US006014666A

United States Patent
Helland et al.

(19]

6,014,666
Jan. 11, 2000

Patent Number:
Date of Patent:

(11]
[45]

[54] DECLARATIVE AND PROGRAMMATIC
ACCESS CONTROL OF COMPONENT-
BASED SERVER APPLICATIONS USING
ROLES
[75] Inventors: Patrick James Helland, Redmond;
Rodney Limprecht, Woodinville;
Mohsen Al-Ghosein, Issaquah; David
R. Reed, Scattle; William D. Devlin,
Redmond, all of Wash.

[73] Assignee: Microsoft Corporation, Redmond,
Wash.

[21] Appl. No.: 08/958,974

[22] Filed: Oct. 28, 1997

[51] Int. CL7 oo GO6F 17/30

[52] US. Cl e 707/9; 707/10; 395/701;

395/702; 395/703; 395/704; 395/707; 395/710

[58] Field of Search ... 707/103, 9, 10;

395/701, 703, 704, 702, 707, 710

[56] References Cited
U.S. PATENT DOCUMENTS

5,455,953 10/1995 Russell .cccoocevevreveicrencrenennes 7107266
5,481,715 1/1996 Hamilton et al. 395/700
5,524,238 6/1996 Miller et al. ... weeeee 707/4
5,577,252 11/1996 Nelson et al. 395/670
5,689,708 11/1997 Regnier et al. ... 395/682
5,717,439 2/1998 Levine et al. 345/353
5,778,365 7/1998 Nishiyamacccoeevvvirieennnne 707/9
5,815,665 9/1998 Teper et al. 709/229
5,822,435 10/1998 Boebert et al.coevveveerreruennene 380/49
5,832,274 11/1998 Cutler et al. 395/712
5,838,916 11/1998 Domenikos et al. . 395/200.49
5,864,683 1/1999 Boebert et al. ... weee 7097249
5,881,225 3/1999 Wotth 713/200
5,941,947 8/1999 Brown et al.cccoceeveeerennnnnee 709/225

OTHER PUBLICATIONS
Barkley, “Role Based Access Control (RBAC),” Software

Diagnostics and Conformance Testing National Institute of
Standards and Technology (Mar. 1998).

350

Gavrila and Barkley, “Formal Specification for Role Based
Access Control User/Role and Role/Role Relationship Man-
agement,” (Oct. 1998).

Barkley, “Application Engineering in Health Care,” pp. 1-7
(May 9, 1995).

Cugini and Ferraiolo, “Role Based Access Control Slide
Set—May 1995,” National Institute of Standards and Tech-
nology (1995).

Smith, Sr. et al., “A Marketing Survey of Civil Federal
Government Organizations to Determine the Need for a
Role—Based Access Control (RBAC) Security Product,”
Seta Corporation (Jul. 1996).

Ferraiolo and Barkley, “Specifying and Managing
Role—Based Access Control within a Corporation Intranet,”
(1997).

Ferraiolo et al., “Role—Based Access Control (RBAC): Fea-
tures and Motivations,” (1995).

Kuhn, “Mutual Exclusion of Roles as a Means of Imple-
menting Separation of Duty in Role—Based Access Control
Systems,” (1997).

(List continued on next page.)

Primary Examiner—Anton W. Fetting

Assistant Examiner—Jean M. Corrielus

Attorney, Agent, or Firm—XKlarquist Sparkman Campbell
Leigh & Whinston LLP

[57] ABSTRACT

A programming model for component-based server appli-
cations provides declarative and programmatic access con-
trol at development without knowledge of the security
configuration at deployment. The developer defines the
server application access control by defining logical classes
of users, called roles. The developer also can declare access
privileges of the roles at package, component and interface
levels of the server application. At development, the roles
are bound to the particular security configuration of the
server computer. The programming model also provides
application programming and integration interfaces with
which the developer can programmatically define access
control of the roles to the server application’s processing
services.

12 Claims, 19 Drawing Sheets

352

USER-ID==JOE 374 HR PACKAGE
a7 (USER-ID==HR)
i 7 |
USER-ID==JANE /
382
o
[~ 384
362 —
PAYROLL PACKAGE
(USER-ID==PAY) 366
B A N TABLE 2 TABLE 1
SER==PAY| |USER==HR
364
™ 354

370

6,014,666
Page 2

OTHER PUBLICATIONS

Barkley, “Comparing Simple Role Based Access Control
Models and Access Control Lists,” (1997).

Barkley et al., “Role Based Access Control for the World
Wide Web,” (1997).

Ferraiolo and Kuhn, “Role-Based Access Control,”
Reprinted from Proceedings of 15% National Computer
Security Conference (1992).

Barkley, “Implementing Role Based Access Control using
Object Technology,”(1995).

Tucker (editor), “The Computer Science and Engineering
Handbook™”, chapter 49, pp. 1112-1124 and chapter 91, pp.
1929-1948 (1996).

U.S. Patent Jan. 11, 2000 Sheet 1 of 19 6,014,666

FIG. 1
COMPUTER| ___ 20
PROCESSING | 20 | _ _ _____
UNIT | 1|~ OPERATING }/-/35
| SYSTEM
2 g g g 26
/ SYSTEM | | APPLICATIONS +—
MEMORY) 1
23 | 25 «”/’///l r————— - l/-_/ 37
- MODULES
RAM [&f - S | MODULES |
oo e T T 38
DATA b
ROM H— 2% A A |
//
/
/
32 <l
INTERFACE [HARD |1 27
DRIVE
u
33 | FLOPPY | | 28
INTERFACE |»f PRIVE 09
EEES |t
MONITOR |—— 47
34 CD-ROM
INTERFACE || PRVE M~ 30 40
[osk Nl 21 —1 KEYBOARD
48
VIDEO |]
ADAPTER MOUSE
1
46 74 52\ 42 49
SERIAL] i 8
PORT
INTERFACE |e| MODEM WAN REMOTE
COMPUTER
NETWORK | 53 > LAN
ADAPTER MEVIORY

STORAGE

50 7]

51

U.S. Patent Jan. 11, 2000

Sheet 2 of 19 6,014,666
140
FIG. 2 :
EXECUTION ENVIRONMENT /
APPLICATION SERVER
PROCESS RESOURCE
MANAGER DATABASE
150 TRANSACTION
PROPERTY
136 16
———#o—| CONTEXT RESOURCE
139 L DISPENSER
: 1.
»o COMPONENT J- 148
86 —— \
_
80 144
\ TRANSACTION
MANAGER
TRANSACTION
SERVER EXECUTIVE =
CATALOG =
STUB 131
|
m
[N
2 ——{0000000~—— g4
SERVER COMPUTER

132

/

92

=

CLIENT PROCESS

L 2=

CLIENT COMPUTER

CLIENT |
PROGRAM PROXY J

134

|

130

U.S. Patent Jan. 11, 2000 Sheet 3 of 19 6,014,666

FIG. 3 SERVER APPLICATION DLL FILE
INSTANCE VIRTUAL
DATA FUNCTION
STRUCTURE TABLE METHOD 0
110 —_| o
116 —|_| s
112 ™ 117 106
118 q
/‘ METHOD 1
102

107
METHOD 2

108
120

122 = CLASS FACTORY

U.S. Patent Jan. 11, 2000 Sheet 4 of 19 6,014,666

U.S. Patent Jan. 11, 2000 Sheet 5 of 19 6,014,666

Hank
3 et

U.S. Patent Jan. 11, 2000 Sheet 6 of 19 6,014,666

Fits. 6

Buvadtan.

Mureblonay

ENY .,

U.S. Patent Jan. 11, 2000 Sheet 7 of 19 6,014,666

U.S. Patent Jan. 11, 2000 Sheet 8 of 19 6,014,666

FIG. 8

U.S. Patent Jan. 11, 2000 Sheet 9 of 19 6,014,666

U.S. Patent Jan. 11,2000 Sheet 10 of 19 6,014,666

FiG. 18

U.S. Patent Jan. 11, 2000 Sheet 11 of 19 6,014,666

g
& B e

U.S. Patent Jan. 11,2000 Sheet 12 of 19 6,014,666

U.S. Patent Jan. 11,2000 Sheet 13 of 19 6,014,666

FIG, 13

208

U.S. Patent Jan. 11,2000 Sheet 14 of 19 6,014,666

FIG. 14

208 -

U.S. Patent Jan. 11,2000 Sheet 15 of 19 6,014,666

FIG. 15

P08
8

T

U.S. Patent Jan. 11, 2000

Sheet 16 of 19

6,014,666

28\0
PACKAGE FILE
286
INTERFACES COMPONENTS
[288
ROLES ~— 284 DLLs
282 —]

U.S. Patent

FI1G. 17

Jan. 11, 2000

Sheet 17 of 19

COMPONENT .DLL FILE

O COMPONENT

COM SELF REGISTER

TYPE LIBRARY

302 —]

MTS EXPLORER

SYSTEM REGISTRY

6,014,666

CLSID1

L —1» InprocServer32=FOO.DLL

LocalServer32=MTS.EXE
Ip:{pkg-id}

MTS\Components\CLSID1
DlIServer=FOO.DLL
Transaction=Required
Interfaces

1ID-1

MTS\Packages\pkg-id
CLSID

[™— 300

U.S. Patent Jan. 11,2000 Sheet 18 of 19 6,014,666
FIG. 18 4
~ 352\
USER-ID==JOE [~— 374 HR PACKAGE

:

USER-ID==JANE

:

(USER-ID==HR)
378

[— 384

PAYROLL PACKAGE
(USER-ID==PAY)

364

366

\

I <z
362 —~

5

[— 354

TABLE 2 TABLE 1
USER==PAY| |USER==HR

___-—-/

370

U.S. Patent Jan. 11,2000 Sheet 19 of 19 6,014,666

— i
(1) BASE PROCESS 1 =
BASE PROCESS | INSTANTIATES OBJECT X « n
1
Il Il
i i
SERVER A SERVER B
(USER A) (USER B)
(4) OBJECT X
(2) BASE INSTANTIATES
PROCESS 1 OBJECTY
PASSES A
POINTER TO
OBJECT X TO
PRSQEES , (3) BASE (5) OBJECT X
PROCESS 2 CALLS INTO
CALLS INTO OBJECT Y
OBJECT X
— v v =
(6) OBJECT Y =)
BASE PROCESS CALLS v o
UHH 2 GET...SID HHH
—1" |
SERVER D SERVER C

(USER D) (USER C)

6,014,666

1

DECLARATIVE AND PROGRAMMATIC
ACCESS CONTROL OF COMPONENT-
BASED SERVER APPLICATIONS USING
ROLES

FIELD OF THE INVENTION

The present invention relates to a server application-
programming model using software components, and more
particularly relates to maintaining security of a component-
based server application.

