does
not receive an announcement from the SM within the TTL
(or a periodic SU Msearch does not succeed within that

time), the SU may discard the discovered SD. We selected
the minimum TTL of 1800 s, as recommended by the
UPnP specification. (See Tables 2 and 4 for a summary of
relevant parameter values used in this paper.)

2.1.2 Three-party architectures. A three-party
architecture consists of SMs, SUs, and SCMs, where the
number of SCMs represents a key variable. In this study,
we model a three-party architecture with one SM and five
SUs, as shown in Figure 2. We anticipate that under
failure conditions, increasing the number of SCMs will
increase the chance of successful rendezvous among
components, leading to better propagation of information
updates from SMs to SUs. To investigate this, we vary the
number of SCMs in our three-party architectural model.
To animate our three-party model, we chose behaviors
described in the Jini specification.

In Jini, the discovery process focuses upon discovery

by SMs and SUs of any intermediary SCMs that exist in
the network neighborhood. Elsewhere [5], we describe
these procedures in detail. Here, we simply summarize.
Upon initiation, a Jini component enters aggressive
discovery, where it transmits probes on the aggressive-
discovery multicast group at a fixed interval (5 s
recommended) for a specified period (seven times
recommended), or until it has discovered a sufficient
number of SCMs. Upon cessation of aggressive discovery,
a component enters lazy discovery, where it listens on the
lazy-discovery multicast group for announcements sent at
intervals (120 s recommended) by SCMs. Our three-party
model implements both the aggressive and lazy forms of
Jini multicast discovery. Once discovery occurs, a SM
deposits a copy of the SD for each of its services on the
discovered SCM. The SCM caches this deposited state,
but only for a specified length of time, or TTL. To

HTTP/TCP and HTTP/UDP

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

HTTP/TCP and HTTP/UDP

Service
User

Service
User

Service
Manager

UPnP Multicast Group

Unicast Links

Figure 1. Two-party service-discovery
architecture deployed in a six-node topology:
five service users (SUs) and one service
manager (SM).

Service
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCMService
Manager

Service
User

Service
Cache

Manager

Aggressive-Discovery Multicast Group

Remote Method Invocation

Unicast Links

Lazy-Discovery Multicast Group

Optional, 2nd SCM

Figure 2. Three-party service-discovery
architecture deployed in a seven- or eight-
node topology: five service users (SUs), a
service manager (SM), and a service cache
manager (SCM), with an optional 2nd SCM.

maintain a SD on the SCM beyond the TTL, a SM must
refresh the SD. In this way, if the SM fails, then the SCM
can purge any SDs deposited by the SM. To make
behavior as consistent as possible across our models for
both the two-party and three-party architectures, we
selected 1800 s as TTL for a SD to be cached by a SCM.
Using these techniques, SUs and SPs rendezvous through
SDs registered by SMs with particular SCMs, where the
SCMs are found through a discovery process. The SCMs
match SDs provided by SMs to SU requirements, and
forward matches to SUs, which then access the
appropriate SPs.

2.2 Consistency maintenance mechanisms

After initial discovery and information propagation
(through SDs), service-discovery protocols provide
consistency-maintenance mechanisms that applications
can use to ensure that changes to critical information
propagate throughout the system. Critical information may
consist of service availability and capacity, or updates to
descriptions of service capabilities, which may be
necessary for a SU to effectively use a discovered service.
In our study, we consider two basic consistency-
maintenance mechanisms, polling and notification, along
with accompanying mechanisms to propagate updates.

2.2.1 Polling. In polling, a SU periodically sends
queries to obtain up-to-date information about a SD that
was previously discovered, retrieved, and cached locally.
In a two-party architecture, the SU issues the query
directly to the SM from which the SD was obtained. In
this study, we use the UPnP HTTP Get request mechanism
to poll the SM to retrieve a SD associated with a specific
URL (uniform resource locator). In response, the SM
provides a SD containing a list of all supported services,
including their relevant attributes.

