Ms. Penelope Bonsall

August 27, 2003

August 27, 2003

Ms. Penelope Bonsall, Director

Office of Election Administration

999 E. Street NW

Washington, DC 20463

Dear Ms. Bonsall,

During the recent meeting of the Voting Systems Standard Board, certain sections of the 2002 Voting System Standards were discussed concerning their applicability as absolute requirements. Several vendors raised the questions as a result of actual review of voting system software submitted to an ITA and the issues are primarily due to the software section going from “recommended practices” to “standards”.

At the request of the VSS Board, we have identified the specific paragraphs from the 2002 Voting System Standards that were the source of the discussion. The text of the requirement is listed below along with the proposed change and a rationale for the change as applicable. We are requesting that this information be reviewed and that the outcome be communicated to election vendors and the ITAs.

Specific comments: Volume I, Section 4
Add to the opening paragraphs of the section:

"The intention of the Voting Systems Standards Source Inspection Process for Independent Test Authorities (ITAs) is to prevent deviant or malicious code from being introduced into the voting process; to safeguard from external threats being able to effect unintended changes to voting processes or data corruption to occur as a natural part of voting processes. The ITA is obligated to identify any such threats and the submitting vendor is expected to resolve these occurrences before approval. In order to review this code properly, an ITA must be able to follow the code clearly to ascertain whether any of these defects have occurred - this has been addressed as readability and maintainability recommended practices in the standards. When an ITA cannot understand the code that has been submitted for review sufficiently to determine if any dangers exist, their request for changes and improvements for readability should be enumerated using items defined in the recommended practices. The ITA reviewing the source has the latitude to request changes using these recommended practices only when they feel the code presented cannot be adequately reviewed and understood."

4.1.1 “Unmodified software is not subject to code examination; however, source code generated by a package and embedded in software modules for compilation or interpretation shall be provided in human readable form to the ITA.”

Proposed addition: “Modification of one module in a library does not make other modules in the module library subject to code examination.”

Rationale: Code that has not been changed should be considered unmodified.
4.2.3.e “Each module shall have a single entry point, and a single exit point…”

Proposed addition: “Separate return(s) shall be allowed to exit the module upon error conditions if appropriately commented”

Rationale: Allowing for more than one return in a module can enhance readability. However, the number of returns in the module should be kept to a minimum. [McConnell, 16.2]. Also, the refactoring pattern “Replace Nested Conditional with Guard Clauses (250)” recommends, “If the condition is an unusual condition, check the condition and return if the condition is true…One entry point is enforced by modern languages, and one exit point is really not a useful rule. Clarity is the key principle: if the method is clearer with one exit point, use one exit point; otherwise don’t. [Fowler “Replace Nested Conditional with Guard Clauses (250)”]

4.2.5.c
“Names shall differ by more than a single character.”

Proposed change: “Names shall differ by more than a single character when no relationship exists between names and does not impede the readability or intelligibility as required by paragraph 4.2.5.a.”

Rationale: This requirement can create greater obscurity and make the code more difficult to review, especially when related functions are used. While attempting to enhance the readability, the requirement is arbitrary and should be defined as a recommended practice and it effectively contradicts the requirement in 4.2.5.a. “…variable names shall be chosen so as to enhance the readability and intelligibility of the program. [McConnell Ch 9]

4.2.5.c “All single-character names are forbidden except for variables used as loop indexes.”

Proposed change: “All single-character names should be avoided and only used where software programming conventions dictate. Examples of such conventions include names of loop indexes and X-Y coordinates.”

Rationale: This requirement can create greater obscurity and make the code more difficult to review, especially when conflicting with well established programming practices and conventions that have been in use by the software industry since it inception. While attempting to enhance the readability, the requirement is arbitrary and should be defined as a recommended practice and it effectively contradicts the requirement in 4.2.5.a. “…variable names shall be chosen so as to enhance the readability and intelligibility of the program. [McConnell Ch 9]

4.2.6 “Coding Conventions”

Proposed addition: Insert a new paragraph “b” and move existing “b” to “c”: The new paragraph “b” reads as follows:

“b. The vendors shall provide internal documentation that defines the software coding standards used that meet the intent of this standard and the ITA shall test for compliance. The internal software coding standard shall be maintained under a revision control system that is in compliance with the CMMI, ISO Quality Standards or similar qualification and audit methods that can be demonstrated to the ITA.”

