Apogee's CAVA

(Java/C/C++ Programming Toolkit)



A comprehensive set of high performance tools that make Java(TM) practically usable for developing YYseriousYw real-time applications for a wide range of embedded systems



CAVA tools are especially suitable for:



(	rapid and cost effective development of many types of Java and Java/C/C++ applications in form of fast and compact Java Byte-Code (JBC) or binary code programs



(	migration of existing C/C++ applications to Java or Java/C/C++ applications of comparable performance and code size



(	easy upgrading of C/C++ applications with new Java classes and/or existing applets available, often free, from various sources



(	customization of Java and Java/C/C++ applications to real-time needs (deterministic garbage collection and heap management, more predictable and controllable multi-threading and exception handling)



7114198 Pagel

���Main features of CAVA Tools

(	the same development methodology that made Java popular for developing Internet-related applications for desktops and other native systems (use of JBC and JVMs, JBC verification, dynamic loading/linking, etc.)



(	C/C++ functions are represented by JBCC class files that can be executed on any JVM (a JBCC class file is a JBC class file plus

	"pseudo-native	methods" representing

C/C++ constructs not representable by JBC)

(	JBC and JBCC class files of an entire application (or its statically linkable portion), and all referenced class files obtained from libraries, can be linked into a single highly compressed JBC/JBCC composite class file

(	composite JBC/JBCC class files extensively optimized to minimize their size (unused classes, fields, and methods removed) and execution time (global and inter-class optimizations over all component classes)

(	JBC/JBCC class files can be compiled into highly optimized binary code files for direct execution on ordinary embedded processors

��Main CAVA tools

(	Java-to-JBC and C/C++-to-JBCC compilers

(	J BC/J BCC Class loader/Verifier/Static linker/Code-size optimizer (CVL)



(	JBC/JBCC-to-JBC/JBCC optimizer



(	fast and compact "embedded" JVMs (EVMs); one EVM per each supported type of embedded processors (EPs)



(	fast and compact "native" JVMs (NVMs); one NVM per each supported host plafform

(	JBC/JBCC-to-hEJBC (hardware-extended JBC) convertors; one per each supported type of "Java embedded" processors (JEPs)



(	remote and native JBC/JBCC/hEJBC debuggers (co-processors of EVMs, NVMs, and JEPs)



(	JBC/JBCC-to-ASM compilers; one per each supported type of EPs and native platforms



(	Java-to-ASM and C/C++-to-ASM compilers; one per each supported type of EPs



(	cross assemblers, linkers, and debuggers; one set per each supported type of EPs



INC

7/14/98 PagG3

���Typical use of CAVA Tools for an embedded system application iN Source Java classes and C/C++ functions

(if any) of an application compiled by Java-to-JBC and C/C++-to-JBCC compilers into JBC/JBCC class files



2.	Those JBC/JBCC class files produced in "1" that are not statically linkable are optimized by JBC/JBCC-to-JBC/JBCC optimizer

3.	Statically linkable JBC/JBCC class files loaded, verified, and linked with each other (and with JBC/JBCC class files obtained from libraries) by CVL into a single space-optimized composite JBC/JBCC class file

4.	The space-optimized composite JBC/JBCC class file further optimized for high run-time speed by JBC/JBCC-to-JBC/JBCC optimizer



5.	The optimized composite JBC/JBCC class file produced in "3" and "4" and individually optimized JBC/JBCC class files produced in "2" executed, under optional control of a JBC/JBCC/hEJBC debugger, on a given EVM or (after converted into hEJBC class files) on a given JEP

���Should the execution on EVM be too slow:



6.	Performance-critical Java methods compiled by Java-to-ASM compiler into optimized assembler code files, which are assembled into binary "Java native methods" (JNMs)



7.	JBC class files invoking JNMs modified to treat JNMs as native methods, and the application re-run on EVM (each JNM being directly executed by underlaying hardware)



Should the execution on EVM be still too slow

(and if the application is statically linkable):



8.	JBC/JBCC class file produced in "3" and "4" compiled by J BC/J BCC-to-ASM compiler into an optimized assembler code file, which is assembled into a binary code file, which is linked with binary files of target-specific native methods and Java-mandated functions (garbage collector, exception handler, etc.) into an executable binary file

9.	Executable binary file executed directly (without EVM), under an optional control of a remote debugger, on a target embedded processor running the "usual" RTOS



Ap~Am INC



A~o~m~I INC	7/14/98 Page2



INC	7/14198 Page4



A~iw~NI,o	7/14/98 Page5