BACKGROUND OF THE INVENTION

In many information processing applications, a server
application running on a host or server computer in a
distributed network provides processing services or func-
tions for client applications running on terminal or work-
station computers of the network which are operated by a
multitude of users. Common examples of such server appli-
cations include software for processing class registrations at
a university, travel reservations, money transfers and other
services at a bank, and sales at a business. In these examples,
the processing services provided by the server application
may update databases of class schedules, hotel reservations,
account balances, order shipments, payments, or inventory
for actions initiated by the individual users at their respec-
tive stations.

In a server application that is used by a large number of
people, it is often useful to discriminate between what
different users and groups of users are able to do with the
server application. For example, in an on-line bookstore
server application that provides processing services for
entering book orders, order cancellations, and book returns,
it may serve a useful business purpose to allow any user
(e.g., sales clerk or customers) to access book order entry
processing services, but only some users to access order
cancellation processing services (e.g., a bookstore manager)
or book return processing services (e.g., returns department
staff).

Network operating systems on which server applications
are typically run provide sophisticated security features,
such as for controlling which users can logon to use a
computer system, or have permission to access particular
resources of the computer system (e.g., files, system
services, devices, etc.) In the Microsoft Window NT oper-
ating system, for example, each user is assigned a user id
which has an associated password. A system administrator
also can assign sets of users to user groups, and designate
which users and user groups are permitted access to system
objects that represent computer resources, such as files,
folders, and devices. During a logon procedure, the user is
required to enter the user id along with its associated
password to gain access to the computer system. When the
user launches a program, the Windows N'T operating system
associates the user id with the process in which the program
is run (along with the process’ threads). When a thread
executing on the user’s behalf then accesses a system
resource, the Windows NT operating system performs an
authorization check to verify that the user id associated with
the thread has permission to access the resource. (See,
Custer, Inside Windows NT 22, 55-57, 74-81 and 321-326
(Microsoft Press 1993).)

A thread is the basic entity to which the operating system
allocates processing time on the computer’s central process-
ing unit. A thread can execute any part of an application’s
code, including a part currently being executed by another
thread. All threads of a process share the virtual address

10

15

20

25

30

35

40

45

50

55

60

65

2

space, global variables, and operating-system resources of
the process. (See, e.g., Tucker Jr., Allen B. (editor), The
Computer Science and Engineering Handbook 1662-1665
(CRC Press 1997).)

The Windows NT operating system also provides a way,
known as impersonation, to authenticate access from a
remote user to resources of a server computer in a distributed
network. When a request is received from a remote com-
puter for processing on the server computer, a thread that
services the request on the server computer can assume the
user id from the thread on the remote computer that made the
request. The Windows NT operating system then performs
authorization checks on accesses by the servicing thread to
system resources of the server computer based on the user
id. (See, Siyan, Windows NT Server 4, Professional Refer-
ence 1061 (New Riders 1996).)

The use of such operating system security features to
control access to particular processing services in a server
application presents cumbersome distribution and deploy-
ment issues. The user ids and user groups are configured
administratively per each computer station and/or network,
and thus vary between computers and networks. When the
particular user ids or groups that will be configured on a
computer system are known at the time of developing a
server application, the server application can be designed to
control access to particular processing services and data
based on those user ids and groups. Alternatively, specific
user ids or groups that a server application uses as the basis
for access control can be configured on a computer system
upon deployment of the server application on the computer
system. These approaches may be satisfactory in cases
where development and deployment is done jointly, such as
by in-house or contracted developers. However, the
approaches prove more cumbersome when server applica-
tion development and deployment are carried out separately,
such as where an independent software vendor develops a
server application targeted for general distribution and even-
tual installation at diverse customer sites. On the one hand,
the server application developer does not know which user
ids and groups will be configured on the end customers’
computer systems. On the other, the server application
developer must force system administrators to configure
specific user ids or groups, which at a minimum could lead
to an administratively unwieldy number of user configura-
tions and at worst poses a security risk on the computer
systems of the developer’s customers.

SUMMARY OF THE INVENTION

The present invention provides a way to declaratively and
programmatically define access control to processing ser-
vices of a server application independently of deployment
during development of the server application using roles.
Roles are logical groups of users that can be assigned at
development time, and independent of a specific operating
system security configuration until deployment. At
development, the server application developer declaratively
defines roles and assigns access privileges of the roles to
processing services of the server application. At deployment,
the installer maps the roles to the security configuration of
the computer system on which the server application is
installed, such as to specific user ids and groups. A run-time
execution environment of the server application performs
authorization checks based on the roles and assigned access
privileges to control access to the server application’s pro-
cessing services. The developer is thus able to control access
by different groups of users to specific server application
processing services without prior knowledge of the security

6,014,666

3

configuration at deployment, or requiring a specific security
configuration at deployment.

According to a further aspect of the invention, a server
application framework provides application programming
interfaces that allow programmatic use of role-based secu-
rity information by the server application to control process-
ing services. At development time, the developer can pro-
gram code into the server application to perform
authorization checks within a processing service to control
specific processing based on roles. In particular, the frame-
work includes an application programming interfaces to
obtain information as to the role of a current user that
initiated the processing service. Within a processing service
of the server application, the developer thus has a fine
granularity of programmatic control over specific processing
in the server application based on the roles that are assigned
access privileges to the processing service.

According to another aspect of the invention, the devel-
oper declaratively assigns access privileges of roles at
package, component, and interface levels of a server appli-
cation constructed as object-oriented components. In object-
oriented programming, programs are written as a collection
of object classes which each model real world or abstract
items by combining data to represent the item’s properties
with functions to represent the item’s functionality. More
specifically, an object is an instance of a programmer-
defined type referred to as a class, which exhibits the
characteristics of data encapsulation, polymorphism and
inheritance. Data encapsulation refers to the combining of
data (also referred to as properties of an object) with
methods that operate on the data (also referred to as member
functions of an object) into a unitary software component
(ie., the object), such that the object hides its internal
composition, structure and operation and exposes its func-
tionality to client programs that utilize the object only
through one or more interfaces. An interface of the object is
a group of semantically related member functions of the
object. In other words, the client programs do not access the
object’s data directly, but must instead call functions on the
object’s interfaces to operate on the data. Polymorphism
refers to the ability to view (i.e., interact with) two similar
objects through a common interface, thereby eliminating the
need to differentiate between two objects. Inheritance refers
to the derivation of different classes of objects from a base
class, where the derived classes inherit the properties and
characteristics of the base class. In an embodiment of the
invention illustrated herein, a package is a group of related
components of the server application that are run together in
a single process on the server computer.

The run-time environment of the server application per-
forms authorization checks for access to a particular
package, component or interface of the server application
according to the access privileges assigned to roles per
package, component and interface. This allows the devel-
oper flexible declarative access control at various levels of
processing services of the server application.

Additional features and advantages of the invention will
be made apparent from the following detailed description of
an illustrated embodiment which proceeds with reference to
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a distributed computer
system that may be used to implement a method and
apparatus embodying the invention for declarative and pro-
grammatic access control of component-based server appli-
cations using roles.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 2 is a block diagram of a server application com-
ponent execution environment provided by a server execu-
tive on a server computer in the distributed computer system
of FIG. 1.

FIG. 3 is a block diagram of the structure of a server
application component in the execution environment of FIG.
2.

FIG. 4 is a view of a graphical user interface of an
administration utility called the Transaction Server Explorer,
for grouping server application components into packages
and declaring roles.

FIGS. 5 and 6 are views of a feature of the Transaction
Server Explorer’s graphical user interface for grouping
server application components into packages.

FIGS. 7 and 8 are view of a feature of the Transaction
Server Explorer’s graphical user interface for defining roles
and assigning package level access privileges of the roles.

FIG. 9 is a view of a feature of the Transaction Server
Explorer’s graphical user interface for assigning component
level access privileges of the roles.

FIG. 10 is a view of a feature of the Transaction Server
Explorer’s graphical user interface for assigning interface
level access privileges of the roles. FIG. 11 is a view of a
feature of the Transaction Server Explorer’s graphical user
interface for establishing a process identity at development
under which a package is run in the execution environment
of FIG. 2.

FIG. 12 is a view of a feature of the Transaction Server
Explorer’s graphical user interface for packaging server
application components with role-based access privileges
defined at development.

FIG. 13 is a view of a feature of the Transaction Server
Explorer’s graphical user interface for deploying a package
having pre-defined role-based access privileges.

FIG. 14 is a view of a feature of the Transaction Server
Explorer’s graphical user interface for mapping users to
roles at deployment of a package having pre-defined role-
based access privileges.

FIG. 15 is a view of a feature of the Transaction Server
Explorer’s graphical user interface for setting an authenti-
cation level and enabling authorization checking for the
package.

FIG. 16 is a block diagram of a file structure of a package
of server application components with role-based access
privileges defined at development.

FIG. 17 is a block diagram showing registration of
attributes for running a server application component
grouped in the package of FIG. 16 in the execution envi-
ronment of FIG. 2 at installation on the server computer of
FIG. 1.

FIG. 18 is a block diagram illustrating authorization
checks based on roles.

FIG. 19 is a block diagram illustrating a sequence of calls
in an example server application to show operation of an
advanced programmatic security interface.

DETAILED DESCRIPTION OF THE
ILLUSTRATED EMBODIMENTS

The present invention is directed toward a method and
system for declarative and programmatic access control of
component-based server applications using roles. In one
embodiment illustrated herein, the invention is incorporated
into an application server execution environment or
platform, entitled “Microsoft Transaction Server,” marketed

6,014,666

5

by Microsoft Corporation of Redmond, Wash. Briefly
described, this software provides a run-time environment
and services to support component-based server applications
in a distributed network.