Rationale: Those vendors who adopt the CMMI, ISO Quality System or similar system can then maintain continual quality improvement as the state of the art improves by updating their internal documents and not be restricted to adhering to a fixed, aging standard. [ISO Q9001-2000]

4.2.7.a. “All modules shall contain headers…”

Proposed change: “All modules shall contain common headers containing comments that enhance the understanding and readability of the module if the function of the module is not readily apparent from the code and/or comments.”

The requirements listed in items 1 through 6 should be identified as recommended practices.

Rationale: Current state-of-the-art coding practice is to write ‘Self-Documenting Code’ [McConnell ch. 19]. Other header content should be consistently applied according to project coding conventions as required in Volume I Section 4.2.6. Mandating specific header requirements in the existing Standard creates an environment that is too rigid and does not allow for the use of evolving state-of-the-art documentation tools.

4.2.7.b “Descriptive comments shall be provided to identify objects and data types. All variables shall have comments at the point of declaration clearly explaining their use.”

Proposed change: “Objects, data types, and variables should have comments at the point of declaration clearly explaining their use when required to enhance the readability and intelligibility of the program.”

Rationale: This requirement should be identified as a recommended practice and is effectively defined by the requirement in 4.2.5.a “…variable names shall be chosen so as to enhance the readability and intelligibility of the program.” Adding an unnecessary comment to an already descriptive name detracts from the value of the comments in general. [McConnell Ch 9]

Specific comments: Volume II, Section 5

5.4.2 Introductory paragraph: “If the vendor does not identify an appropriate set of coding conventions in accordance with the provisions of Volume I section 4.2.6.a…”

Proposed change: “If the vendor does not identify an appropriate set of coding conventions in accordance with the provisions of Volume I section 4.2.6.a, or 4.2.6.b…”

Rationale: Allow for the vendors to use internal CMMI and ISO Quality System compliant coding convention documentation or similar method to define coding practices. [ISO Q9001-2000].

5.4.2.a “All parameters shall either be validated for type and range on entry into each unit or the unit comments shall explicitly identify the type and range for the reference of the programmer and tester. Validation may be performed implicitly by the compiler or explicitly by the programmer;”

Proposed change: “Design and coding practices shall prevent methods from exhibiting undesirable behavior due to erroneous input parameter values. Validation may be performed implicitly by the compiler or explicitly by the programmer when the validity of the input range cannot be guaranteed;”

Rationale: McConnell cautions against too much error checking, because too much error checking adds complexity and introduces additional opportunities for defects. To reduce the need for error checking, he advises to create "safe" areas in the code. He then says that data crossing the boundary of a safe area is to be checked for validity. He also advises to check the values of all data input from external sources (i.e. from a file or a user). Following are direct quotes from his book:
"Check the values of all data input from external sources. [from a file or a user]"
"Comment assumptions about acceptable input ranges in the code."
"...designate certain interfaces as boundaries to "safe" areas. Check data crossing the boundaries of a safe area for validity... Anything that's in the [safe area] is assumed to be safe."
"If you check data passed as parameters in every conceivable way in every conceivable place, your program will be fat and slow. What's worse, the additional code needed for defensive programming adds complexity to the software. ... Think about where you need to be defensive, and set your defensive programming priorities accordingly." [McConnell 5.6]
Section 5.4.2.i “Excluding code generated by commercial code generators, is written in small and easily identifiable modules, with no more than 50% of all modules exceeding 60 lines in length, no more than 5% of all modules exceeding 120 lines in length, and no modules exceeding 240 lines in length. "Lines" in this context, are defined as executable statements or flow control statements with suitable formatting and comments. The reviewer should consider the use of formatting, such as blocking into readable units, which supports the intent of this requirement where the module itself exceeds the limits. The vendor shall justify any module lengths exceeding this standard.”
Proposed change: “Excluding code generated by commercial code generators is written in small and easily identifiable modules that are constructed to be grouped according to functionality. Desired module sizes are such that no more than 50% of all modules exceeding 60 lines of code (excluding comments) in length, no more than 5% of all modules exceeding 120 lines in length, and no modules exceeding 240 lines in length. "Lines" in this context, are defined as executable statements or flow control statements with suitable formatting. The reviewer should consider the functional organization of the module and the use of formatting, such as blocking into readable units, which supports the intent of this requirement where the module itself, excluding comments, exceeds the limits. The vendor shall justify any module lengths exceeding this objective.”

