Validating Voting System Software using Digital Signatures

DWF with input from NH, 2006-10-13

1 Preface

This write-up was prepared in response to a request from Steve Berger at a meeting with NIST staff the afternoon of 2006-10-05.

2 Hashes versus digital signatures

Although it uses the term "digital signature" throughout, it was apparently the intent of [1] to specify a hash-based process to validate voting system software.

The only thing that is "secure" about a secure hash is that it is very difficult to construct a modified version of a file that would have the same hash. A hash, in and of itself, is anonymous; anyone can generate a valid hash for any file. In order to use hashes to validate software, it is essential to know that the hashes themselves are traceable to the original software. The NSRL provides this traceability for software delivered to it.

Digital signatures build upon secure hash technology to not only establish that a given file is unmodified, but also to establish that the same file was signed by one or more specific signers. In order to use digital signatures to validate software, it is essential to know that the public keys are traceable to the signers. However, a public key can itself be digitally signed by previously trusted keys, which makes a chain of custody less important for any key other than the first one.1

3 Software used to verify hashes and digital signatures

Either hash or digital signature technology can be used to validate voting system software. However, both are useless if the software used to verify hashes or signatures is under the control of the adversary whom we suspect of modifying the software. [1] makes the error of specifying that the verification software comes from the voting system vendor, thereby defeating any protection against uncertified changes being deployed by the vendor.

Secure hash and digital signature algorithms and protocols are published in open standards [2]

 HYPERLINK \l "DSS"
[3]

 HYPERLINK \l "OpenPGP"
[4]

 HYPERLINK \l "X.509"
[5]

 HYPERLINK \l "PKCS7"
[6]. Multiple COTS products that implement them are available [7]

 HYPERLINK \l "GPG"
[8]. Adequate security is normally obtained through the end user making an independent selection of which verification software to use and obtaining it from a canonical source.

Implementations of hash and digital signature algorithms need to be reviewed and tested to ensure that the algorithms are implemented properly. The cryptographic module validation program (CMVP) was created to help Federal agencies identify products that have had their implementations of cryptographic algorithms validated [9]

 HYPERLINK \l "FIPS140-2"
[10]. VVSG'05 [11] and the VVSG'07 working draft require that voting systems use CMVP validated cryptographic modules when generating and validating digital signatures as well as hashes.

4 Suggested process

4.1 Key generation and distribution

a. The EAC shall generate a public/private key pair for itself and have its public key digitally signed by other, pre-existing authorities ("certificate authorities") who vouch for its authenticity.

b. The EAC shall distribute its public key in a non-proprietary, de facto or de jure standard data format, such as OpenPGP [4], X.509 [5], or Public Key Cryptography Standard #7 [6], from its public web site.

c. The EAC's web site shall provide server-side SSL/TLS authentication [12].2
d. The EAC shall provide links on its web site to the sources from which the public keys of the certificate authorities who signed the EAC's key can be obtained.

e. At the time that a test lab is accredited by the EAC, it shall generate a public/private key pair for itself and supply the public key to the EAC.

f. At the time that a vendor is registered by the EAC, it shall generate a public/private key pair for itself and supply the public key to the EAC.

g. State-level authorities ("jurisdictions") should generate public/private key pairs for themselves and supply the public keys to the EAC.

h. Having established traceability to the test labs, vendors, and jurisdictions, the EAC shall sign their public keys with its own digital signature and post them in a non-proprietary, de facto or de jure standard data format, such as OpenPGP [4], X.509 [5], or Public Key Cryptography Standard #7 [6], on the EAC's public web site.

i. All private keys shall remain private. No party shall share its private key with any other party, neither deliberately nor through negligence. Should a private key become compromised, the EAC and the affected party shall follow the applicable revocation procedure,3 then the affected party shall generate a new key pair and distribute the new public key in accordance with the guidelines above.

j. Whenever a key expires or reaches the end of its useful life, the affected party shall generate a new key pair and distribute the new public key in accordance with the guidelines above.

4.2 Certified systems

a. As part of the system submitted for certification testing, the vendor shall provide the test lab with the source code necessary to produce a self-booting validation disk similar to the idea described in [1] Section 5.8.2. However, this shall be arranged so that the digital signature verification software can be integrated and the applicable public keys can be imported by the test lab or end user.

b. The test lab shall inspect the vendor-provided source code for the validation disk to establish confidence that it does legitimately read back the software resident on the voting device.

c. The test lab shall compile that source code, integrate it with a COTS product for verifying digital signatures that is not obtained from the vendor, and test the resulting validation disk as part of the voting system.

d. The integration of the COTS product for verifying digital signatures and the importation of applicable public keys shall be part of the process for the "trusted build" [1].

e. The certified build of a voting system's software and the image of the validation disk discussed above shall be digitally signed by the vendor, the test lab, and the EAC.

f. A final test shall be conducted to ensure that the validation disk works as intended in the final configuration with the real digital signatures.4
4.3 Use by jurisdictions

a. The jurisdiction shall obtain a COTS product for verifying digital signatures.

b. The jurisdiction shall obtain the public keys of the certificate authorities via the distribution methods approved by those authorities.

c. The jurisdiction shall import the public keys of the certificate authorities.

d. The jurisdiction shall obtain the EAC's public key from the EAC's web site via a server-side authenticated channel (SSL/TLS).

e. The jurisdiction shall import the EAC's public key and verify that it is signed by the certificate authorities.

f. The jurisdiction shall import the public keys of the test labs and vendors from the EAC's web site and verify that they are signed by the EAC.

g. The jurisdiction shall verify the signatures of the vendor, test lab, and EAC on the validation disk image.

h. The jurisdiction should add its own digital signature to the validation disk image.

i. All validation disks shall be produced on unalterable storage media.5
4.4 Use by precincts

If the production of the validation disks is done by central authorities, then the local precincts are defenseless against the possibility that they would find themselves supplied with bogus validation disks, whether because of a compromise at the central authority or a compromise in the chain of custody.