Exemplary Operating Environment

FIG. 1 and the following discussion are intended to
provide a brief, general description of a suitable computing
environment in which the invention may be implemented.
While the invention will be described in the general context
of computer-executable instructions of a computer program
that runs on a server computer, those skilled in the art will
recognize that the invention also may be implemented in
combination with other program modules. Generally, pro-
gram modules include routines, programs, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. Moreover, those skilled in the
art will appreciate that the invention may be practiced with
other computer system configurations, including single—or
multiprocessor computer systems, minicomputers, main-
frame computers, as well as personal computers, hand-held
computing devices, microprocessor—based or program-
mable consumer ¢lectronics, and the like. The illustrated
embodiment of the invention also is practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com-
munications network. But, some embodiments of the inven-
tion can be practiced on stand-alone computers. In a dis-
tributed computing environment, program modules may be
located in both local and remote memory storage devices.

With reference to FIG. 1, an exemplary system for imple-
menting the invention includes a conventional server com-
puter 20, including a processing unit 21, a system memory
22, and a system bus 23 that couples various system com-
ponents including the system memory to the processing unit
21. The processing unit may be any of various commercially
available processors, including Intel x86, Pentium and com-
patible microprocessors from Intel and others, including
Cyrix, AMD and Nexgen; Alpha from Digital; MIPS from
MIPS Technology, NEC, IDT, Siemens, and others; and the
PowerPC from IBM and Motorola. Dual microprocessors
and other multi-processor architectures also can be used as
the processing unit 21.

The system bus may be any of several types of bus
structure including a memory bus or memory controller, a
peripheral bus, and a local bus using any of a variety of
conventional bus architectures such as PCI, VESA,
Microchannel, ISA and EISA, to name a few. The system
memory includes read only memory (ROM) 24 and random
access memory (RAM) 25. A basic input/output system
(BIOS), containing the basic routines that help to transfer
information between elements within the server computer
20, such as during start-up, is stored in ROM 24.

The server computer 20 further includes a hard disk drive
27, a magnetic disk drive 28, e.g., to read from or write to
a removable disk 29, and an optical disk drive 30, e.g., for
reading a CD-ROM disk 31 or to read from or write to other
optical media. The hard disk drive 27, magnetic disk drive
28, and optical disk drive 30 are connected to the system bus
23 by a hard disk drive interface 32, a magnetic disk drive
interface 33, and an optical drive interface 34, respectively.
The drives and their associated computer-readable media
provide nonvolatile storage of data, data structures,
computer-executable instructions, etc. for the server com-
puter 20. Although the description of computer-readable
media above refers to a hard disk, a removable magnetic

10

15

20

25

30

35

40

45

50

55

60

65

6

disk and a CD, it should be appreciated by those skilled in
the art that other types of media which are readable by a
computer, such as magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, and the like, may
also be used in the exemplary operating environment.

Anumber of program modules may be stored in the drives
and RAM 25, including an operating system 35, one or more
application programs 36, other program modules 37, and
program data 38. The operating system 35 in the illustrated
server computer is the Microsoft Windows NT Server oper-
ating system, together with the before mentioned Microsoft
Transaction Server.

A user may enter commands and information into the
server computer 20 through a keyboard 40 and pointing
device, such as a mouse 42. Other input devices (not shown)
may include a microphone, joystick, game pad, satellite
dish, scanner, or the like. These and other input devices are
often connected to the processing unit 21 through a serial
port interface 46 that is coupled to the system bus, but may
be connected by other interfaces, such as a parallel port,
game port or a universal serial bus (USB). A monitor 47 or
other type of display device is also connected to the system
bus 23 via an interface, such as a video adapter 48. In
addition to the monitor, server computers typically include
other peripheral output devices (not shown), such as speak-
ers and printers.

The server computer 20 may operate in a networked
environment using logical connections to one or more
remote computers, such as a remote client computer 49. The
remote computer 49 may be a workstation, a server
computer, a router, a peer device or other common network
node, and typically includes many or all of the elements
described relative to the server computer 20, although only
a memory storage device 50 has been illustrated in FIG. 1.
The logical connections depicted in FIG. 1 include a local
area network (LAN) 51 and a wide area network (WAN) 52.
Such networking environments are commonplace in offices,
enterprise-wide computer networks, intranets and the Inter-
net.

When used in a LAN networking environment, the server
computer 20 is connected to the local network 51 through a
network interface or adapter 53. When used in a WAN
networking environment, the server computer 20 typically
includes a modem 54, or is connected to a communications
server on the LAN, or has other means for establishing
communications over the wide area network 52, such as the
Internet. The modem 54, which may be internal or external,
is connected to the system bus 23 via the serial port interface
46. In a networked environment, program modules depicted
relative to the server computer 20, or portions thereof, may
be stored in the remote memory storage device. It will be
appreciated that the network connections shown are exem-
plary and other means of establishing a communications link
between the computers may be used.

In accordance with the practices of persons skilled in the
art of computer programming, the present invention is
described below with reference to acts and symbolic repre-
sentations of operations that are performed by the server
computer 20, unless indicated otherwise. Such acts and
operations are sometimes referred to as being computer-
executed. It will be appreciated that the acts and symboli-
cally represented operations include the manipulation by the
processing unit 21 of electrical signals representing data bits
which causes a resulting transformation or reduction of the
electrical signal representation, and the maintenance of data
bits at memory locations in the memory system (including

6,014,666

7

the system memory 22, hard drive 27, floppy disks 29, and
CD-ROM 31) to thereby reconfigure or otherwise alter the
computer system’s operation, as well as other processing of
signals. The memory locations where data bits are main-
tained are physical locations that have particular electrical,
magnetic, or optical properties corresponding to the data
bits.

Server Application Execution Environment

With reference now to FIG. 2, a transaction server execu-
tive 80 provides run-time or system services to create a
run-time execution environment 80 on a server computer 84
for the server application components (e.g., server applica-
tion component 86). The transaction server executive also
provides services for thread and context management to the
server application components 86. Included in the services
are a set of API functions, including a GetObjectContext and
a SafeRef API functions described below.

The illustrated transaction server executive 80 is imple-
mented as a dynamic link library (“DLL”). (A DLL is a
well-known executable file format which allows dynamic or
run-time linking of executable code into an application
program’s process.) The transaction server executive 80 is
loaded directly into application server processes (e.g.,
“ASP” 90) that host server application components, and runs
transparently in the background of these processes. The
illustrated ASP 90 is a system process that hosts execution
of server application components. Each ASP 90 can host
multiple server application components that are grouped into
a collection called a “package.” Also, multiple ASPs 90 can
execute on the server computer under a multi-threaded,
multi-tasking operating system (e.g., Microsoft Windows
NT in the illustrated embodiment). Each ASP 90 provides a
separate trust boundary and fault isolation domain for the
server application components. In other words, when run in
separate ASPs, a fault by one server application component
which causes its ASP to terminate generally does not affect
the server application components in another ASP.

With reference to FIG. 4, server application components
in the illustrated embodiment are grouped as a package to be
run together in one ASP 90 using an administration utility
called “the Transaction Server Explorer.” This utility pro-
vides a graphical user interface (shown in FIGS. 4-13) for
managing attributes associated with server application
components, including grouping the components into pack-
ages and defining roles as discussed below.

In a typical installation shown in FIG. 2, the execution
environment 80 is on the server computer 84 (which may be
an example of the computer 20 described above) that is
connected in a distributed computer network comprising a
large number of client computers 92 which access the server
application components in the execution environment.
Alternatively, the execution environment 80 may reside on
a single computer and host server application components
accessed by client processes also resident on that computer.

Server Application Components

The server application components 86 that are hosted in
the execution environment 80 of the ASP 90 implement the
business logic of a server application, such as the code to
manage class registrations in a university’s registration
application or orders in an on-line sales application.
Typically, each server application comprises multiple
components, each of which contains program code for a
portion of the application’s work. For example, a banking
application may comprise a transfer component, a debit

10

15

25

35

40

45

50

55

60

65

8

account component, and a credit account component which
perform parts of the work of a money transfer operation in
the application.

With reference now to FIG. 3, the server application
component 86 (FIG. 2) in the illustrated embodiment con-
forms to the Component Object Model (“COM”) of
Microsoft Corporation’s OLE and ActiveX specifications
(i.e., is implemented as a “COM Object”), but alternatively
may be implemented according to other object standards
including the CORBA (Common Object Request Broker
Architecture) specification of the Object Management
Group. OLE’s COM specification defines binary standards
for components and their interfaces which facilitate the
integration of software components. For a detailed discus-
sion of OLE, see Kraig Brockschrnidt, /nside OLE, Second
Edition, Microsoft Press, Redmond, Wash., 1995.

In accordance with COM, the server application compo-
nent 86 is represented in the computer system 20 (FIG. 1) by
an instance data structure 102, a virtual function table 104,
and member functions 106-108. The instance data structure
102 contains a pointer 110 to the virtual function table 104
and data 112 (also referred to as data members, or properties
of the component). A pointer is a data value that holds the
address of an item in memory. The virtual function table 104
contains entries 116-118 for the member functions 106—108.
Each of the entries 116—118 contains a reference to the code
106-108 that implements the corresponding member func-
tion.

The pointer 110, the virtual function table 104, and the
member functions 106—108 implement an interface of the
server application component 86. By convention, the inter-
faces of a COM object are illustrated graphically as a plug-in
jack as shown for the server application component 100 in
FIG. 3. Also, Interfaces conventionally are given names
beginning with a capital “I.” In accordance with COM, the
server application component 86 can include multiple inter-
faces which are implemented with one or more virtual
function tables. The member function of an interface is
denoted as “IInterfaceName::FunctionName.”

The virtual function table 104 and member functions
106-108 of the server application component 86 are pro-
vided by a server application program 120 (hereafter “server
application DLL”) which is stored in the server computer 84
(FIG. 2) as a dynamic link library file (denoted with a «.dll”
file name extension). In accordance with COM, the server
application DLL 120 includes code for the virtual function
table 104 (FIG. 3) and member functions 106-108 (FIG. 3)
of the classes that it supports, and also includes a class
factory 122 that generates the instance data structure 102
(FIG. 3) for a component of the class.

