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Abstract 
 
Current trends suggest future software systems will 
comprise collections of components that combine and 
recombine dynamically in reaction to changing 
conditions. Service-discovery protocols, which enable 
software components to locate available software services 
and to adapt to changing system topology, provide one 
foundation for such dynamic behavior. Emerging 
discovery protocols specify alternative architectures and 
behaviors, which motivate a rigorous investigation of the 
properties underlying their designs. Here, we assess the 
ability of selected designs for service-discovery protocols 
to maintain consistency in a distributed system during 
severe message loss. We use an architecture description 
language, called Rapide, to model two different 
architectures (two-party and three-party) and two 
different consistency-maintenance mechanisms (polling 
and notification). We use our models to investigate 
performance differences among combinations of 
architecture and consistency-maintenance mechanism as 
message-loss rate increases. We measure system 
performance along three dimensions: (1) update 
responsiveness (How much latency is required to 
propagate changes?), (2) update effectiveness (What is 
the probability that a node receives a change?), and (3) 
update efficiency (How many messages must be sent to 
propagate a change throughout the topology?).  
 
1. Introduction 
 

Successful deployment of active middleware services, 
which can detect and adapt to changes in topologies of 
distributed components, will depend upon a foundation 
layer of service-discovery software that can monitor the 
state of nearby software services and components and that 
can detect changes in network connectivity. Already, 
military organizations are investigating the applicability of 
commercial service-discovery systems to meet such 
requirements in hostile and volatile environments [1]. In 
military and civil emergency response situations, software 
components in a distributed system may find that 
cooperating components disappear due to physical or 

cyber attacks, to jamming of communication channels or 
to movement of nodes. Such environments demand new 
analysis approaches and tools to design and test software 
that will be used to provide active middleware services. 

In this paper, we use architectural models to assess the 
ability of selected designs for service-discovery protocols 
to maintain consistency in a distributed system during 
severe message loss. (A companion paper investigates 
robustness in the face of interference due to node interface 
failure [2].) Using an architecture description language 
(ADL), we model two different architectures (two-party 
and three-party) and two different consistency-
maintenance mechanisms (polling and notification). To 
provide our models with realistic behaviors, we 
incorporate consistency-maintenance mechanisms adapted 
from two specifications: Jini™ Networking Technology1 
[3] and Universal Plug-and-Play (UPnP) [4]. We use our 
models to investigate performance differences among 
combinations of architecture and consistency-maintenance 
mechanism as message-loss rate increases. We measure 
system performance along three dimensions: (1) update 
responsiveness (How much latency is required to 
propagate changes?), (2) update effectiveness (What is the 
probability that a node receives a change?), and (3) update 
efficiency (How many messages must be sent to propagate 
a change throughout the topology?). 

Our modeling and analysis approach builds on earlier 
work [5] where we derived benefits by creating dynamic 
models from specifications for service-discovery 
protocols. Dynamic models enable us to understand 
collective behavior among distributed components, and to 
detect ambiguities, inconsistencies and omissions in 
specifications. In this paper, we apply the same method: 
(1) construct an architectural model of each discovery 
protocol, (2) identify and specify relevant consistency 
conditions that each model should satisfy, (3) define 
appropriate metrics for comparing the behavior of each 
model, (4) construct relevant scenarios to exercise the 

                                                 
1 Certain commercial products or company names are identified in this 

paper to describe our study adequately. Such identification is not 
intended to imply recommendation or endorsement by the National 
Institute of Standards and Technology, nor to imply that the products 
or names identified are necessarily the best available for the purpose. 



models and to probe for violations of consistency 
conditions, and (5) compare results from executing similar 
scenarios against each model. To implement the method, 
we rely on Rapide [6], an ADL developed at Stanford 
University. Rapide represents behavior in a form suitable 
to investigate distributed systems, and comes with an 
accompanying suite of analysis tools that can execute a 
specification and can record and visualize system 
behavior. In this paper, we use Rapide to understand how 
failure-recovery strategies contribute to differences in 
performance. 

The remainder of the paper is organized in six sections. 
We begin, in Section 2, by introducing service-discovery 
protocols and architectures, including a description of 
procedures to maintain consistency in replicated 
information. In Section 3, we outline some techniques, 
included in our models, to recover from failures. Section 4 
defines an experiment, and related metrics, to compare the 
performance and overhead exhibited by selected pairings 
of architecture and consistency-maintenance mechanism 
while attempting to propagate changes during message 
loss. In Section 5, we present results from the experiment, 
and we discuss causes underlying some of the results. We 
conclude in Section 6. 
 