Polling in a three-party architecture consists of two
independent processes. In one process, a SM sends a
ChangeService request to propagate an updated SD to
each SCM where the SD was originally cached. In the
second process, each SU polls relevant SCMs by
periodically issuing a FindService request, effectively a
query with a set of desired SD requirements. The SCM
replies with a MatchFound that contains the relevant
information for any matching SDs. In our study, we adopt
a 180-s interval for polling in both architectures.

2.2.2 Notification. In notification, immediately after
an update occurs, a SM sends events that announce a SD
has changed. To receive events about a SD of interest, a
SU must first register for this purpose. In the two-party
architecture, the SU registers directly with a SM. We
model this procedure using the UPnP event-subscription
mechanism, where the SU sends a Subscribe request, and
the SM responds by either accepting the subscription, or

denying the request. The subscription, if accepted, is
retained for a TTL, which may be refreshed with
subsequent Subscribe requests from the SU. In our
experiment, we chose 1800 s as TTL for event
subscriptions in both architectures.

In a three-party architecture, a SU registers with a
SCM to receive events using a procedure analogous to
that used by a SM to propagate a SD. As with SD
propagation, the SCM grants event registrations for a
TTL, which may be refreshed. When a SD update occurs,
the SM first issues a ChangeService request to all SCMs
to which it originally propagated the SD. The SCM then
issues a MatchFound to propagate the event to all SUs
that have registered to receive events about the SD.

3. Modeling recovery strategies

Elsewhere [2], we discuss the classes of network
failures occurring in hostile environments and describe
failure-recovery mechanisms of lower-layer protocols in
more detail. Here we address recovery in response to
message loss at a more general level. Our architectural
models incorporate three classes of failure-recovery
strategies: (1) recovery by lower-layer protocols, (2)
recovery by discovery protocols, and (3) recovery by
application software. For each class, we outline the
strategies (see Table 2) included in our models.

3.1 Recovery by lower layers

Our models operate over two types of channels:
unreliable, simulating the UDP in both multicast and
unicast forms, and reliable, simulating the TCP. UDP
provides no guarantee of message delivery; therefore our
simulated unreliable channels discard messages lost due to
transmission errors. Neither sender nor receiver learns the
fate of lost messages.

Table 2. Summary of recovery responsibilities
and strategies as implemented within our
models for two- and three-party architectures.

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX 78 s if connection
establishment fails

Issue REX in 78 s if connection
establishment fails

TCP

No recoveryNo recoveryUDP
Lower-Layer

Protocols

Three-Party
Architecture (Jini)

Two-Party
Architecture (UPnP)

Recovery
Mechanism

Responsible
Party

SU and SM: purge SCM after
540 s of continuous
REX

SU: purge SD after failure to
receive SM announcement
within 1800 s

Discard
Knowledge

SM: depositing or refreshing SD
copy on SCM retry in 120s

SU: registering and refreshing
notification requests with SCM
retry in 120 s

SU: HTTP Get after discovery
retry in 180 s (retries < 3)

Subscribe requests retry in
120s

Retry after
REX

SU: FindService Poll
SCM: Notification

SU: HTTP Get Poll
SM: Notification

Ignore REX

Application
Software

SU and SM: issue seven probes
(at 5 s intervals) only
during startup

SU: issues Msearch every 120 s
(after purging SD)

Aggressive
Discovery

SCM: announces every 120 sSM: announces with n (3+2d+k)
messages every 1800 s

Lazy
Discovery

Discovery
Protocols

Issue REX 78 s if connection
establishment fails

Issue REX in 78 s if connection
establishment fails

TCP

No recoveryNo recoveryUDP
Lower-Layer

Protocols

Reliable unicast protocols attempt to ensure delivery of
messages by detecting and retransmitting lost messages.
Accordingly in the TCP simulation, our model is more
complex, including both connection establishment and
data transfer. During connection establishment, we allow
up to four attempts to initiate a connection. An attempt
fails if either the connection request or accept is lost. If no
accept arrives, then the request is resent in 6 s for the first
retry, but we wait 24 s for each subsequent retry. If all
attempts fail, then we signal a REX to the requester.
During data transfer, messages lost to transmission errors
are scheduled for retransmission (roughly within a round-
trip time, or RTT). We increase the retransmission
timeout by 25% with each successive retransmission. We
place no bound on the number of retransmissions during
data transfer.