Like any COM object, the sever application component
can maintain internal state (i.e., its instance data structure
102 including data members 112) across multiple interac-
tions with a client (i.e., multiple client program calls to
member functions of the component). The server application
component that has this behavior is said to be “stateful.” The
server application component can also be “stateless,” which
means the component does not hold any intermediate state
while waiting for the next call from a client.

In the execution environment 80 of FIG. 2, the server
application component 86 is executed under control of the
transaction server executive 80 in the ASP 90. The transac-
tion server executive 80 is responsible for loading the server
application DLL 300 into the ASP 90 and instantiating the
server application component 86 using the class factory 122
as described in more detail below. The transaction server

6,014,666

9

executive 80 further manages calls to the server application
component 86 from client programs (whether resident on the
same computer or over a network connection).

The illustrated execution environment 80 imposes certain
additional requirements on the server application component
86 beyond conforming with COM requirements. First, the
server application component is implemented in a DLL file
(ie., the server application DLL 120 of FIG. 3). (COM
objects otherwise alternatively can be implemented in an
executable (“.exe”) file.) Second, the component’s DLL file
120 has a standard class factory 122 (i.e., the DLL imple-
ments and exports the DIGetClassObject function, and
supports the IClassFactory interface). Third, the server
application component exports only interfaces that can be
standard marshaled, meaning the component’s interfaces are
either described by a type library or have a proxy-stub DLL.
The proxy-stub DLL provides a proxy component 130 in a
client process 132 on the client computer 92, and a stub
component 131 in the ASP 90 on the server computer 84.
The proxy component 130 and stub component 131 marshal
calls from a client program 134 across to the server com-
puter 84. The proxy-stub DLL in the illustrated system is
built using the MIDL version 3.00.44 provided with the
Microsoft Win32 SDK for Microsoft Windows NT 4.0 with
the Oicf compiler switch, and linked with the transaction
server executive 80. These additional requirements conform
to well known practices.

The client program 134 of the server application compo-
nent 86 is a program that uses the server application com-
ponent. The client program can be program code (e.g., an
application program, COM Object, etc.) that runs outside the
execution environment 80 (out of the control of the trans-
action server executive 80). Such client programs are
referred to as “base clients. Alternatively, the client program
134 can be another server application component that also
runs under control of the transaction server executive (either
in the same or a separate ASP 90). The client program 134
can reside on the server computer 84 or on a separate client
computer 92 as shown in FIG. 2 (in which case the client
computer interacts with the server application component 86
remotely through the proxy object 130).

Before the server application component 86 can execute
in the illustrated execution environment 80, the server
application component 86 is first installed on the server
computer 84. As with any COM object, the server applica-
tion component 86 is installed by storing the server appli-
cation DLL file 120 that provides the server application
component 86 in data storage accessible by the server
computer (typically the hard drive 27, shown in FIG. 1, of
the server computer), and registering COM attributes (e.g.,
class identifier, path and name of the server application DLL
file 120, etc. as described below) of the server application
component in the system registry. The system registry is a
configuration database. Preferably, the server application
component is packaged to self register its COM attributes as
shown in FIG. 17 and discussed below. In addition to the
server application component’s COM attributes, the server
application is registered in the system registry with a “trans-
action server execution” attribute indicating that the server
application component is run under control of the transac-
tion server executive in the illustrated execution environ-
ment 80. In the illustrated embodiment, this attribute has the
form shown in the following example registry entry.

10

15

20

25

30

35

40

45

50

55

60

65

10

HKEY_ CLASSES_ ROOT\CLSID\{AB077646-E902-11D0-B5BE-
00C04FB957D8}\LocalServer32 = CA\WINNT\System32\mtx.exe/
p:{DA16F24B-2E23-11D1-8116-00C04FC2F9C1}

When the server application component 86 is run in the
execution environment 80, the transaction server executive
80 maintains a component context object 138 associated
with the server application component 86, including while
the server application component 86 is deactivated. The
component context object 138 provides context for the
execution of the server application component 86 in the
execution environment 80. The component context object
138 has a lifetime that is coextensive with that of the server
application component. The transaction server executive 80
creates the component context object 138 when the server
application component 86 is initially created, and destroys
the component context object 138 after the application
server component 86 is destroyed (i.e., after the last refer-
ence to the application server component is released).

The component context object 138 contains intrinsic
properties of the server application component that are
determined at the component’s creation. These properties
include a client id, an activity id, and a transaction reference.
The client id refers to the client program 134 that initiated
creation of the server application component. The activity id
refers to an activity that includes the server application
component. An activity is a set of components executing on
behalf of a base client, within which only a single logical
thread of execution is allowed. The transaction reference
indicates a transaction property object 150 that represents a
transaction (i.e., an atomic unit of work that is either done
in its entirety or not at all) in which the server application
component participates. The component context object 138
is implemented as a COM Object that runs under control of
the transaction server executive. The component context
object 138 provides an “IObjectContext” interface described
in more detail below, that has member functions called by
the server application component 86.

In the illustrated execution environment, the transaction
server executive 80 maintains an implicit association of the
component context object 138 to the server application
component 86. In other words, the transaction server execu-
tive 80 does not pass a reference of the component context
object 138 to the client program 134 which uses the server
application component 86. Rather, the transaction server
executive 80 maintains the component’s association with the
context object, and accesses the component context object
when needed during the client program’s access to the server
application component 86. Thus, the client program 134 is
freed from explicitly referencing the component context
object 138 while creating and using the server application
component 86.

With reference again to FIG. 2, the server computer 84
also runs a resource manager 140 and a resource dispenser
144. The resource manager 140 is a system service that
manages durable data (e.g., data in a database 146). The
server application component 86 can use the resource man-
ager to maintain the durable state of the server application
(such as, the record of inventory on hand, pending orders,
and accounts receivable in an on-line sales server
application). Examples of resource managers in the illus-
trated embodiment include the Microsoft SQL Server,
durable message queues, and transactional file systems.
Preferably, the resource manager 140 supports performing
changes or updates by the server application component 86

6,014,666

11

to the server application’s durable state on a transactional
basis (i.e., in transactions conforming to the well-known
ACID properties).

The resource dispenser 144 is a service that manages
non-durable shared state (i.e., without the guarantee of
durability) on behalf of the server application components
within the ASP 90. Examples of the resource dispenser 144
in the illustrated embodiment include an ODBC resource
dispenser that maintains a pool of database connections
conforming to the Microsoft Open Database Connectivity
(“ODBC”) call level interface. The ODBC resource dis-
penser allocates database connections to the server applica-
tion component for accessing data from a database 146
(generally, through its resource manager 140). Also, the
ODBC resource dispenser reclaims database connections
when released by the server application components for later
reuse.

The illustrated execution environment 82 further includes
a transaction manager 148. The transaction manger 148 is a
system service that coordinates transactions that span mul-
tiple resource managers, including where the resource man-
agers reside on more than one server computer in a distrib-
uted network. The transaction manager 148 ensures that
updates across all resources managers involved in a trans-
action occur in conformance with the ACID properties using
the well known two-phase commit protocol, regardless of
failures (e.g., computer or network hardware or software
failures, or errors caused by a misbehaved resource manager
or application), race conditions (e.g., a transaction that starts
to commit while one resource manager initiates an abort), or
availability (a resource manager prepares a transaction but
never returns). The illustrated transaction manager 148 is the
Microsoft Distributed Transaction Coordinator (MSDTC)
released as part of Microsoft SQL Server 6.5.

Transaction Processing With Server Application
Components

The illustrated execution environment 80 also provides
support for transaction processing conforming to the ACID
properties and using the well known two phase commit
protocol. In the illustrated execution environment 80, one or
more server application components that participate in a
transaction (i.e., an atomic unit of work that is either done
in its entirety or not at all) will each have a transaction
property object 150 associated with their component context
object 136 to represent the transaction. The transaction
server executive 80 creates the transaction property object
150 when the transaction is initiated, and associates the
transaction property object with the component context
object of each server application component in the transac-
tion.

While the server application component 86 is associated
with the transaction property object 150, the transaction
server executive automatically associates the transaction
property object 150 with any other server application object
that is created by the server application component 86 or
resource that is obtained by the server application compo-
nent 86. For example, a money transfer operation in an
on-line banking server application can be implemented in a
“transfer” server application component that creates two
“account” server application components to debit and credit
the transferred amount to the affected accounts. Thus, when
the transfer component creates the account components, the
transaction server executive automatically associates the
account components with the transfer component’s transac-
tion property object so that work of the individual account

5

10

15

20

25

30

35

40

45

50

55

60

65

12

component in the money transfer is performed as a single
atomic action. Also, any resources obtained by the server
application component 86 from the resource manager 140 or
resource dispenser 144 are associated with the component’s
transaction property object 150 so that services performed
by the resource manager or dispenser on the component’s
behalf also are encompassed within the transaction. For
example, when the server application component 86 allo-
cates a database connection using the ODBC Resource
Dispenser while associated in a transaction, the connection
is automatically enlisted on the transaction. All database
updates using the connection become part of the transaction,
and are either atomically committed or aborted.

The server application component 86 can affect the out-
come of a transaction using “SetComplete” and “SetAbort”
member functions of its component context object’s 10b-
jectContext interface. When the server application compo-
nent 86 has done its portion of the work in a transaction, the
component calls either the SetComplete or SetAbort mem-
ber functions. By calling the SetComplete member function,
the server application component 86 indicates its work in the
transaction is done satisfactorily. On the other hand, the
server application component 86 calls the SetAbort member
function to indicate that its processing in the transaction is
done, but the work could not be completed successfully and
must be aborted. For example, a debit account component in
a server application which updates an account from which
money is transferred in a money transfer transaction may
call SetComplete when the update leaves a positive balance
in the account, but calls SetAbort when the update would
leave a negative account balance.

The transaction server executive 80 causes the transaction
to complete (i.e., the transaction commits or aborts) when
the server application component for which the transaction
was initiated (termed the “root” of the transaction) indicates
work in the transaction is complete (i.e., with the SetCom-
plete or SetAbort function call). The transaction commits
unless any of the components and resources enlisted in the
transaction indicates the transaction is not to be committed,
such as by calling the SetAbort function. Otherwise, the
transaction is aborted.