2. Service discovery systems 
 

Service-discovery protocols enable software 
components in a network to discover each other, and to 
determine if discovered components meet specific 
requirements. Further, discovery protocols include 
consistency-maintenance mechanisms, which can be used 
by applications to detect changes in component 
availability and status, and to maintain, within some time 
bounds, a consistent view of components in a network. 
Many diverse industry activities explore different 
approaches to meet such requirements, leading to a variety 
of proposed designs for service- discovery protocols [3, 4, 
7-10]. Some industry groups approach the problem from a 
vertically integrated perspective, coupled with a narrow 
application focus. Other industry groups propose more 
widely applicable solutions. For example, a team of 
researchers and engineers at Sun Microsystems designed 
Jini Networking Technology [3], a general service-
discovery mechanism atop JavaTM, which provides a base 
of portable software technology. As another example, a 
group of engineers at Microsoft and Intel conceived 
Universal Plug-and-Play [4] in an attempt to extend plug-
and-play, an automatic intra-computer device-discovery 
and configuration protocol, to distributed systems. The 
proliferation of service-discovery protocols motivates 
deeper analyses of their designs. 

To help us compare designs, we developed a general 
structural model, documented using the UML (Unified 

Modeling Language). Our general model provides a basis 
for comparative analysis of various discovery systems by 
representing the major architectural components with a 
consistent and neutral terminology (see first column in 
Table 1). The main components in our general model 
include:  (1) service user (SU), (2) service manager (SM), 
and (3) service cache manager (SCM). The SCM is an 
optional element not supported by all discovery protocols. 
These components participate in the discovery, 
information-propagation, and consistency-maintenance 
processes that comprise discovery protocols.  A SM 
maintains a database of service descriptions, (SDs), each 
SD encoding the essential characteristics of a particular 
service or device (Service Provider, or SP). Each SD 
contains the identity, type, and attributes that characterize 
a SP. Each SD also includes up to two software interfaces 
(an application-programming interface and a graphical-
user interface) to access a service. A SU seeks SDs 
maintained by SMs that satisfy specific requirements. 
Where employed, the SCM operates as an intermediary, 
matching advertised SDs of SMs to requirements provided 
by SUs.  Table 1 shows how these general concepts map 
to specific concepts from Jini, UPnP, and the Service 
Location Protocol (SLP) [9]. The behaviors by which SUs 
discover and maintain consistency in desired SDs depend 
partly upon the service-discovery architecture employed. 

2.1 Alternative architectures 
Broadly speaking, system architecture comprises a set 

of components, and the connections among them, along 
with the relationships and interactions among the 
components. In our application, we represent the 
architecture of a discovery system using an architectural 
model, which expresses structure (as components, 
connections, and relations), interfaces (as messages 
received by components), behavior (as actions taken in 
response to messages received, including generation of 
new messages), and consistency conditions (as Boolean 
relations among state variables maintained across different 
components). Our initial analysis of six distinct discovery 
systems revealed that most designs use one of two 
underlying architectures: two-party or three-party. 
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Table 1. Mapping concepts among service-
discovery systems. 



2.1.1 Two-party architectures. A two-party 
architecture consists of two major components: SMs and 
SUs. In this study, we use a two-party architecture 
arranged in a simple topology consisting of one SM and 
five SUs, as depicted in Figure 1. To animate the 
architecture, we chose behaviors for discovery, 
information propagation, and consistency maintenance, as 
described in the specification for UPnP. Upon startup, 
each SU and SM engages in a discovery process to locate 
other relevant components within the network 
neighborhood. In a lazy-discovery process, each SM 
periodically announces the existence of its SDs over the 
UPnP multicast group, used to send messages from a 
source to a group of receivers. Upon receiving these 
announcements, SUs with matching requirements use a 
HTTP/TCP (HyperText Transfer Protocol/transmission-
control protocol) unicast link (for message exchanges 
between two specific parties) to request, directly from the 
SM, copies of the SDs associated with relevant SPs. The 
SU stores SD copies in a local cache. Alternatively, the 
SU may engage in an aggressive-discovery process, where 
the SU transmits SD requirements, as Msearch queries, on 
the UPnP multicast group. Any SM holding a SD with 
matching requirements may use a HTTP/UDP (user-
datagram protocol) unicast link to respond (after a jitter 
delay) directly to the SU. Whenever a UPnP SM responds 
to an Msearch query (or announces itself using the lazy 
discovery process), it does so with a train of (3 + 2d + k) 
messages, where d is the number of distinct devices and k 
is the number of unique service types managed by the SM. 
For each appropriate response, the SU uses a HTTP/TCP 
unicast link to request a copy of the relevant SDs, caching 
them locally. 