3.2 Recovery by discovery protocols

Discovery protocols include built-in robustness
measures to deal with the possibilities of UDP message
loss and node failure. Discovery protocols specify
periodic transmission of key messages. For example, Jini
requires a node to engage in aggressive discovery on
startup, and then to enter lazy discovery, where all SCMs
periodically announce their presence. In a similar lazy
discovery, UPnP requires SMs to periodically announce
their presence. While not specifying aggressive discovery,
UPnP permits SUs to issue Msearch queries at any time.
To compensate for the different announcement intervals
recommended for Jini and UPnP, we chose to have UPnP
SUs issue Msearch queries every 120 s, but only after a
SU purges a SD from its local cache. Once a SU regains
its desired SD, the related Msearch queries cease.
Whenever a UPnP SM announces itself or responds to an
Msearch query, it sends n copies of each message, where
n is a retransmission factor (two in the current study)
recommended by the UPnP specification to compensate
for possible UDP message loss. In both Jini and UPnP,
each lazy announcement recurs periodically. Receiving
nodes can cache information from the announcements; the
cached information may be purged if communication fails.
In this way, each node in the system eliminates residual
information about failed or unreachable nodes. Our
models incorporate these failure-recovery behaviors.

3.3 Recovery by application software

When discovery nodes communicate over a reliable
channel, a REX may occur. Response to a REX is left to
the application. In our models, depending on the situation,
we implement three different strategies: (1) ignore the
REX, (2) retry the operation for some period, and (3)
discard knowledge. The retry strategy attempts to recover

from transient failures. The discard strategy, which occurs
following repeated failure of the retry strategy, relies upon
discovery mechanisms to recover from more persistent
failures.

3.3.1 Ignore REX. In general, our models ignore a
REX received when attempting to respond to a request. A
SU can ignore a REX received in response to a poll,
FindService or HTTP Get, because the poll recurs at an
interval. The SCM (three-party model) or the SM (two-
party model) also ignores a REX received while
attempting to issue a notification. This behavior, which is
described in both the Jini and UPnP specifications,
depends upon reliable lower-layer protocols to provide
robustness for notifications. Notifications include
sequence numbers that allow a receiving node to
determine if previous notifications were missed.

3.3.2 Retry the operation. In our models, we retry
selected operations in the face of a REX. The UPnP
specification separates the operation of discovering a
resource from obtaining a description of the resource (Jini
combines these operations). Without a description, the
resource cannot be used. For this reason, in our two-party
model, a SU must issue a HTTP Get to obtain a
description. If no description arrives within 180 s, then
our model retries the HTTP Get. If unsuccessful after
three attempts, the SU ceases the retries, but sets a flag
reminding itself to reissue a HTTP Get when the resource
is next announced. Our three-party model, based on Jini,
also contains a retry strategy, but associated with attempts
to register or change a SD with a SCM. In these cases, the
SM retries a ChangeService or ServiceRegistration 120 s
after receiving a REX. Similarly, when a SU receives a
REX (from either a SM or SCM) in response to a request
to register for notification, the SU retries the registration
in 120 s. All retries occur until some time bounds, after
which knowledge of the discovery is discarded.

3.3.3 Discard knowledge. Both our two-party and
three-party models include the possibility that an
application can discard knowledge of previously
discovered nodes. In UPnP, after failure to receive
announcements from the SM within a TTL, a SU discards
a SM and any related SDs. We implement this behavior in
our two-party model. In Jini, the specification states that a
discovering entity may discard a SCM with which it
cannot communicate. In our three-party model, a SM or
SU deletes a SCM if it receives only REXs when
attempting to communicate with the SCM over a 540-s
interval. After discarding knowledge of a SM (UPnP) or
SCM (Jini), all operations involving the node cease until it
is rediscovered, either through lazy discovery (Jini or
UPnP announcements) or aggressive discovery (UPnP
Msearch queries).