Overview Of COM Object Instantiation In OLE

As with other COM objects, the client program 134 (FIG.
2) must first request creation of an instance of the server
application component 86 (FIG. 2) and obtain a reference to
the server application component before the client program
can access the functionality implemented by the server
application component (i.e., before the client program can
call member functions supported on an interface of the
server application component).

In Microsoft’s OLE, a client program instantiates a COM
object using services provided by OLE and a set of standard
component interfaces defined by COM based on class and
interface identifiers assigned to the component’s class and
interfaces. More specifically, the services are available to
client programs as application programming interface (API)
functions provided in the COM library, which is part of a
component of the Microsoft Windows operating system in a
file named “OLE32.DLL.” Also in OLE, classes of COM
objects are uniquely associated with class identifiers
(“CLSIDs”), and registered by their CLSID in a system
configuration database referred to as the “registry.” The
registry entry for a COM object class associates the CLSID
of the class with information identifying an executable file
that provides the class (e.g., a DLL file having a class factory

6,014,666

13

to produce an instance of the class). Class identifiers are
128-bit globally unique identifiers (“GUID”) that the pro-
grammer creates with an OLE service named “CoCreateG-
UID” (or any of several other APIs and utilities that are used
to create universally unique identifiers) and assigns to the
respective classes. The interfaces of a component addition-
ally are associated with interface identifiers (“IIDs”).

In particular, the COM library provides an API function,
“CoCreatelnstance,” that the client program can call to
request creation of a component using its assigned CLSID
and an IID of a desired interface. In response, the CoCre-
atelnstance API looks up the registry entry of the requested
CLSID in the registry to identify the executable file for the
class. The CoCreatelnstance API function then loads the
class’ executable file, and uses the class factory in the
executable file to create an instance of the COM object.
Finally, the CoCreatelnstance API function returns a pointer
of the requested interface to the client program. The CoCre-
atelnstance API function can load the executable file either
in the client program’s process, or into a server process
which can be either local or remote (i.c., on the same
computer or a remote computer in a distributed computer
network) depending on the attributes registered for the COM
object in the system registry.

Once the client program has obtained this first interface
pointer of the COM object, the client can obtain pointers of
other desired interfaces of the component using the interface
identifier associated with the desired interface. COM defines
several standard interfaces generally supported by COM
objects including the IUnknown interface. This interface
includes a member function named “Querylnterface.” The
Querylnterface function can be called with an interface
identifier as an argument, and returns a pointer to the
interface associated with that interface identifier. The IUn-
known interface of each COM object also includes member
functions, AddRef and Release, for maintaining a count of
client programs holding a reference (such as, an interface
pointer) to the COM object. By convention, the IUnknown
interface’s member functions are included as part of each
interface on a COM object. Thus, any interface pointer that
the client obtains to an interface of the COM object can be
used to call the Querylnterface function.

Creating The Server Application Component

With reference still to FIG. 2, the client program 134 can
create the server application component 86 in the illustrated
execution environment 80 in any of several ways. First, the
client program 134 can create the server application com-
ponent 86 using the CoCreatelnstance API function or an
equivalent method based on the CoGetClassObject API
function and IClassFactory::Createlnstance function (which
are a conventional COM API function and standard COM
interface). The CoGetClassObject API function on the
server computer 84 returns a reference to a class factory
provided in the transaction server executive 80 when the
system registry entry for the requested class includes the
transaction server execution attribute described above. This
allows the transaction server executive to participate in a
subsequent call to the IClassFactory::Createlnstance func-
tion (such as by the CoCreatelnstance API function) since
the call is then made to the class factory in the transaction
server executive. In response to this call, the implementation
of the IClassFactory::Createlnstance function in the trans-
action server executive’s class factory creates the compo-
nent context object 138 of the server application component
86. The transaction server executive 80 later calls the
IClassFactory::Createlnstance function of the class factory

10

15

20

25

30

35

40

45

50

55

60

65

14

122 in the server application DLL file 120 to create the
server application component 86.

When created with this first approach, the properties in the
component context object 136 associated with the new
server application component 86 are not inherited from the
client program that requested its creation. More particularly,
the transaction server executive 80 initiates a new activity
(described below) and sets the activity id in the new server
application component’s context to indicate the new activity.
The transaction server executive 80 sets the client id in the
new component’s context to indicate the client program 134
that requested the component’s creation. The transaction
server executive 80 also initiates a transaction for the new
component is one is required. Because of this limitation, the
first approach typically is used only for base clients to create
a server application component.

Second, the server application component 86 can be
created using the component context object of another
component. The component context object provides an
I1ObjectContext::Createlnstance member function which can
be called to create other server application components that
inherit context from the component context object (i.e., the
component context objects created for the new components
have the same context properties, including client id, activity
id and transaction, as the original component context
object). For example, where a “transfer” component and two
“account” components implement a money transfer opera-
tion in an on-line banking server application, the transfer
component may create the two account components for the
money transfer operation using its component object con-
text. The account components automatically inherit proper-
ties from the transfer component’s context and are included
in the same transaction as the transfer component.

In this second approach, the server application component
accesses its component context object using a service of the
transaction server executive, called the GetObjectContext
API function (described below).

Safe References

When the server application component 86 is created
using any of the three above described approaches, the
server application component executes in the illustrated
execution environment 80 under control of the transaction
server executive 80. More specifically, the client program’s
call to the CoCreatelnstance or IObjectContext::Createln-
stance functions to initiate creating the server application
component returns a reference to the server application
component referred to as a “safe reference.” References
obtained through a call to the server application compo-
nent’s Querylnterface member function (described above)
also are returned by the transaction server executive 80 as
safe references. Thus, through use of the Querylnterface
function, the client program 134 can obtain multiple safe
references to various interfaces supported on the server
application component. Also, the client program 134 can
pass safe references to other client programs and server
application components to allow such other clients to also
use the server application component 86.

Instead of being a direct pointer to the server application
component’s instance data structure 102 (FIG. 3) as are
object references in COM, safe references refer indirectly to
the server application component through the transaction
server executive 80. Thus, calls made to the server applica-
tion component’s member functions using a safe reference
always pass through the transaction server executive 80.
This allows the transaction server executive to manage

6,014,666

15

context switches, and allows the server application compo-
nent to have a lifetime that is independent of the client
program’s reference to the component. The transaction
server executive 80 tracks usage of all safe references to the
server application component 86 through activation and
deactivation, such that all safe references consistently refer
to the current instance of the server application component
when activated. When deactivated, a call using any safe
reference to the server application component causes the
transaction server executive to activate the server applica-
tion component.

So as to ensure that all calls are made to the server
application component using a safe reference (i.e., so that
the calls pass through the transaction server executive 80),
the server application component 86 preferably is pro-
grammed to not pass to a client or other object any direct
reference to itself outside of a Querylnterface call. Instead,
the server application component can obtain a safe reference
to itself to provide to clients using a SafeRef API function
(described below) of the transaction server executive 80.

Role-Based Security

In accordance with the invention, security for the server
application component 86 in the illustrated execution envi-
ronment of FIG. 2 is declaratively and programmatically
defined at the time of server application development using
roles. A role is a symbolic name that represents a logical
class of users for a package of components. With the
abstraction of roles, the server application’s developer can
fully configure security authorization to the server applica-
tion at multiple levels, independent of the security configu-
ration on the server computer 20 (FIG. 1) on which the
server application is eventually deployed. Where the server
application is to be deployed on a server computer running
the Microsoft Windows NT Server operating system for
example (as in the illustrated embodiment), the server appli-
cation’s developer can fully configure the server applica-
tion’s security without knowledge of the specific user ids
and groups configured on the server computer.

Role Properties

Roles in the illustrated execution environment 86 (FIG. 2)
have three properties, a name, a description and a role id.
The name of a role is a text string that identifies the logical
class of users. For example, roles in an on-line banking
server application may be assigned the names, “customer,”
“junior teller,” “senior teller,” “branch manager,” “vice
president,” and “president,” to identify the corresponding
logical classes of users represented by the roles. The descrip-
tion property is a text field that describes the logical class of
users or purpose of the role to aid in administration and
management of the roles, such as where roles having iden-
tical names are used in different packages deployed on a
same server computer. The role id is a GUID unique to the
role, and thus serves to differentiate roles even where the
same name is used in different packages.

Declarative Access Control

With reference to FIGS. 4-10, the developer of the server
application for the illustrated execution environment 82
(FIG. 2) declares roles and access privileges of the roles at
development time using the Transaction Server Explorer
administration utility. The illustrated Transaction Server
Explorer is an application program that runs on a Windows
NT Server-equipped computer. The Transaction Server
Explorer provides a graphical user interface 200 having an

10

15

20

35

40

45

50

55

60

65

16

application window 202 with a title bar 203, a menu bar 204
and a button bar 206, that are conventional of Windows
applications. The application window 202 hosts two panes
208-209 for displaying and navigating the structure of the
server application. In a left pane 208, the Transaction Server
Explorer displays a hierarchical tree graph of the server
application structure. The right pane 209 displays contents
on a particular server application construct (e.g., package,
component, role, etc.) selected in the left pane 208. For
example, as shown in FIG. 4, a “components” folder 212
representing the components grouped into a package named
“Sample Bank” is selected in the left pane 208, causing the
right pane 209 to display icons 214 representing the com-
ponents.

Using the Transaction Server Explorer, the developer
groups a collection of related components of the server
application into the package. As shown in FIGS. § and 6, the
developer can add server application components that the
developer has built with a suitable programming tool, such
as Microsoft Visual Basic, Microsoft Visual C++, Java or
other programming system capable of building COM
Objects, into the package. With the components folder 212
of the desired package selected in the left pane 208 of the
Transaction Server Explorer, the developer activates the new
command 216 on the file menu 218. This launches an
interactive dialog called the “component wizard” dialog 220
which prompts the developer to input information specifying
the component to be added, and registration properties
needed to run the component in the execution environment
82 (FIG. 2). As shown in FIG. 13, the developer begins a
new package in a like manner, by activating the file:new
menu command 216 (FIG. 5) with the “packages installed”
folder 228 selected in the left pane 208, then responding to
the prompts in an interactive “package wizard” dialog 230.