To maintain a SD in its local cache, a SU expects to 
receive periodic announcements from the relevant SM. In 
UPnP, the SM announces the existence of SDs at a 
specified interval, known as a Time-to-Live, or TTL. Each 
announcement specifies the TTL value.  If the SU does 
not receive an announcement from the SM within the TTL 
(or a periodic SU Msearch does not succeed within that 

time), the SU may discard the discovered SD. We selected 
the minimum TTL of 1800 s, as recommended by the 
UPnP specification. (See Tables 2 and 4 for a summary of 
relevant parameter values used in this paper.) 

2.1.2 Three-party architectures. A three-party 
architecture consists of SMs, SUs, and SCMs, where the 
number of SCMs represents a key variable. In this study, 
we model a three-party architecture with one SM and five 
SUs, as shown in Figure 2. We anticipate that under 
failure conditions, increasing the number of SCMs will 
increase the chance of successful rendezvous among 
components, leading to better propagation of information 
updates from SMs to SUs. To investigate this, we vary the 
number of SCMs in our three-party architectural model. 
To animate our three-party model, we chose behaviors 
described in the Jini specification. 

 
In Jini, the discovery process focuses upon discovery 

by SMs and SUs of any intermediary SCMs that exist in 
the network neighborhood. Elsewhere [5], we describe 
these procedures in detail. Here, we simply summarize. 
Upon initiation, a Jini component enters aggressive 
discovery, where it transmits probes on the aggressive-
discovery multicast group at a fixed interval (5 s 
recommended) for a specified period (seven times 
recommended), or until it has discovered a sufficient 
number of SCMs. Upon cessation of aggressive discovery, 
a component enters lazy discovery, where it listens on the 
lazy-discovery multicast group for announcements sent at 
intervals (120 s recommended) by SCMs. Our three-party 
model implements both the aggressive and lazy forms of 
Jini multicast discovery. Once discovery occurs, a SM 
deposits a copy of the SD for each of its services on the 
discovered SCM. The SCM caches this deposited state, 
but only for a specified length of time, or TTL. To 
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Figure 1. Two-party service-discovery 
architecture deployed in a six-node topology: 
five service users (SUs) and one service 
manager (SM). 
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maintain a SD on the SCM beyond the TTL, a SM must 
refresh the SD. In this way, if the SM fails, then the SCM 
can purge any SDs deposited by the SM. To make 
behavior as consistent as possible across our models for 
both the two-party and three-party architectures, we 
selected 1800 s as TTL for a SD to be cached by a SCM. 
Using these techniques, SUs and SPs rendezvous through 
SDs registered by SMs with particular SCMs, where the 
SCMs are found through a discovery process. The SCMs 
match SDs provided by SMs to SU requirements, and 
forward matches to SUs, which then access the 
appropriate SPs. 

 
2.2 Consistency maintenance mechanisms 
 

After initial discovery and information propagation 
(through SDs), service-discovery protocols provide 
consistency-maintenance mechanisms that applications 
can use to ensure that changes to critical information 
propagate throughout the system. Critical information may 
consist of service availability and capacity, or updates to 
descriptions of service capabilities, which may be 
necessary for a SU to effectively use a discovered service. 
In our study, we consider two basic consistency-
maintenance mechanisms, polling and notification, along 
with accompanying mechanisms to propagate updates. 

2.2.1 Polling. In polling, a SU periodically sends 
queries to obtain up-to-date information about a SD that 
was previously discovered, retrieved, and cached locally. 
In a two-party architecture, the SU issues the query 
directly to the SM from which the SD was obtained. In 
this study, we use the UPnP HTTP Get request mechanism 
to poll the SM to retrieve a SD associated with a specific 
URL (uniform resource locator). In response, the SM 
provides a SD containing a list of all supported services, 
including their relevant attributes. 

Polling in a three-party architecture consists of two 
independent processes. In one process, a SM sends a 
ChangeService request to propagate an updated SD to 
each SCM where the SD was originally cached. In the 
second process, each SU polls relevant SCMs by 
periodically issuing a FindService request, effectively a 
query with a set of desired SD requirements. The SCM 
replies with a MatchFound that contains the relevant 
information for any matching SDs. In our study, we adopt 
a 180-s interval for polling in both architectures. 

2.2.2 Notification. In notification, immediately after 
an update occurs, a SM sends events that announce a SD 
has changed. To receive events about a SD of interest, a 
SU must first register for this purpose. In the two-party 
architecture, the SU registers directly with a SM. We 
model this procedure using the UPnP event-subscription 
mechanism, where the SU sends a Subscribe request, and 
the SM responds by either accepting the subscription, or 

denying the request. The subscription, if accepted, is 
retained for a TTL, which may be refreshed with 
subsequent Subscribe requests from the SU. In our 
experiment, we chose 1800 s as TTL for event 
subscriptions in both architectures. 