To mitigate this threat, the procedures described in Section 4.3 should all be done at the precinct level instead of centrally. However, in jurisdictions where the technical ability and time to perform these tasks are not available at the precinct level, the jurisdiction has little choice but to produce copies of the validation disk centrally and rely on chain of custody to deliver them intact to the precincts. This is a compromise of security for practicality.

5 Issues

If a commercial product is used on the validation disk, licensing issues could get in the way.

6 Vulnerabilities

6.1 Bogus validation disk from vendor

The vendor could sabotage the validation disk to produce bogus results. This risk is mitigated by the inspection of the validation disk source code by the test lab, the integration of COTS digital signature verification software by the test lab, and the signing of the resultant disk image by the test lab and EAC.

In the event of collusion between the test lab and vendor, the only defense against this or any other non-conformity that the test lab would permit to slip through is careful EAC oversight.

6.2 Visual spoof

A malicious vendor who wishes to deploy uncertified software without detection could arrange for the voting system to detect when someone is trying to boot a validation disk and, instead of executing the software on the disk, produce a bogus emulation of it giving the expected successful validation responses.

This attack would be detectable if the jurisdiction customized the validation disk to generate some obvious output that the vendor knows nothing about. Jurisdictions are free to customize the validation disk, but once this is done, it is no longer protected by the digital signatures of the vendor, test lab, and EAC. Therefore, in this scenario, it is much more important that the jurisdiction apply its own digital signature to the resultant disk image.

This attack is moot if the verification is done on a separate device.

6.3 Data path spoof

A malicious vendor who wishes to deploy uncertified software without detection could arrange for the voting system to serve the certified version of the software when the validation disk is being used, but run uncertified software otherwise. This is the same attack that [11] I.7.4.6.e.iv tried to mitigate by saying "The external interface should provide a direct read-only access to the location of the voting system software without the use of installed software."

We assume at this point that the validation disk has successfully booted—otherwise, it is the previous attack (visual spoof). Since the validation disk is a self-contained bootable, the vendor must arrange for this attack to be initiated in firmware and hardware.

Direct mitigation for this attack is a topic of academic research and is as yet unproven [13]. Pragmatically, we observe that this attack is nontrivial for the vendor to implement, but it remains a concern.

6.4 Bogus validation disks delivered to precincts

See Section 4.4.

7 Bibliography

[1] U.S. Election Assistance Commission, Testing and Certification Program Manual 2006, FR draft, 2006-09-28. Available at http://www.eac.gov/docs/Voting System Testing and Certification Program Manual FR DRAFT (Sept 28).pdf.

[2] FIPS 180-2, Secure Hash Standard (SHS), 2002-08. Available at http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf.

[3] FIPS 186-2, Digital Signature Standard (DSS), 2000-01-27. Available at http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf.

[4] RFC 2440, OpenPGP Message Format, 1998-11, available at http://tools.ietf.org/html/rfc2440.

[5] RFC 3280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, 2002-04, available at http://tools.ietf.org/html/rfc3280.

[6] RFC 2315, PKCS #7: Cryptographic Message Syntax Version 1.5, 1998-03, available at http://tools.ietf.org/html/rfc2315.

[7] PGP, http://www.pgp.com/.

[8] GNU Privacy Guard, http://www.gnupg.org/.

[9] Cryptographic Module Validation Program, http://csrc.nist.gov/cryptval/.

[10] FIPS 140-2, Security Requirements for Cryptographic Modules, 2002-12-03. Available at http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf.

[11] 2005 Voluntary Voting System Guidelines, Version 1.0, 2006-03-06, available from http://www.eac.gov/vvsg_intro.htm.

[12] RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1, 2006-04, available at http://tools.ietf.org/html/rfc4346.

[13] Arvind Seshadri, Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems, http://www.cs.cmu.edu/%7Earvinds/pioneer.html.

[14] Web of trust, in Wikipedia, http://en.wikipedia.org/wiki/Web_of_trust.

[15] RFC 2560, X.509 Internet Public Key Infrastructure Online Certificate Status Protocol—OCSP, 1999-06, available at http://tools.ietf.org/html/rfc2560.

Notes

1 The "first key" problem can be solved either in a centralized manner, by trusting in a well-managed central authority (a "certificate authority"); in a decentralized manner, by managing the level of trust assigned to any number of signers in a "web of trust" [14]; or in a combination of the two approaches. Pragmatically, the absence of a single, universally trusted, root certificate authority recommends the use of a combined approach, where limited trust in multiple, lesser authorities combines to provide a solid foundation for a web of trust.

2 This is the approach commonly used by Internet banks and other sensitive sites to provide evidence to the user that the site being accessed is the real thing.

3 Revocation procedures are different in the different applicable standards. OpenPGP supports the generation of a revocation certificate by the affected party; this certificate would then be disseminated by the EAC similar to public keys. PKCS#7 supports the distribution of a Certificate Revocation List (CRL). X.509 supports CRLs but also the Online Certificate Status Protocol (OCSP) [15].

4 During testing, the lab would make use of throwaway "test keys" generated by the lab to create signatures for testing purposes on the uncertified software. When testing is complete and the software is certified, these would be replaced by the real public keys and real signatures.

5 Otherwise, the first compromised machine would compromise the disks, possibly even spreading malicious code to other machines.