With a collection of server application components
grouped into a package (such as, the “bank account” and
other components in the “sample bank™ package shown in
FIG. 4), the developer can declare roles applicable to the
package and assign access privileges to the package, its
components and the components’ interfaces for the roles. In
the Transaction Server Explorer application window 202 as
shown in FIG. 7, the developer selects the “roles” folder 234
of the desired package (e.g., the “sample bank™” package) in
the left pane 208 and activates the file:new menu command
216 (FIG. 5) to bring up a “new role” dialog 238. The
developer then designates a name for the new role in the
“new role” dialog. After entering a name and clicking “ok”
in the new role dialog, the Transaction Server Explorer
generates a GUID to use as the role id and adds the new role
to the roles folder for the package.

As shown in FIG. 8, the developer can view the properties
of a role and input text of a role’s description property in a
role property sheet 240. Per Windows NT Server operating
system conventions, the property sheet 240 is accessed by
“right-clicking” the name and icon of the desired role in the
left pane 208 (FIG. 9) or right pane 209 (FIG. 8) and
activating a “properties” menu command.

With reference again to FIG. 7, the developer assigns
access privileges of a role to the package by adding the role
to the roles folder of the package as just discussed. As
described in the Authorization Checking section below, this
allows user threads operating under the role to have access
to the package. The developer can additionally assign access
privileges of certain subsets of the roles having access
privileges to the package to particular components and
component interfaces using the Transaction Server Explorer.
This allows the developer to declaratively configure differ-

6,014,666

17

ent logical classes (i.e., roles) to have different levels of
access to particular processing services of the server appli-
cation.

In the sample bank package for example, the developer
can use declarative access control with roles to allow only
certain users (e.g., in an abstract class of “loan officers”) to
access certain processing services (e.g., relating to loans) of
the server application by granting component-level and
interface-level access privileges. The developer adds a loan
component which encapsulates loan related processing ser-
vices to the package with the Transaction Server Explorer
with the procedure discussed above and shown in FIGS. §
and 6, and adds roles for “loan officers” and “tellers” with
the procedure discussed above and shown in FIG. 7. The
developer then limits access to the loan processing services
to the loan officers role by granting access privileges to the
“loan officers” role, but omitting the roles (e.g., tellers) from
the loan component’s role membership folder that are to be
excluded from access to the loan processing services imple-
mented by the loan component.

With reference to FIG. 9, the developer assigns access
privileges on the component level in the Transaction Server
Explorer by selecting a “role membership” folder 250 under
the desired server application component of the package.
The developer then activates the file:new menu command
116 (FIG. 5) to bring up a “select roles” dialog 252. In the
select roles dialog 252, the Transaction Server Explorer
displays a list of the roles in the package. The developer
selects a role from the list to be added to the role member-
ship folder 250, which assigns the selected role to have
access privileges to the component.

As a further example, the developer also can declaratively
assign interface-level access privileges to configure selec-
tive access to certain processing services of the sample bank
package. The developer builds the loan component to pro-
vide separate interfaces to the loan processing services it
encapsulates, such as a get loan interface for reading loan
information and a set loan interface for setting up a loan. The
developer then assigns both tellers and loan officers roles to
have access privileges to the get loan interface, but only
assigns the loan officers role to have access privileges to the
set loan interface.

With reference to FIG. 10, the developer assigns access
privileges on the interface level in the Transaction Server
Explorer by selecting a “role membership” folder 260 under
the desired interface of the server application component of
the package. The developer then activates the file:new menu
command 116 (FIG. 5) to bring up a “select roles” dialog
262. In the select roles dialog 262, the Transaction Server
Explorer displays a list of the roles in the package. The
developer selects a role from the list to be added to the role
members folder 260, which assigns the selected role to have
access privileges to the interface.

With reference to FIG. 11, the developer also establishes
a package identity at development that defines the identity of
the ASP 90 in which the package is run at execution. The
ASP 90 can be run either as “interactive user” or as a
specified Windows NT user id. When run as interactive user,
the ASP 90 assumes the identity of the user currently logged
on to the server computer. Accordingly, when the package
identity is declared as interactive user, a user must be logged
on to the server computer for the package to be run. On the
other hand, when run as a specified Windows NT user id, the
Windows NT operating system runs the process as a separate
“windows station,” meaning that no dialog boxes will be
displayed at the server computer. The developer assigns the

10

15

20

25

30

35

40

45

50

55

60

65

18
package identity as part of the interactive package wizard
dialog 230 (FIG. 13), or on a “identity” tab 270 of a package
property sheet 272 (FIG. 11). The package property sheet
272 is accessed by activating a file:properties menu com-
mand.

Mapping Roles to Security Configuration at
Deployment

With reference to FIGS. 12 and 16, the package serves as
the unit of deployment of a server application in the illus-
trated execution environment 82 (FIG. 2). After defining
role-based security for the server application as discussed in
the Declarative Access Control section above, the developer
exports the package from the Transaction Server Explorer as
shown in FIG. 12 by selecting the desired package in the left
pane 208 and activating an export package command 276
from the file menu 218. This causes the Transaction Server
Explorer to produce a package file 280 (FIG. 16). The
developer distributes this package file 280 for deployment
on the computer systems on which the server application is
to be run.

In the package file 280, the Transaction Server Explorer
bundles together DLL files 282 which implement the server
application components that are grouped in the exported
package, together with data structures containing the
declared role-based security configuration of the package.
These data structures include a roles data structure 284, a
components data structure 286, and an interfaces data struc-
ture 288. The roles data structure stores the properties (i.e.,
name, description and role id) of the roles that were defined
by the developer for the package as discussed above and
shown in FIGS. 7 and 8. The components data structure 286
stores the roles’ component-level access privileges that were
declared by the developer as discussed above and shown in
FIG. 9, whereas the interfaces data structure 288 stores the
roles’ interface-level access privileges declared by the
developer as discussed above and shown in FIG. 10.

With reference now to FIG. 13, the package containing
the server application is deployed on the server computer 20
(FIG. 1), such as by a systems administrator, again using the
Transaction Server Explorer. In the Transaction Server
Explorer, the administrator selects the packages installed
folder 228 in the left pane 208 and activates the file:new
menu command 216 (FIG. 5). This causes the Transaction
Server Explorer to display an interactive “package wizard”
dialog 230 in which the administrator initiates installation of
the pre-built package.

With reference to FIG. 17, the Transaction Server
Explorer 300 installs the package by storing the server
application component’s DLL files 282 (FIG. 16) on the hard
drive 27 (FIG. 1) of the server computer 20, and also causing
the component to self register (using conventional COM
Object self registration techniques) in the Windows NT
system registry 302. In addition, the Transaction Server
Explorer 300 registers information for executing the com-
ponent in the illustrated execution environment 82 (FIG. 2),
including the transaction server execution attribute
described above. The Transaction Server Explorer also
transfers the role-base security configuration for the package
into the system registry 302, or alternatively another con-
figuration file on the server computer 20 (FIG. 1).

With reference now to FIG. 14, the administrator next
maps the developer-defined roles security configuration to
the security configuration of the server computer 20, such as
by mapping (also referred to as “binding”) each developer-
defined role to specific user ids or groups that are configured

6,014,666

19

on the server computer 20. The administrator can define new
user groups to maintain one-to-one correspondence of user
groups to the developer-defined roles. In the Transaction
Server Explorer, the administrator maps a role to particular
user ids and/or groups by selecting a “users” folder 322
under the desired role in the left pane 208 and activating the
file:new menu command 216 (FIG. 5). This causes the
Transaction Server Explorer to display an “add users and
groups to role” dialog 322, which shows a list of the user ids
and groups configured on the server computer 20. The
administrator selects user ids and/or groups from the list to
add to the role’s users folder 320, which creates a mapping
between the role and the designated user ids and/or groups.

The illustrated execution environment 82 (FIG. 2) also
requires the administrator to configure Windows NT Server
impersonation level and authentication level settings on
client and server computers 84, 92 (FIG. 2). The adminis-
trator sets the impersonation level of both client and server
computers to impersonate. If Impersonation isn’t set to
Impersonate, the role-based declarative security always
fails. The administrator can set this property with the Dis-
tributed COM Configuration Properties (dcomenfg.exe) util-
ity.

The administrator also sets the authentication level of
base client processes to be greater than or equal to the
authentication level set in the package (the authentication
level of server processes is configured at the package). The
authentication level of the package is set in the Transaction
Server Explorer (on a security tab 330 of the package’s
property sheet 272 as shown in FIG. 15) and defines the
minimum authentication level required to call into the
package. If the authentication level isn’t properly
configured, the server process can’t service the client base
process call. The authentication level can be set in one of
two ways. First, the client application calls the DCOM API
ColnitializeSecurity to set the process authentication level.
Second, if ColnitializeSecurity isn’t called by the client base
process, the default authentication level is used. The admin-
istrator can set the appropriate default authentication level
by using dcomenfg.exe. Declarative access control thus can
be enabled or disabled by appropriately setting the authen-
tication level of the package higher than the client processes.
The administrator also can set an option to disable authen-
tication checking on the security tab 330 of the package’s
property sheet 272 (FIG. 15).

If the server application has a component that makes
callbacks into the client, the administrator also must con-
figure Access Security such that the server is allowed to call
back into the client. There are three ways to set access
security. First, the client can call ColnitializeSecurity and
directly set the Access Security for the process. Second, if
the client process represents a DCOM application, the
administrator can set the corresponding Application Access
Security setting by using dcomenfg.exe. Third, the admin-
istrator can set the Default Security, Default Access Permis-
sions property by using dcomenfg.exe. This setting applies
to all DCOM calls coming into the client computer 92 (FIG.
2).

After deployment, the administrator can modify the roles
and assigned access privileges that were defined by the
developer. The roles and assigned package, component and
interface-level access privileges are modified in the Trans-
action Server Explorer in the same ways described above
that they are originally defined at development.

Authentication Checks

With reference to FIG. 18, authentication checks are
performed in the illustrated execution environment 82 of

10

15

20

25

30

35

40

45

50

55

60

65

20

FIG. 2 at run-time of the server application components
based on the development declared roles (as mapped to the
computer system’s security configuration at deployment).
These authorization checks localize security authorization to
the component and interface levels.