In a three-party architecture, a SU registers with a 
SCM to receive events using a procedure analogous to 
that used by a SM to propagate a SD. As with SD 
propagation, the SCM grants event registrations for a 
TTL, which may be refreshed. When a SD update occurs, 
the SM first issues a ChangeService request to all SCMs 
to which it originally propagated the SD. The SCM then 
issues a MatchFound to propagate the event to all SUs 
that have registered to receive events about the SD. 
 
3. Modeling recovery strategies 
 

Elsewhere [2], we discuss the classes of network 
failures occurring in hostile environments and describe 
failure-recovery mechanisms of lower-layer protocols in 
more detail. Here we address recovery in response to 
message loss at a more general level. Our architectural 
models incorporate three classes of failure-recovery 
strategies: (1) recovery by lower-layer protocols, (2) 
recovery by discovery protocols, and (3) recovery by 
application software. For each class, we outline the 
strategies (see Table 2) included in our models. 

 
3.1 Recovery by lower layers 
 

Our models operate over two types of channels: 
unreliable, simulating the UDP in both multicast and 
unicast forms, and reliable, simulating the TCP. UDP 
provides no guarantee of message delivery; therefore our 
simulated unreliable channels discard messages lost due to 
transmission errors.  Neither sender nor receiver learns the 
fate of lost messages. 

Table 2. Summary of recovery responsibilities 
and strategies as implemented within our 
models for two- and three-party architectures. 
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Reliable unicast protocols attempt to ensure delivery of 
messages by detecting and retransmitting lost messages. 
Accordingly in the TCP simulation, our model is more 
complex, including both connection establishment and 
data transfer. During connection establishment, we allow 
up to four attempts to initiate a connection. An attempt 
fails if either the connection request or accept is lost. If no 
accept arrives, then the request is resent in 6 s for the first 
retry, but we wait 24 s for each subsequent retry. If all 
attempts fail, then we signal a REX to the requester. 
During data transfer, messages lost to transmission errors 
are scheduled for retransmission (roughly within a round-
trip time, or RTT). We increase the retransmission 
timeout by 25% with each successive retransmission. We 
place no bound on the number of retransmissions during 
data transfer. 

 
3.2 Recovery by discovery protocols 
 

Discovery protocols include built-in robustness 
measures to deal with the possibilities of UDP message 
loss and node failure. Discovery protocols specify 
periodic transmission of key messages. For example, Jini 
requires a node to engage in aggressive discovery on 
startup, and then to enter lazy discovery, where all SCMs 
periodically announce their presence. In a similar lazy 
discovery, UPnP requires SMs to periodically announce 
their presence. While not specifying aggressive discovery, 
UPnP permits SUs to issue Msearch queries at any time. 
To compensate for the different announcement intervals 
recommended for Jini and UPnP, we chose to have UPnP 
SUs issue Msearch queries every 120 s, but only after a 
SU purges a SD from its local cache. Once a SU regains 
its desired SD, the related Msearch queries cease. 
Whenever a UPnP SM announces itself or responds to an 
Msearch query, it sends n copies of each message, where 
n is a retransmission factor (two in the current study) 
recommended by the UPnP specification to compensate 
for possible UDP message loss. In both Jini and UPnP, 
each lazy announcement recurs periodically. Receiving 
nodes can cache information from the announcements; the 
cached information may be purged if communication fails. 
In this way, each node in the system eliminates residual 
information about failed or unreachable nodes. Our 
models incorporate these failure-recovery behaviors. 
 
3.3 Recovery by application software 
 

When discovery nodes communicate over a reliable 
channel, a REX may occur. Response to a REX is left to 
the application. In our models, depending on the situation, 
we implement three different strategies: (1) ignore the 
REX, (2) retry the operation for some period, and (3) 
discard knowledge. The retry strategy attempts to recover 

from transient failures. The discard strategy, which occurs 
following repeated failure of the retry strategy, relies upon 
discovery mechanisms to recover from more persistent 
failures. 

3.3.1 Ignore REX. In general, our models ignore a 
REX received when attempting to respond to a request. A 
SU can ignore a REX received in response to a poll, 
FindService or HTTP Get, because the poll recurs at an 
interval. The SCM (three-party model) or the SM (two-
party model) also ignores a REX received while 
attempting to issue a notification. This behavior, which is 
described in both the Jini and UPnP specifications, 
depends upon reliable lower-layer protocols to provide 
robustness for notifications. Notifications include 
sequence numbers that allow a receiving node to 
determine if previous notifications were missed. 