4. Experiment design and metrics

In this paper, we investigate the following question:
How do alternative service-discovery architectures,
topologies, and consistency-maintenance mechanisms
perform under deadline during message loss? To address
this question, we deploy a two-party and three-party
architecture (recall Figures 1 and 2), each in a topology
that includes one SM and five SUs. In the three-party
case, we use two topologies, one with one SCM and
another with two SCMs. To compare change propagation
in two- and three-party architectures, we then combine the
architectures with different consistency-maintenance
mechanisms. Table 3 depicts the six combinations. To
establish initial conditions, we exercise each topology
until discovery completes, and the initial information (a
SD) propagates to all SUs. To begin the experiment, we
introduce a change in the SD at the SM, and we establish
a deadline, D, before which the change must propagate to
all SUs. We measure the number of messages exchanged
and the latency required to propagate the new information,
or until D, under two different consistency-maintenance
mechanisms: polling and notification. We repeat this
experiment while varying the message-loss rate up to 95%
(in increments of 5%). We provide further details below.

4.1. Tracking consistency

To track consistency in our experiment, we employ
property analysis [5], using a single consistency condition:
service attributes for a SD discovered by a SU should
have the same values as the attributes of the SD being
maintained by the SM that manages the SD, expressed as:

FOR All (SM, SU, SD)
(SM, SD [Attributes1]) isElementOf SM managed-services &

 (SM, SD [Attributes2]) isElementOf SU discovered-services
 implies Attributes1 equals Attributes2

The condition is incorporated directly into our models and
checked using Rapide procedural code. We establish an
initial system state in which this condition holds, and then
introduce a change in (SM, SD [Attributes1]), which
negates the condition for all SUs. Then, we monitor

updates to (SM, SD) tuples in the set of discovered-
services maintained by individual SU's to determine if the
condition becomes true. Note that if a SU discards its
(SM, SD) tuple, the tuple must be recovered before the
condition can be satisfied. These consistency checks form
the basis for our measurements.

4.2. Generating message loss

We set aside an interval, up to time Q, to complete
initial discovery and information propagation. In our
experiments, Q = 100 s and D = 5400 s. We define F as
the message-lost rate, which represents the independent
variable in our experiment, ranging from 0.00 to 0.95 in
increments of 0.05. For each attempt to transmit a data
message, whether on a reliable or unreliable channel, or to
retransmit a data message on a reliable channel, or to send
or retry a connection request or accept message on a
reliable channel, we select a uniform random number, V,
from the unit interval 0 to 1. If V < F, we discard the
message, which in the case of messages sent on the
reliable channel will stimulate a retransmission after the
appropriate timeout period (recall 3.1). Table 4
summarizes most of the relevant parameters and values for
our experiments.

4.3. Metrics

We use the data collected from experiment runs to

compute three metrics: update responsiveness, update
effectiveness, and update efficiency.

Table 3. Experiment combinations.

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Table 4. Values for relevant parameters.

100 us for cache items
10 us for other items

Per-item processing
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay
without message loss

Connection Establishment -
4 retransmission attempts
with delays of 6 s, 24 s, 24
s and 24 s; then REX if
unsuccessful.
Data Transfer – retransmit
until success, increasing
time-out by 25% on each
retry (first time-out is round-
trip time).

Reliable protocol
response

Message discarded. No
retransmission.

Unreliable protocol
response

Each transmission attempt
fails with P(F)

Loss Probability (F)

Message loss
parameters and
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

100 us for cache items
10 us for other items

Per-item processing
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay
without message loss

Connection Establishment -
4 retransmission attempts
with delays of 6 s, 24 s, 24
s and 24 s; then REX if
unsuccessful.
Data Transfer – retransmit
until success, increasing
time-out by 25% on each
retry (first time-out is round-
trip time).

Reliable protocol
response

Message discarded. No
retransmission.