The illustrated execution environment 82 performs secu-
rity authorization checks on calls that cross the package
boundary (e.g., from a client process into the server
application), rather than spread throughout the server appli-
cation. Once the initial authorization check to pass the
package boundary succeeds, any calls between components
or access to other resources are made under the identity of
the ASP 90 (FIG. 2), i.e., the identity established by setting
the package identity which can be done at development as
described above. This has several benefits, including a single
point for security authorization management, and higher
availability and multiplexing of resources, such as database
connections from server application processes. However, the
security model requires the developer to carefully design
server component interaction and declaration of roles and
access privileges.

Accordingly, in an example running server application
350 shown in FIG. 18 having a human resources (“HR”)
package 352 and a payroll package 354 (which the execution
environment 82 runs in separate ASPs), calls 360-361
between server application components 356-358 in the
human resources package 352 are made without authoriza-
tion checks. Calls made by the server application compo-
nents in the packages 352, 354 that cross processes bound-
aries are made under the package identity, such as a call 362
from the server application component 357 in the HR
package 352 to a server application component 364 in the
payroll package 354 or calls 366-367 from server applica-
tion components 358, 364 to a database 370. The database
370 used by the server application therefore will be config-
ured to allow access from the security application compo-
nents in the packages without further client authorization
checks.

On the other hand, the initial calls from client processes
into the packages are subject to authorization checks. For
example, a call 372 from a client application process 374 to
an interface 378 of the server application component 356 in
the HR package 352 is subject to an authorization check
under the client process’ identity (i.e., “joe”) against role
access privileges at each of the HR package 352, the server
application component 356, and the interface 378 levels.
Likewise, a call 382 from another client application process
384 is subject to the same authorization checks under that
process’ identity (i.e., “jane”). If the user id (“joe”) of the
client application process 374 is mapped to the roles that
have access privileges at each of these levels then the call
372 succeeds. On the other hand, if the user id of the process
384 lacks the role-based access privileges at any of the
package, component or interface levels, then the call 382
fails.

In the illustrated execution environment 82 (FIG. 2), the
transaction server executive 80 performs the authorization
checks for a call that crosses a process (package) boundary.
The transaction server executive 80 is able to perform
authorization checks because all calls to components in the
ASP 90 are made using a safe reference, and therefore pass
through the transaction server executive. If security is dis-
abled on the package or the corresponding component,
declarative authorization isn’t checked. The transaction
server executive 80 performs the authorization checks for a
call that crosses the ASP/package boundary by applying the
following methodology (represented in pseudo-code

6,014,666

21

statements):

If roles are configured on the component interface Then
If caller is in the set of roles on the component interface
Return call authorization succeeds
End if
End if
If roles are configured on the component Then
If caller is in the set of roles on the component
Return call authorization succeeds
End if
End if
Return call authorization fails

With the illustrated method, the more privileged users are
configured at the component level, and less privileged users
specified at the component interface level. As an example,
the server application component 356 in the HR package
352 might define the following interfaces:

coclass HRData

IReadInformation
IWriteInformation

Asimple security configuration would be to configure two
package roles, Clerk and Manager. The Clerk role has the
right to read data, but not write data. The Manager has full
rights to the object. In this scenario, the Clerk role would be
applied to the IReadlnformation component interface, and
the Manager role would be applied to the HRData compo-
nent.

Programmatic Access Control

The server application developer also can programmati-
cally control access to processing services in the server
application based on declared roles. The illustrated execu-
tion environment 80 (FIG. 2) provides a set of component
integration interfaces with which the server application
component 86 can access security information. Program-
matic access control refers to the ability of the developer to
programmatically define security for the server application
by programming in the server application. The illustrated
execution environment provides a basic and advanced inter-
faces for programmatic access control.

Basic Programmatic Security Interfaces

In the illustrated execution environment 82 (FIG. 2), the
IObjectContext interface 139 provides two member func-
tions for basic programmatic security, the IsCallerInRole
and the IsSecurityEnabled functions. The IsCallerInRole
function determines if the identity of the server application
component’s caller (e.g., base client process or another ASP,
as when the HR package 352 calls the payroll package 354
in the example 350 of FIG. 18) is assigned to a specified role.
The caller identity for the IsCallerInRole function is that of
the process that called into the package (e.g., “joe” or “jane”
for the calls 372, 382, respectively, of FIG. 18), regardless
of whether further calls within the package have been made
(e.g., calls 360-361 in FIG. 18). The IsSecurityEnable
function verifies whether authorization checks are currently
enabled for the package.

The developer can use the IsCallerInRole function to
place further programmatic restrictions on security. For
example, in an on-line banking server application having an

10

15

20

25

30

35

40

45

50

55

60

65

22

account component that provides processing services for
deposits and withdrawals, the developer can declaratively
define access privileges to the component to allow users in
both a tellers and a managers role to access the component
so as to process deposits and withdrawals. The developer
also can programmatically have the account component
verify that a user is in the managers role when processing a
deposit of over $50,000 through use of the IsCallerInRole
function.

Advanced Programmatic Security Interfaces

The illustrated execution environment 82 (FIG. 2) further
provides an interface, ISecurityProperty, supported on the
component context object 136 that server application com-
ponents can use to obtain security-related information from
the component context object, including the identity of the
client that created the object, as well as the identity of the
current calling client. Server applications can use this infor-
mation to implement custom access control (for example,
using the Win32 security interfaces). Member functions of
the ISecurityProperty interface allow the server application
component to obtain more exact information on the caller,
and the developer to programmatically define security based
on that information. The functions use a Windows NT
security identifier (SID), which is a unique value that
identifies a user or group. Thus, with the ISecurityProperty
interface, the server application component determines an
exact identity of a user, but lacks the flexibility of
development/deployment separation provided by roles.

FIG. 19 shows the SIDs that are returned by the various
member functions of the ISecurityProperty interface after a
certain sequence of calls. Calls to the following ISecuri-
tyProperty member functions made after the illustrated call
sequence returns SIDs as follows. GetDirectCallerSID
returns the SID associated with User B. GetDirectCreator-
SID returns the SID associated with User B. GetOriginal-
CallerSID returns the SID associated with User D. GetOrigi-
nalCreatorSID returns the SID associated with User A.

Interfaces And API Functions For Role Based
Security

With reference again to FIG. 2, the IObjcctContext inter-
face 139 is an interface of the system provided component
context object 136. The IObjectContext interface 139 is used
by the server application component 86 to create additional
server application components, to participate in the deter-
mination of transaction outcomes, and for programmatic
access control. The illustrated I0bjectContext interface 139
has the following form (in the C programming language):

DECLARE__INTERFACE__ (IObjectContext, [Unknown)
{
//TUnknown functions
HRESULT Querylnterface(THIS__REFIID riid, LPVOID FAR*
ppvObj);
ULONG AddRef(THIS);
ULONG Release(THIS);
//IObjectContext functions
HRESULT Createlnstance(THIS_REFCLSID rclsid, REFIID
riid, LPVOID FAR* ppvObj);
HRESULT SetComplete(THIS);
HRESULT SetAbort(THIS);
HRESULT EnableCommit(THIS);
HRESULT DisableCommit(THIS);
BOOL IsIn Transaction(THIS);

6,014,666

23

-continued

HRESULT IsCallerInRole (BSTR bstrRole, BOOL* pfIsInRole);
BOOL IsSecurityEnabled ();

b

The server application component 86 calls the IsCaller-
InRole function to determine whether the component’s
direct caller is in a specified role (either individually or as
part of a group). The server application component specifies
the role of interest by name in the bstrRole parameter. The
pflslnRole parameter is an out parameter that returns TRUE
if the caller is in the specified role, and otherwise returns
FALSE. The IsCallerInRole function also sets the pflsinRole
parameter to TRUE if security is not enabled. Because the
IsCallerInRole function returns TRUE when the server
application component that invokes it is executing in a
client’s process, the server application component prefer-
ably calls IsSecurityEnabled before calling IsCallerInRole.
If security isn’t enabled, the IsCallerInRole function won’t
return an accurate result. The IsCallerInRole function
returns a value as shown in the following table.

TABLE 1

1ObjectContext::IsCallerInRole Return Values

Value Description

S_OK The role specified in the bstrRole
parameter is a recognized role, and the
Boolean result returned in the
pfIsInRole parameter indicates whether
or not the caller is in the role.

The role specified in the bstrRole
parameter does not exist.

One or more of the arguments passed
in is invalid.

An unexpected error occurred. This
can happen if one object passes its
IObjectContest pointer to another
object and the other object calls
IsCallerInRole using this pointer. An
IObjectContext pointer is not valid
outside the context of the object that
originally obtained it.

CONTEXT_E__

E_INVALIDARG

E__UNEXPECTED

The server application component 86 calls the IsSecuri-
tyEnabled function to determine whether or not security is
enabled. The IsSecurityEnabled function returns TRUE if
security is enabled for the server application component that
invokes the function, and FALSE if not.

The transaction server executive 80 provides the SafeRef
API function for use by the server application component to
obtain a safer reference to itself that can be passed to another
program. The SafeRef API function of the illustrated trans-
action server executive 80 has the following form (in the C
programming language):

void* SafeRef (REFIID riid, UNKNOWN* punk);

When the server application component is to pass a
self-reference to the client program 134 or another server
application component, the server application component 86
calls the SafeRef function first and passes the safe reference
returned from the function. This is to ensure that all calls to
the server application component are made through the
transaction server executive. Otherwise, if the server appli-
cation component passes a direct self reference, the refer-
ence would become invalid when the server application
component is subsequently deactivated. The server applica-
tion component specifies the interface that is to be passed to

10

15

20

25

30

35

40

45

50

55

60

65

24

another program by its interface ID with the riid parameter.
The pUnk parameter is a reference to an interface on the
current instance of the server application component. The
SafeRef API function returns a value as shown in the
following table.

TABLE 2
SafeRef Return Values
Value Description
Non-Null A safe reference to the interface
specified in the riid parameter.
NULL The server application component

requested a safe reference on an object
other than itself, or the interface
specified by the riid parameter is not
implemented by the server application
component.