3.3.2 Retry the operation. In our models, we retry 
selected operations in the face of a REX. The UPnP 
specification separates the operation of discovering a 
resource from obtaining a description of the resource (Jini 
combines these operations). Without a description, the 
resource cannot be used. For this reason, in our two-party 
model, a SU must issue a HTTP Get to obtain a 
description. If no description arrives within 180 s, then 
our model retries the HTTP Get. If unsuccessful after 
three attempts, the SU ceases the retries, but sets a flag 
reminding itself to reissue a HTTP Get when the resource 
is next announced. Our three-party model, based on Jini, 
also contains a retry strategy, but associated with attempts 
to register or change a SD with a SCM. In these cases, the 
SM retries a ChangeService or ServiceRegistration 120 s 
after receiving a REX. Similarly, when a SU receives a 
REX (from either a SM or SCM) in response to a request 
to register for notification, the SU retries the registration 
in 120 s.  All retries occur until some time bounds, after 
which knowledge of the discovery is discarded. 

3.3.3 Discard knowledge. Both our two-party and 
three-party models include the possibility that an 
application can discard knowledge of previously 
discovered nodes. In UPnP, after failure to receive 
announcements from the SM within a TTL, a SU discards 
a SM and any related SDs. We implement this behavior in 
our two-party model. In Jini, the specification states that a 
discovering entity may discard a SCM with which it 
cannot communicate. In our three-party model, a SM or 
SU deletes a SCM if it receives only REXs when 
attempting to communicate with the SCM over a 540-s 
interval. After discarding knowledge of a SM (UPnP) or 
SCM (Jini), all operations involving the node cease until it 
is rediscovered, either through lazy discovery (Jini or 
UPnP announcements) or aggressive discovery (UPnP 
Msearch queries). 

 
 



4. Experiment design and metrics 
 

In this paper, we investigate the following question: 
How do alternative service-discovery architectures, 
topologies, and consistency-maintenance mechanisms 
perform under deadline during message loss? To address 
this question, we deploy a two-party and three-party 
architecture (recall Figures 1 and 2), each in a topology 
that includes one SM and five SUs. In the three-party 
case, we use two topologies, one with one SCM and 
another with two SCMs. To compare change propagation 
in two- and three-party architectures, we then combine the 
architectures with different consistency-maintenance 
mechanisms. Table 3 depicts the six combinations. To 
establish initial conditions, we exercise each topology 
until discovery completes, and the initial information (a 
SD) propagates to all SUs. To begin the experiment, we 
introduce a change in the SD at the SM, and we establish 
a deadline, D, before which the change must propagate to 
all SUs. We measure the number of messages exchanged 
and the latency required to propagate the new information, 
or until D, under two different consistency-maintenance 
mechanisms: polling and notification. We repeat this 
experiment while varying the message-loss rate up to 95% 
(in increments of 5%). We provide further details below. 

 
4.1. Tracking consistency 
 

To track consistency in our experiment, we employ 
property analysis [5], using a single consistency condition: 
service attributes for a SD discovered by a SU should 
have the same values as the attributes of the SD being 
maintained by the SM that manages the SD, expressed as: 

 
FOR All (SM, SU, SD) 
(SM, SD [Attributes1]) isElementOf SM managed-services & 

 (SM, SD [Attributes2]) isElementOf SU discovered-services 
  implies Attributes1 equals Attributes2 

 
The condition is incorporated directly into our models and 
checked using Rapide procedural code.  We establish an 
initial system state in which this condition holds, and then 
introduce a change in (SM, SD [Attributes1]), which 
negates the condition for all SUs. Then, we monitor 

updates to (SM, SD) tuples in the set of discovered-
services maintained by individual SU's to determine if the 
condition becomes true. Note that if a SU discards its 
(SM, SD) tuple, the tuple must be recovered before the 
condition can be satisfied. These consistency checks form 
the basis for our measurements. 
 
4.2. Generating message loss 
 

We set aside an interval, up to time Q, to complete 
initial discovery and information propagation. In our 
experiments, Q = 100 s and D = 5400 s. We define F as 
the message-lost rate, which represents the independent 
variable in our experiment, ranging from 0.00 to 0.95 in 
increments of 0.05. For each attempt to transmit a data 
message, whether on a reliable or unreliable channel, or to 
retransmit a data message on a reliable channel, or to send 
or retry a connection request or accept message on a 
reliable channel, we select a uniform random number, V, 
from the unit interval 0 to 1. If V < F, we discard the 
message, which in the case of messages sent on the 
reliable channel will stimulate a retransmission after the 
appropriate timeout period (recall 3.1).  Table 4 
summarizes most of the relevant parameters and values for 
our experiments. 

4.3. Metrics 
 
We use the data collected from experiment runs to 

compute three metrics: update responsiveness, update 
effectiveness, and update efficiency.  

Table 3. Experiment combinations. 