Unreliable protocol
response

Each transmission attempt
fails with P(F)

Loss Probability (F)

Message loss
parameters and
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific
behavior for two-
party architecture

120 sTime to retry after
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both
two- and three-
party architectures

ValueParameter

4.3.1 Update Responsiveness. Assuming information
is created at a particular time and must be propagated by a
deadline, then the difference between the deadline and the
creation time represents available time in which to
propagate the information. Update Responsiveness, R,
measures the proportion of the available time remaining
after the information is propagated. More formally, let D
be a deadline by which we wish to propagate information
to each SU-node n in a service-discovery topology. Let tC
be the creation time of the information that we wish to
propagate, where tC < D. Let tU(n) be the time that the
information is propagated to SU n, where n = 1 to N, and
N is the total number of SUs in a topology. Define
change-propagation latency (L) for SU n as: Ln = (tU(n) -
tC)/(max(D, tU(n)) – tC). This is effectively the proportion
of available time used to propagate the change to SU n.
The numerator represents the time at which the SU
achieved consistency after the update occurred. The
denominator represents the time available to propagate the
change. The term max(D, tU(n)) accounts for cases where
tU(n) > D. Define R for SU n as: Rn = 1 – Ln. Rn is the
proportion of available time remaining after propagating
a change to SU n.

4.3.2 Update Effectiveness. Update Effectiveness, U,
measures the probability that a change will propagate
successfully for a given SU, i.e., tU(n) < D. More formally,
assuming definitions from 4.3.1 hold, let X be the number
of runs (30 here) during which a particular topology is
observed under identical conditions. Recalling that N is
the total number of SUs in a topology, define the number
of SUs observed under identical conditions as: O = X ∗ N.
Define U, the probability that tU(n) < D, as: U = 1 – P(F),
where P(F) = (ΣiΣj (one if Ri,j equals 0 and zero
otherwise))/O and where i = 1...X and j = 1...N.

4.3.3 Update Efficiency. Given a specific service-
discovery topology, examination of the available
architectures (two-party and three-party) and consistency-
maintenance mechanisms (polling and notification)
reveals a minimum number of messages, M, that must be
sent to propagate a change to all SUs. In our topologies,
M (M = 7) occurs when using notification to propagate
information in a three-party architecture with one SCM.
Update Efficiency, E, can be defined as the ratio of M to
the actual number of messages observed. More formally,
let S be the number of messages sent while attempting to
propagate a change from a SM to SUs in a given run.
Define average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X.

5. Results and discussion

In this section, after showing results from our
experiments, we consider the relative performance of our
models and propose reasons for these differences.

5.1. Results

In a series of six graphs, which have identical abscissas
(message-loss rate, increasing from 0% to 95% in
increments of 5%) and ordinates (an appropriate metric
ranging between 0 and 1), we plot selected measurements
generated from our models. Each graph compares four of
the configurations in Table 3 against one of the metrics:
update responsiveness (average), effectiveness, or
efficiency (average). Figure 3(a) compares effectiveness
from our two-party model against that from our single-
SCM, three-party model, for both polling and notification.
Figure 3(b) provides a similar comparison, but substitutes
the results from our dual-SCM, three-party model in place
of results from our one-SCM, three-party model. Figures
3(c) and 3(d) compare update responsiveness using the
same combinations. Figures 3(e) and 3(f) use the same
combinations, but compare update efficiency. The graphs
reporting measures of effectiveness and responsiveness
depict a system undergoing a phase transition from peak
performance (where changes propagate quickly) to non-
performance (where changes fail to propagate). Regarding
efficiency, the graphs show a system that begins at its best
efficiency (without interfering message losses) and then
asymptotically approaches zero efficiency as the message-
loss rate increases toward 100%. Because the graphs can
be difficult to interpret, we compute summary statistics
(see Table 5) for each of our six combinations. Each
summary statistic reflects the mean of a particular metric,
when averaged across all message-loss rates, for a
specified configuration.

5.2. Relative performance

Below, we discuss the results for each of our three

metrics. The reader should note that engineering trade-offs
exist among: effectiveness, responsiveness, and efficiency.