The transaction server executive 80 also provides a GetO-
bjectContext API function that the server application com-
ponent 86 can use to obtain a reference to the IObjectCon-
text interface on its component context object 136, which the
server application component can then use to create another
server application component that inherits its context
(including the transaction property object). The GetObject-
Context API function of the illustrated transaction server
executive has the following form (in the C programming

language).

HRESULT GetObjectContext (IObjectContext**
pplnstanceContext);

The pplnstanceContext parameter is a storage location of
the server application component where the GetObjectCon-
text API function is to return the IObjectContext interface
pointer. The GetObjectContext API function returns a value
as shown in the following table.

TABLE 3

GetObjectContext Return Values

Value Description

S_OK A reference to the IObjectContext
interface of the server application
component’s component context object
is returned in the ppInstanceContext
parameter.

The argument passed in the
pplnstanceContext parameter is
invalid.

An unexpected error occurred.

The server application component
doesn’t have a component context
object, such as because the component
was not created under the transaction
server executive’s control.

E_INVALIDARG

E__UNEXPECTED
CONTEXT_E_NOCONTEXT

The ISecurityProperty interface also is an interface of the
system-provided component context object 136. The ISecu-
rityProperty interface is used to ascertain the security ID of
the current object’s caller or creator. The server application
component obtains an interface pointer to the ISecurityProp-
erty interface by calling QueryInterface on the component’s
component context object (e.g., with the statement, “m__
plObjectContext—QueryInterface (IID__ ISecurityProperty,
(void**)&m__ pISecurityProperty));”).

The ISecurityProperty interface provides the member
functions shown in the following table.

6,014,666

25

TABLE 3

[SecurityProperty member functions

Function Description

GetDirectCallerSID Retrieves the security ID of the external
process that called the currently executing
method.

GetDirectCallerSID Retrieves the security ID of the external
process that called the currently executing
method.

GetDirectCreatorSID Retrieves the security ID of the external

process that directly created the current
object.

Retrieves the security ID of the base process
that initiated the call sequence from which the
current method was called.

Retrieves the security ID of the base process
that initiated the activity in which the current
object is executing.

Releases the security ID returned by one of
the other ISecurityProperty methods.

GetOriginalCallerSID

GetOriginalCreatorSID

ReleaseSID

The ISecurityProperty member functions have the follow-
ing form (shown in the C programming language):

HRESULT ISecurityProperty::GetDirectCallerSID (
PSID* ppSid

HRESULT ISecurityProperty::GetDirectCreatorSID (
PSID* ppSid

)
HRESULT ISecurityProperty::GetOriginalCallerSID (
PSID* ppSid

)
HRESULT ISecurityProperty::GetOriginal CreatorSID (
PSID* ppSid

)

HRESULT ISecurityProperty::ReleaseSID (
PSID pSID

%

Having described and illustrated the principles of our
invention with reference to an illustrated embodiment, it will
be recognized that the illustrated embodiment can be modi-
fied in arrangement and detail without departing from such
principles. It should be understood that the programs,
processes, or methods described herein are not related or
limited to any particular type of computer apparatus, unless
indicated otherwise. Various types of general purpose or
specialized computer apparatus may be used with or perform
operations in accordance with the teachings described
herein. Elements of the illustrated embodiment shown in
software may be implemented in hardware and vice versa.

In view of the many possible embodiments to which the
principles of our invention may be applied, it should be
recognized that the detailed embodiments are illustrative
only and should not be taken as limiting the scope of our
invention. Rather, we claim as our invention all such
embodiments as may come within the scope and spirit of the
following claims and equivalents thereto.

We claim:

1. In a software application development system, a
method of defining user access rights to objects of a
component-based application prior to distribution and
deployment to a plurality of end-user computer systems
having a security facility requiring a user to log-on under
one of a plurality of user identities configured on the
respective computer system, and having a role-based access
control operating in response to roles and access privileges
declared for the component-based application and a con-

10

15

20

25

30

35

40

45

50

55

60

65

26

figuration associating the user identities of the respective
computer system to the declared roles to control access of a
current user to component-based application objects
depending on the user identity of the current user being
associated in a declared role having declared access privi-
leges for the object, the method comprising:

declaratively creating a roles data structure containing

information defining a plurality of roles applicable to
the component-based application;

declaratively creating a role privileges data structure

containing information defining access privileges of the
roles to the objects; and

packaging the roles data structure and the role privileges

data structure with the component-based application
into a distribution unit;

whereby on deployment of the distribution unit to a

respective one of the end-user computer systems, the
role-based access control of such respective end-user
computer system operates to control access of such
respective end-user computer system’s users to the
objects based on the roles and access privileges defined
in the distribution unit.

2. The method of claim 1 wherein declaratively creating
the role privileges data structure comprises specifying
access privileges of roles to interfaces of the objects.

3. A computer-readable storage medium having stored
thereon computer-executable program code operative to
perform the method of claim 1.

4. A computer-readable data storage media having a
distribution unit for a distributable component-based soft-
ware application stored thereon, the software application
being installable for execution on a computer system having,
a role-based access control operating to control access by a
user operating the computer system under a user identity to
objects depending on the user’s user id entity being associ-
ated in a role having access privileges for the objects, the
distribution unit of the software application comprising:

executable code to implement a set of objects of the

software application having interfaces providing a set
of operations accessible to a client program;
a roles data structure containing information defining a set
of roles applicable to the software application; and

an access privileges data structure containing information
defining access privileges of the roles to objects in the
software application;

whereby access control is declaratively defined for the

software application prior to distribution and deploy-
ment of the software application to the computer sys-
tem.

5. The computer-readable data storage media of claim 4
wherein the access privileges data structure contains infor-
mation defining access privileges of the roles to interfaces of
the objects.

6. In a computer configured for operation by users having
user identities, an object execution system software program
for controlling access by a user of the computer to objects in
a component-based software application based on a set of
abstract user classes defined for the software application at
development thereof, the component-based software appli-
cation being distributed to the computer in a deployment
unit containing a roles data structure defining the set of
abstract user classes and an access privileges data structure
defining access privileges of the abstract user classes to the
objects, the object execution system software program com-
prising:

a security configuration data store containing data asso-

ciating user identities to the abstract user classes; and

6,014,666

27

an authorization checker operating to check upon access
by a caller program operating under a user identity to
a called object in the component-based software appli-
cation whether the user identity is associated with an
abstract user class having an access privilege to call
into the called object, and to permit or deny the access
depending on a result of the check;

whereby the object execution system software program
permits access control for the component-based soft-
ware application to be declaratively defined at devel-
opment as an abstraction independent of the user iden-
tities actually configured on the computers on which
the software application is later deployed.

7. The object execution system software program of claim

6 further comprising:

a security configuration utility operating in response to
declaration of a binding of a user identity to an abstract
user class to store an association of the user identity to
the abstract user class in the security configuration data
store.

8. A method of access control within a computer based on
abstract user classes declaratively defined at development of
a software application having code to implement a set of
objects, the method comprising:

in response to declaration by a developer of a set of roles
representing abstract classes of users not as yet fixed to
any particular configuration of actual user identities on
computers to which the software application is to be
deployed, generating a roles data structure containing
data to represent the role classes;

in response to declaration by the developer of access
privileges of the role classes to the objects, generating
an access privileges data structure containing data to
represent the access privileges;

packaging the roles data structure and the access privi-
leges data structure into a deployment unit containing
the software application;

deploying the deployment unit to a computer;

in response to declaration by an administrator of the
computer of bindings from user identities configured on
the computer to the role classes, storing data in a
configuration store to represent the bindings;

upon a request of a client program code operating under
a user identity on the computer to access an object of
the software application, determining to permit or deny
the access depending upon a result of an authorization
check whether the user identity is bound to a role
having an access privilege to the object.
9. A computer-readable storage medium having stored
thereon computer-executable program code operative to
perform the method of claim 8.

10

15

20

25

30

35

40

28

10. In a computer configured for operation by users
having user identities, an object execution system software
module for controlling access to objects of a software
application distributed to the computer in a deployment unit
containing a roles data structure declaratively defining roles
representative of a set of abstract user classes and an access
privileges data structure declaratively defining access privi-
leges of the roles to the objects, the object execution system
software module comprising:

a configuration data store containing data defining bind-

ings of the user identities to the roles; and
code to implement a programmatic access control func-
tion for calling from the software application, the
programmatic access control function having a role
parameter designating a role out of the roles set, the
programmatic access control function operating in
response to the software application’s call to return a
value indicating whether a user identity under which
the software application was accessed is bound to the
parameter-designated role.
11. A method of programmatically controlling access
within a component-based software application based on a
set of abstract user classes declaratively defined at develop-
ment independent of the user identities actually configured
on the computers to which the component-based software
application is to be later deployed, the component-based
software application being executable on a computer having
an object execution system that implements a programmatic
access control function operative to return a value indicative
of whether a user identity of a calling thread is bound to a
parameter-specified abstract user class of the component-
based software application, the method comprising:
in response to declaration by a developer of a set of roles
representing abstract classes of users not as yet fixed to
any particular configuration of actual user identities on
computers to which the component-based software
application is to be deployed, generating a roles data
structure containing data to represent the roles;

within program code of an object of the component-based
software application, issuing a call to the programmatic
access control function in which a particular role is
specified by a function parameter and also conditioning
a processing operation of the object on a result of the
programmatic access control function call; and

packaging the roles data structure and the access privi-
leges data structure into a deployment unit containing
the software application.

12. A computer-readable storage medium having stored

" thereon computer-executable program code operative to

perform the method of claim 11.

#* * #* * #*

	1: Bibliography
	2: Bibliography
	3: Drawings
	4: Drawings
	5: Drawings
	6: Drawings
	7: Drawings
	8: Drawings
	9: Drawings
	10: Drawings
	11: Drawings
	12: Drawings
	13: Drawings
	14: Drawings
	15: Drawings
	16: Drawings
	17: Drawings
	18: Drawings
	19: Drawings
	20: Drawings
	21: Drawings
	22: Description
	23: Description
	24: Description
	25: Description
	26: Description
	27: Description
	28: Description
	29: Description
	30: Description
	31: Description
	32: Description
	33: Description
	34: Claims
	35: Claims