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration 
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Dual SCM)

Polling (with service registration on SCM)JiniThree-Party (Dual SCM)

Notification (with service registration and 
notification registration on SCM)

JiniThree-Party (Single SCM)

Polling (with service registration on SCM)JiniThree-Party (Single SCM)

Notification (with notification registration 
on SM)

UPnPTwo-Party

PollingUPnPTwo-Party

Consistency-Maintenance MechanismProtocol BasisArchitectural Variant

Table 4. Values for relevant parameters. 
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Per-item processing 
delay within node

0.14 – 0.42 s uniform
(range is multiplied by 1+F)

Transmission delay 
without message loss

Connection Establishment -
4 retransmission attempts 
with delays of 6 s, 24 s, 24 
s and 24 s; then REX if 
unsuccessful.
Data Transfer – retransmit 
until success, increasing 
time-out by 25% on each 
retry (first time-out is round-
trip time).

Reliable protocol 
response

Message discarded. No 
retransmission.

Unreliable protocol 
response

Each transmission attempt 
fails with P(F)

Loss Probability (F)

Message loss 
parameters and 
protocol response

After 540 s with only REXSM or SU purges SCM

120 sAnnounce interval

5 s (7 times)Probe intervalJini-specific 
behavior for three-
party architecture

At TTL expirationSU purges SD

120 sMsearch query interval

1800 sAnnounce intervalUPnP-specific 
behavior for two-
party architecture

120 sTime to retry after 
REX (if applicable)

1800 sRegistration TTL

180 sPolling interval
Behavior in both 
two- and three-
party architectures
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party architectures
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4.3.1 Update Responsiveness. Assuming information 
is created at a particular time and must be propagated by a 
deadline, then the difference between the deadline and the 
creation time represents available time in which to 
propagate the information. Update Responsiveness, R, 
measures the proportion of the available time remaining 
after the information is propagated. More formally, let D 
be a deadline by which we wish to propagate information 
to each SU-node n in a service-discovery topology. Let tC 
be the creation time of the information that we wish to 
propagate, where tC  < D. Let tU(n) be the time that the 
information is propagated to SU n, where n = 1 to N, and 
N is the total number of SUs in a topology. Define 
change-propagation latency (L) for SU n as: Ln = (tU(n) - 
tC)/(max(D, tU(n)) – tC). This is effectively the proportion 
of available time used to propagate the change to SU n. 
The numerator represents the time at which the SU 
achieved consistency after the update occurred. The 
denominator represents the time available to propagate the 
change. The term max(D, tU(n)) accounts for cases where 
tU(n) > D. Define R for SU n as: Rn = 1 – Ln. Rn is the 
proportion of available time remaining after propagating 
a change to SU n. 

4.3.2 Update Effectiveness. Update Effectiveness, U, 
measures the probability that a change will propagate 
successfully for a given SU, i.e., tU(n) < D. More formally, 
assuming definitions from 4.3.1 hold, let X be the number 
of runs (30 here) during which a particular topology is 
observed under identical conditions. Recalling that N is 
the total number of SUs in a topology, define the number 
of SUs observed under identical conditions as: O = X ∗ N. 
Define U, the probability that tU(n) < D, as: U = 1 – P(F), 
where P(F) = (ΣiΣj (one if Ri,j equals 0 and zero 
otherwise))/O and where i = 1...X and j = 1...N. 

4.3.3 Update Efficiency. Given a specific service-
discovery topology, examination of the available 
architectures (two-party and three-party) and consistency-
maintenance mechanisms (polling and notification) 
reveals a minimum number of messages, M, that must be 
sent to propagate a change to all SUs. In our topologies, 
M (M = 7) occurs when using notification to propagate 
information in a three-party architecture with one SCM. 
Update Efficiency, E, can be defined as the ratio of M to 
the actual number of messages observed. More formally, 
let S be the number of messages sent while attempting to 
propagate a change from a SM to SUs in a given run. 
Define average E as: Eavg = (Σk(M/Sk))/X, where k = 1..X. 
 
5. Results and discussion 
 

In this section, after showing results from our 
experiments, we consider the relative performance of our 
models and propose reasons for these differences. 
 

5.1. Results 
 

In a series of six graphs, which have identical abscissas 
(message-loss rate, increasing from 0% to 95% in 
increments of 5%) and ordinates (an appropriate metric 
ranging between 0 and 1), we plot selected measurements 
generated from our models. Each graph compares four of 
the configurations in Table 3 against one of the metrics: 
update responsiveness (average), effectiveness, or 
efficiency (average). Figure 3(a) compares effectiveness 
from our two-party model against that from our single-
SCM, three-party model, for both polling and notification. 
Figure 3(b) provides a similar comparison, but substitutes 
the results from our dual-SCM, three-party model in place 
of results from our one-SCM, three-party model. Figures 
3(c) and 3(d) compare update responsiveness using the 
same combinations. Figures 3(e) and 3(f) use the same 
combinations, but compare update efficiency. The graphs 
reporting measures of effectiveness and responsiveness 
depict a system undergoing a phase transition from peak 
performance (where changes propagate quickly) to non-
performance (where changes fail to propagate). Regarding 
efficiency, the graphs show a system that begins at its best 
efficiency (without interfering message losses) and then 
asymptotically approaches zero efficiency as the message-
loss rate increases toward 100%.  Because the graphs can 
be difficult to interpret, we compute summary statistics 
(see Table 5) for each of our six combinations. Each 
summary statistic reflects the mean of a particular metric, 
when averaged across all message-loss rates, for a 
specified configuration. 
 