5.2.1 Effectiveness. Figs. 3(a) and 3(b) show that all
combinations of architecture, topology, and consistency
maintenance strategy exhibit update effectiveness of 0.85
or better up to a message-loss rate of 85%, after which
they decline sharply. This similarity in effectiveness
among the combinations can be attributed to commonality
in the recovery behaviors of the discovery protocols, as
implemented in our models. We require each SU (and the
SM in the three-party case) to discard discovered
information after a break in communications (recall Table
2) and then to initiate rediscovery. In the two-party model,
periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) lead to rediscovery. Similarly, in
the three-party case, periodic (120 s) announcements by
each SCM (lazy-discovery procedures) lead to
rediscovery.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

U
p

d
at

e
E

ff
ec

ti
ve

n
es

s

Two-Party Notification

Two-Party Polling

Three-Party Single SCM Notification

Three-Party Single SCM Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

U
p

d
at

e
E

ff
ec

ti
ve

n
es

s

Two-Party Notification

Two-Party Polling

Three-Party Dual SCM Notification

Three-Party Dual SCM Polling

(a) Update effectiveness of two-party vs.
three-party (single-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

A
ve

ra
g

e
U

p
d

at
e

R
es

p
o

n
si

ve
n

es
s

Two-Party Notification

Two-Party Polling

Three-Party Single SCM Notification

Three-Party Single SCM Polling

(b) Update effectiveness of two-party
vs. three-party (dual-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

A
ve

ra
g

e
U

p
d

at
e

R
es

p
o

n
si

ve
n

es
s

Two-Party Notification

Two-Party Polling

Three-Party Dual SCM Notification

Three-Party Dual SCM Polling

(c) Average update responsiveness of two-party
vs. three-party (single-SCM)

(d) Average update responsiveness of two-party
vs. three-party (dual-SCM)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

A
ve

ra
g

e
U

p
d

at
e

E
ff

ic
ie

n
cy

Two-Party Notification

Two-Party Polling

Three-Party Single SCM
Notification
Three-Party Single SCM
Polling

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Message Loss Rate (%)

A
ve

ra
g

e
U

p
d

at
e

E
ff

ic
ie

n
cy

Two-Party Notification

Two-Party Polling

Three-Party Dual SCM
Notification
Three-Party Dual SCM
Polling

(e) Average update efficiency of two-party vs.
three-party (single-SCM)

(f) Average update efficiency of two-party vs.
three-party (dual-SCM)

Figure 3. Graphs comparing combinations of architecture, topology, and consistency-maintenance
mechanism.

After rediscovering a discarded node, the SU or SM re-
establishes lost registrations, as appropriate for the
consistency-maintenance strategy: notification registration
for SUs and service registrations for the SM (three-party
cases). In the process of restoring this distributed state
information, each SU may obtain and cache a consistent
copy of the SD maintained by the SM. As message-loss
rate increases beyond 50%, this rediscovery machinery
tends to dominate the effectiveness results.

Despite rough similarity, certain combinations do show
slightly better effectiveness than others (see Figs. 3(a) and
3(b) and the first column of Table 5). We attribute these
differences to the consistency-maintenance strategy
(polling or notification), and to differences in the recovery
actions taken by the application software while
implementing a particular strategy. Architecture and
topology play a secondary role. In general, polling should
lead to better effectiveness than notification, and our
results support this in all architecture-topology
combinations. Polling has built-in robustness from issuing
periodic requests. On the contrary, notifications are issued
only once with no further action by the sender in response
to a REX (recall Table 2). Therefore, in notification,
effectiveness suffers from situations where the notice is
lost but where the notification registration and the node
(SM or SCM) discovery are not lost. In these situations,
there is no opportunity for recovery mechanisms to regain
a lost node (SM or SCM) and to register for notification.
Without such recovery, the SU might never obtain a copy
of a changed SD. However, in three-party notification
with dual SCMs, the effects of architecture and topology
also come into play. Here, a replicated SCM provides an
additional path for the SM to propagate the update, thus
increasing the effectiveness of notification almost to the
level of polling.