Rationale: The intent of this section is to improve readability. Breaking up a module that happens to exceed 240 lines but is functionally organized and is a logical unit object decreases readability and has potential of reducing the robustness of the code. Sizes should be recommended practices as they were in the 1990 standards with the vendor having the ability to justify exceptions and the ITA having the ability to assess validity.

5.4.2.k “Has no line of code exceeding 80 columns in width…”

Proposed change: Strike this requirement.

Rationale: Modern display and print technology has progressed beyond the 80-character display. This restriction was a result of the fixed-point Teletype printer that is no longer used and makes the 80-character limit arbitrary. This requirement is effectively defined by the collective requirements of Volume 1 Section 4.2.3 “Software Modularity and Programming”.

5.4.2.q “References variables by fewer than five levels of indirection…”

Proposed change: “References variables should generally be limited to fewer than five levels of indirection …”

Rationale: The requirement that limits references variables to five levels is arbitrary and should be identified as a recommended practice. This requirement is effectively defined by the collective requirements of Volume 1 Section 4.2.3 “Software Modularity and Programming”.

5.4.2.r “Has functions with fewer than six levels of indented scope, …”

Proposed change: “Has functions that are generally limited to six levels of indented scope, …”

Rationale: The requirement to limit functions to six levels of indented scope is arbitrary and should be identified as a recommended practice. This requirement is effectively defined by the collective requirements of Volume 1 Section 4.2.3 “Software Modularity and Programming”.

5.4.2.s “Initializes every variable upon declaration where permitted.”

Proposed change: “Initializes every variable upon declaration where permitted, and where subsequent assignment is not guaranteed by program flow.”

Rationale: Initializing a variable that is guaranteed to have an assigned value by program flow causes a warning to be generated by modern compilers and source code analysis tools. The standard should not mandate coding practices that cause compiler warnings to be generated. [Borland C++ Builder V. 6] [PC-Lint V. 7.5]

5.4.2.t “Specifies explicit comparisons in all if() and while() conditions.”

Proposed change: “Specifies explicit comparisons in all if() and while() conditions where the data type of the conditional expression is not Boolean or its equivalent. If the data type is not of type Boolean, then an explicit comparison shall be used. For example, a pointer shall be compared to NULL or 0 “if (ptr = = NULL) … or if (ptr = = 0) …”. Another example is when using integer data types (int), the same explicit comparison shall apply.”

Rationale: Explicitly providing a comparison operator to a Boolean data type causes a warning to be generated by modern compilers and source code analysis tools. The standard should not mandate coding practices that cause compiler warnings to be generated. [Borland C++ Builder V. 6] [PC-Lint V. 7.5]

5.4.2.w “Has all assert() statements coded such that they are absent from a production compilation.”

Proposed change: This requirement should be identified as a recommended practice or it should be stricken.

Rationale: If a module requires an assert() statement to guarantee processing integrity, then removal of that assert() statement from a production compilation subjects the program flow to arbitrary and undefined behavior upon the rare conditions that cause the assert condition. [Maguire ch. 2]

References

Borland C++ Builder V. 6, Borland Software Corporation, 2002

Fowler, Martin. “Refactoring (Improving the Design of Existing Code)” Addison Wesley 2000

ISO Q9001-2000, ISO Q9001-2000, 2003

Maguire, Steve. “Writing Solid Code” Microsoft Press, 1993

McConnell, Steve. “Code Complete” Microsoft Press, 1993

PC-Lint V. 7.5, Gimpel Software, 2002

We respectfully submit these comments for your review and consideration. We understand that the list of suggestions is comprehensive and may represent considerable effort to address. The items that have the greatest impact on the present software under review with the ITA are: 4.2.5.c, 4.2.7.a, 4.2.7.b, 5.4.2.a, 5.4.2.i., and we request that these items be given priority should you be unable to address all items in a reasonable amount of time. Please let us know if you have any questions or would like to discuss this further.

Herb Deutsch

Election Systems and Software

929 S. Alpine Road
Rockford, IL 61108

hdeutsch@essvote.com

Neil McClure

Hart Intercivic, Inc.

1650 Coal Creek Drive, Suite E

Lafayette, CO 80026

nmcclure@co.hartic.com

Page 6 of 6