5.2. Relative performance 

 
Below, we discuss the results for each of our three 

metrics. The reader should note that engineering trade-offs 
exist among: effectiveness, responsiveness, and efficiency.     

5.2.1 Effectiveness. Figs. 3(a) and 3(b) show that all 
combinations of architecture, topology, and consistency 
maintenance strategy exhibit update effectiveness of 0.85 
or better up to a message-loss rate of 85%, after which 
they decline sharply. This similarity in effectiveness 
among the combinations can be attributed to commonality 
in the recovery behaviors of the discovery protocols, as 
implemented in our models. We require each SU (and the 
SM in the three-party case) to discard discovered 
information after a break in communications (recall Table 
2) and then to initiate rediscovery. In the two-party model, 
periodic (120 s) Msearch queries by each SU (aggressive-
discovery procedures) lead to rediscovery. Similarly, in 
the three-party case, periodic (120 s) announcements by 
each SCM (lazy-discovery procedures) lead to 
rediscovery. 
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Figure 3. Graphs comparing combinations of architecture, topology, and consistency-maintenance 
mechanism. 



After rediscovering a discarded node, the SU or SM re-
establishes lost registrations, as appropriate for the 
consistency-maintenance strategy: notification registration 
for SUs and service registrations for the SM (three-party 
cases). In the process of restoring this distributed state 
information, each SU may obtain and cache a consistent 
copy of the SD maintained by the SM. As message-loss 
rate increases beyond 50%, this rediscovery machinery 
tends to dominate the effectiveness results.  

Despite rough similarity, certain combinations do show 
slightly better effectiveness than others (see Figs. 3(a) and 
3(b) and the first column of Table 5). We attribute these 
differences to the consistency-maintenance strategy 
(polling or notification), and to differences in the recovery 
actions taken by the application software while 
implementing a particular strategy. Architecture and 
topology play a secondary role. In general, polling should 
lead to better effectiveness than notification, and our 
results support this in all architecture-topology 
combinations. Polling has built-in robustness from issuing 
periodic requests. On the contrary, notifications are issued 
only once with no further action by the sender in response 
to a REX (recall Table 2). Therefore, in notification, 
effectiveness suffers from situations where the notice is 
lost but where the notification registration and the node 
(SM or SCM) discovery are not lost. In these situations, 
there is no opportunity for recovery mechanisms to regain 
a lost node (SM or SCM) and to register for notification. 
Without such recovery, the SU might never obtain a copy 
of a changed SD. However, in three-party notification 
with dual SCMs, the effects of architecture and topology 
also come into play. Here, a replicated SCM provides an 
additional path for the SM to propagate the update, thus 
increasing the effectiveness of notification almost to the 
level of polling. 

Beyond a rough similarity with distinguishable 
differences, the curves for effectiveness in two-party 
notification and in three-party single-SCM notification 

also include some irregularities, where effectiveness first 
drops and then improves as the message-loss rate 
increases. We used Rapide analysis tools to investigate the 
reasons underlying these dips. For both cases, we found 
that as the failure rate increases beyond 40%, the rate of 
recovery of the lost SM and lost registrations also 
increases. Recall that notification has no built-in 
robustness, relying instead on recovery mechanisms in 
TCP. Thus, to regain consistency when TCP recovery 
fails, notification must rely on recovery mechanisms in the 
discovery protocols, which provide opportunities to 
propagate previously lost updates. The higher the 
recovery rates, the greater the number of opportunities to 
regain consistency. As the message-loss rate increases, the 
recovery rate increases, and the effectiveness improves, 
up to a limit. Once the message-loss rate reaches 80%, the 
ability of the discovery protocols to effect recovery 
becomes impaired, leading to an inevitable decline in 
effectiveness. We also note that between 40% and 80% 
message-loss rate one of the notification combinations 
(three-party single-SCM) provides better effectiveness 
than the other (two-party). We suspect this occurs because 
the recovery actions of the SM (regaining the SCM 
discovery and registering the SD) provide additional 
opportunities (not available in the two-party case) to 
propagate the updated SD. Also recall that in Jini (the 
basis for behavior in our three-party models) notification 
includes the SD, while in the two-party case, based on 
UPnP, the SU must invoke separate operations to retrieve 
a copy of the SD. This provides additional opportunities 
for message loss to interfere with the restoration of 
consistency in the two-party case. These somewhat 
surprising dips in the effectiveness curves for notification 
also appear under conditions of node interface failures, 
discussed in a companion paper [2]. 