Beyond a rough similarity with distinguishable
differences, the curves for effectiveness in two-party
notification and in three-party single-SCM notification

also include some irregularities, where effectiveness first
drops and then improves as the message-loss rate
increases. We used Rapide analysis tools to investigate the
reasons underlying these dips. For both cases, we found
that as the failure rate increases beyond 40%, the rate of
recovery of the lost SM and lost registrations also
increases. Recall that notification has no built-in
robustness, relying instead on recovery mechanisms in
TCP. Thus, to regain consistency when TCP recovery
fails, notification must rely on recovery mechanisms in the
discovery protocols, which provide opportunities to
propagate previously lost updates. The higher the
recovery rates, the greater the number of opportunities to
regain consistency. As the message-loss rate increases, the
recovery rate increases, and the effectiveness improves,
up to a limit. Once the message-loss rate reaches 80%, the
ability of the discovery protocols to effect recovery
becomes impaired, leading to an inevitable decline in
effectiveness. We also note that between 40% and 80%
message-loss rate one of the notification combinations
(three-party single-SCM) provides better effectiveness
than the other (two-party). We suspect this occurs because
the recovery actions of the SM (regaining the SCM
discovery and registering the SD) provide additional
opportunities (not available in the two-party case) to
propagate the updated SD. Also recall that in Jini (the
basis for behavior in our three-party models) notification
includes the SD, while in the two-party case, based on
UPnP, the SU must invoke separate operations to retrieve
a copy of the SD. This provides additional opportunities
for message loss to interfere with the restoration of
consistency in the two-party case. These somewhat
surprising dips in the effectiveness curves for notification
also appear under conditions of node interface failures,
discussed in a companion paper [2].

5.2.2 Responsiveness. Results in Figs. 3(c) and 3(d)
and the second column of Table 5, show that three
combinations of architecture and behavior (two-party
polling, three-party polling with dual SCMs, and three-
party notification with dual SCMs) exhibit similar
responsiveness. Below 70% message-loss rate, three-party
polling with a single SCM also exhibits similar
responsiveness, but then declines more steeply than the
others. For each architecture-topology combination, Table
5 shows that polling leads to better overall responsiveness
than notification. However, Figs. 3(c) and 3(d) show that
notification is more responsive at lower message-loss
rates, where the periodicity of polling incurs a greater lag
time. As message-loss rate increases, polling becomes
more responsive than notification, which must rely on
recovery mechanisms in the discovery protocols to
recover from failure to transfer notifications (recall 5.2.1),
whereas the built-in robustness of polling overcomes
failures in lower protocol layers. In the three-party case
with dual SCMs, notification achieves a similar

0.233 0.887 0.931 Three-Party Polling
 (Dual SCM)

0.400 0.881 0.921 Three-Party Notification
 (Dual SCM)

0.391 0.846 0.902 Three-Party Polling
 (Single SCM)

0.552 0.807 0.870 Three-Party Notification
 (Single SCM)

0.525 0.901 0.956 Two-Party Polling

0.296 0.799 0.867 Two-Party Notification

Average Update
Efficiency

Average Update
Responsiveness

Update
Effectiveness

Mean (across all message-loss rates)

Table 5. Summary statistics (mean across all
message-loss rates) computed for each curve in
the graphs shown in Figures 3(a) through 3(f).

responsiveness to polling because notifications are sent
over redundant paths, which mitigate the effect of
transmission failures.

At high message-loss rates, under both polling and
notification, restoring consistency depends largely upon
recovery mechanisms in the discovery protocol. For
responsiveness, as for effectiveness, our models of these
recovery mechanisms ensure a degree of similarity in the
results for three cases: two-party polling, three-party
polling, and three-party notification with dual SCMs. In
the case of three-party polling with a single SCM,
responsiveness declines more rapidly at higher message-
loss rates because, lacking a redundant SCM, fewer
opportunities exist to recover a copy of the updated SD.
Finally, for reasons already addressed (see 5.2.1), between
40% and 90% message-loss rates, both two-party
notification and three-party notification with a single SCM
prove considerably less responsive than the other
combinations.