5.2.2 Responsiveness. Results in Figs. 3(c) and 3(d) 
and the second column of Table 5, show that three 
combinations of architecture and behavior (two-party 
polling, three-party polling with dual SCMs, and three-
party notification with dual SCMs) exhibit similar 
responsiveness. Below 70% message-loss rate, three-party 
polling with a single SCM also exhibits similar 
responsiveness, but then declines more steeply than the 
others. For each architecture-topology combination, Table 
5 shows that polling leads to better overall responsiveness 
than notification. However, Figs. 3(c) and 3(d) show that 
notification is more responsive at lower message-loss 
rates, where the periodicity of polling incurs a greater lag 
time. As message-loss rate increases, polling becomes 
more responsive than notification, which must rely on 
recovery mechanisms in the discovery protocols to 
recover from failure to transfer notifications (recall 5.2.1), 
whereas the built-in robustness of polling overcomes 
failures in lower protocol layers. In the three-party case 
with dual SCMs, notification achieves a similar 

 

0.233 0.887 0.931 Three-Party Polling   
     (Dual SCM) 

0.400 0.881 0.921 Three-Party Notification  
     (Dual SCM) 

0.391 0.846 0.902 Three-Party Polling   
     (Single SCM) 

0.552 0.807 0.870 Three-Party Notification  
     (Single SCM) 

0.525 0.901 0.956 Two-Party Polling 

0.296 0.799 0.867 Two-Party Notification 

Average Update 
Efficiency 

Average Update 
Responsiveness 

Update 
Effectiveness 

 

Mean (across all message-loss rates)  

Table 5. Summary statistics (mean across all 
message-loss rates) computed for each curve in 
the graphs shown in Figures 3(a) through 3(f). 



responsiveness to polling because notifications are sent 
over redundant paths, which mitigate the effect of 
transmission failures. 

At high message-loss rates, under both polling and 
notification, restoring consistency depends largely upon 
recovery mechanisms in the discovery protocol. For 
responsiveness, as for effectiveness, our models of these 
recovery mechanisms ensure a degree of similarity in the 
results for three cases: two-party polling, three-party 
polling, and three-party notification with dual SCMs. In 
the case of three-party polling with a single SCM, 
responsiveness declines more rapidly at higher message-
loss rates because, lacking a redundant SCM, fewer 
opportunities exist to recover a copy of the updated SD. 
Finally, for reasons already addressed (see 5.2.1), between 
40% and 90% message-loss rates, both two-party 
notification and three-party notification with a single SCM 
prove considerably less responsive than the other 
combinations. 

5.2.3 Efficiency. For a given combination of 
architecture and topology, we expect notification to be 
more efficient than polling. We also expect the two-party 
architecture to be more efficient than the three-party 
architecture, and the single-SCM topology to be more 
efficient than the dual-SCM topology. In general, our 
results support these expectations. However, there are a 
few twists. First, the three-party, single-SCM architecture 
with notification proves more efficient than the two-party 
architectures because in Jini the SD arrives with the 
notification, while in UPnP the notifications indicate only 
that a change has occurred, requiring a SU to exchange a 
request-response message pair to obtain the updated SD. 
Second, each SU must periodically refresh notification 
requests deposited on the SM (two-party case) or SCM 
(three-party case). As the message-loss rate increases, 
failure to transfer refresh messages leads to REXs, which 
stimulate retry procedures: every 120 s until 540 s of 
continuous REX (three-party case) or every 120 s until a 
SM is purged (two-party case). For this reason, efficiency 
decreases for notification as the message-loss rate 
increases. 

 
6. Conclusions 
 

Emerging service-discovery protocols provide the 
foundation for software components to discover each 
other, to organize themselves into a system, and to adapt 
to changes in node connectivity. While likely suitable for 
small-scale commercial applications, questions remain 
regarding the performance of such protocols at large scale, 
and during periods of high volatility and duress, such as 
might exist in military and emergency-response 
applications.  In this paper, we used architectural models 
to characterize the performance of selected combinations 

of system topology and consistency-maintenance 
mechanism during severe message loss. Further, we used 
behavioral analysis to investigate the causes of observed 
performance. Our initial investigations show significant 
differences in performance can be obtained by varying 
aspects of the design (architecture, topology, consistency-
maintenance mechanism, and recovery strategies). 
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