5.2.3 Efficiency. For a given combination of
architecture and topology, we expect notification to be
more efficient than polling. We also expect the two-party
architecture to be more efficient than the three-party
architecture, and the single-SCM topology to be more
efficient than the dual-SCM topology. In general, our
results support these expectations. However, there are a
few twists. First, the three-party, single-SCM architecture
with notification proves more efficient than the two-party
architectures because in Jini the SD arrives with the
notification, while in UPnP the notifications indicate only
that a change has occurred, requiring a SU to exchange a
request-response message pair to obtain the updated SD.
Second, each SU must periodically refresh notification
requests deposited on the SM (two-party case) or SCM
(three-party case). As the message-loss rate increases,
failure to transfer refresh messages leads to REXs, which
stimulate retry procedures: every 120 s until 540 s of
continuous REX (three-party case) or every 120 s until a
SM is purged (two-party case). For this reason, efficiency
decreases for notification as the message-loss rate
increases.

6. Conclusions

Emerging service-discovery protocols provide the
foundation for software components to discover each
other, to organize themselves into a system, and to adapt
to changes in node connectivity. While likely suitable for
small-scale commercial applications, questions remain
regarding the performance of such protocols at large scale,
and during periods of high volatility and duress, such as
might exist in military and emergency-response
applications. In this paper, we used architectural models
to characterize the performance of selected combinations

of system topology and consistency-maintenance
mechanism during severe message loss. Further, we used
behavioral analysis to investigate the causes of observed
performance. Our initial investigations show significant
differences in performance can be obtained by varying
aspects of the design (architecture, topology, consistency-
maintenance mechanism, and recovery strategies).

7. Acknowledgments

The work described benefits from financial support
provided by the National Institute of Standards and
Technology (NIST), the Defense Advanced Research
Projects Agency (DARPA), and the Advanced Research
Development Agency (ARDA). In particular, we
acknowledge the support of Susan Zevin from NIST,
Doug Maughan and John Salasin from DARPA, and Greg
Puffenbarger from ARDA. We also thank Stefan Leigh
and Scott Rose of NIST and the anonymous WAMS
reviewers for insightful comments that helped us to
improve the manuscript.

8. References

[1] G. Bieber and J. Carpenter, “Openwings A Service-

Oriented Component Architecture for Self-Forming, Self-
Healing, Network-Centric Systems,” on the web site:
http://www.openwings.org.

[2] Dabrowski, C., Mills, K., and Elder, J. “Understanding
Consistency Maintenance in Service Discovery
Architectures during Communication Failure”, Proceedings
of the 3rd International Workshop on Software
Performance, ACM, Rome, Italy, July 24-26, 2002.

[3] Ken Arnold et al, The Jini Specification, V1.0 Addison-
Wesley 1999. Latest version is 1.1 available from Sun.

[4] Universal Plug and Play Device Architecture, Version 1.0,
Microsoft, June 8, 2000.

[5] Dabrowski, C. and Mills, K., “Analyzing Properties and
 Behavior of Service Discovery Protocols Using an
Architecture-Based Approach”, Proceedings of Working
Conference on Complex and Dynamic Systems
Architecture, Brisbane, Australia, December 2001.

[6] Luckham, D. “Rapide: A Language and Toolset for
Simulation of Distributed Systems by Partial Ordering of
Events,” http://anna.stanford.edu/rapide, August 1996.

[7] Salutation Architecture Specification, Version 2.0c,
Salutation Consortium, June 1, 1999.

[8] Specification of the Home Audio/Video Interoperability
(HAVi) Archiecture, V1.1, HAVi, Inc., May 15, 2001.

[9] Service Location Protocol Version 2, Internet Engineering
Task Force (IETF), RFC 2608, June 1999.

[10] Specification of the Bluetooth System, Core, Volume 1,
Version 1.1, the Bluetooth SIG, Inc., February 22, 2001.

