Initial strategy for developing tests for core requirements
DWF & AG, 200607311700
The 2006-07-25 revision of the VVSG'07 outline for Volume V, Testing Standard, specifies at a high level the activities to be performed during conformity assessment. This strategy document follows that outline, providing details on the work to be done by NIST. This document is written as an internal NIST planning tool.

The bulk of the new test suite development work is discussed in Volume V Section 5.2.3. Revisions to the existing protocols for hardware and environmental testing are discussed in Volume V Section 5.1. We do not envision developing new test suites for other areas of the Testing Standard, but these areas are equally important and do require attention from NIST.

Volume V Testing standard

Chapter 2 Conformity assessment process

This chapter is mostly information on a process that is not for NIST to determine. It may be derived from existing material in VVSG'05 II Overview and Chapter 1. However, it will include new requirements on COTS validation resulting from the June 2006 consensus of CRT and STS. Although there is no specific test associated with COTS validation, the test lab must follow a process that ensures that the COTS in the system to be tested is genuine and unmodified. Subsequently, setup validation ensures that the system as deployed contains the same COTS components.

Chapter 4 Documentation and design reviews

The following subsections are all inspections, meaning that someone is reviewing something and producing a finding. We don't need test suites for these, but where possible, we should provide more precise pass criteria for the inspectors to use.

That issue was raised by SysTest. There is tension between our need for test labs to exercise common sense and due diligence in performing these evaluations and the test labs' desire for something that they can follow by rote to avoid the possibility of being sued when they fail someone. The solution will probably need to involve more stringent accreditation, more precise pass criteria, and policy changes to make the test labs answerable to someone other than the vendors.

4.1 Initial review of documentation

What in VVSG'05 was merely a check to ensure that the TDP submitted by the vendor was "sufficient" (II.5.3), in VVSG'07 will be expanded to include verification of every applicable documentation requirement in the Standards on Data to be Provided. VVSG'05 did not clearly require documentation requirements to be enforced at all.

4.2 Physical configuration audit

The audit specified in VVSG'05 I.9.7.1 and II.6.6 will be expanded as needed to verify all of the requirements that cite this as a test reference, e.g., that paper-based systems shall include secure ballot boxes.

4.3 Functional configuration audit

The audit specified in VVSG'05 I.9.7.2 and II.6.7 will be expanded as needed to verify all of the requirements that cite this as a test reference, e.g., verify that voting variations and languages claimed are actually supported.

4.4 Verification of design requirements

This new evaluation is for cases where expert judgment is required to determine whether the design of the voting system satisfies a requirement that cannot be verified effectively through functional testing, e.g., that the voting system shall contain no logic or functionality for the purpose of producing fraudulent election results.

4.5 Examination of vendor practices for configuration management and quality assurance

The overall nature of requirements for both quality assurance and configuration management is being reconsidered. The key question is whether the requirements in these areas be in some manner centered around the invocation of external standards, or be explicitly enumerated in a manner similar to the requirements in VVSG'05. Once the decision is made and the appropriate requirements developed, instructions for the examinations of vendor practices to ensure conformance with the requirements will be specified.

4.6 Accessibility

Not a CRT deliverable.

4.7 Source code review

4.7.1 Workmanship

This replacement for VVSG'05 II.5 verifies all requirements in engineering practices/coding, including coding conventions, defensive programming, exception handling, etc., plus a few details like verifying the efficacy of built-in measurement, self-test, and diagnostic capabilities.

4.7.2 Security

Not a CRT deliverable.

4.8 Logic verification

Logic verification is the inspection of the core logic of the voting system to verify its correctness. The details of this have already been drafted. See http://vote.nist.gov/TGDC/crt/CRT-WorkingDraft-20060726/LogicVerification-20060726.doc for the excerpt or http://vote.nist.gov/TGDC/crt/CRT-WorkingDraft-20060726/CRT-WorkingDraft-20060726.html#LogicVerification for the full context.

Chapter 5 Test protocols

5.1 Hardware

Most of the environmental requirements are unchanged from VVSG'05. We are still deciding whether some or all of the electrical requirements need to be revised. Where hardware requirements are unchanged from VVSG'05, the test methods may similarly remain unchanged, except in cases where they reference outdated standards or test methods that are no longer commercially available.
5.2 Functional testing

5.2.1 General guidelines

This section specifies the procedure for executing the test suite, including the general test template and general pass criteria. Relevant material will be recycled or revised from VVSG'05 II.1.8.2, II.3 and II.6, but updated as needed to improve the reproducibility of the test campaign.

5.2.2 Structural coverage

Since structural coverage is clear-box testing, the testing details depend on the implementation under test. There can be no fixed test suite. The most we can do is provide the test lab with information on strategies and resources for conducting clear-box testing. There are numerous books on clear-box testing strategies that we need only cite and summarize. Additionally, there is a small amount of relevant material in VVSG'05 II.A.4.3.3, "Software Module Test Case Design and Data," and II.6.3, "Testing Interfaces of System Components," that may be reusable in some form.

5.2.3 Functional coverage

Per our meeting on 2006-06-27, we have decided to move away from open-ended functional testing as specified in VVSG'05 II.A.4.3.4, "Software Functional Test Case Design," and II.6.3, "Testing Interfaces of System Components," and move toward more reproducible testing. These sections, or superior material cited and summarized from the many books on the subject, will be in VVSG'07 only as a placeholder until a test suite is developed.

Required voting system functionality is specified in the VVSG. Therefore, if we had a standard interface to voting systems, we could provide a plug-and-play test suite to test standard functionality that should work on every implementation.

Lacking a standard interface, we cannot provide a plug-and-play test suite. However, that does not mean that we cannot provide any kind of test suite at all.

EML is the only open standard for election data representation. To the extent that it supports our testing goals, we should use it. Even if no voting system vendor ever supports it, having the test data in EML will provide a starting point from which to generate test data that are customized for each system. The alternative is to describe test cases in a completely informal manner, which increases the amount of manual labor needed to produce executable tests.

The classification hierarchy that is defined in the conformance clause and used in the applies-to fields of requirements provides a natural basis for categorizing test cases and organizing their development. The development sequence is as follows, beginning with the most cost-effective tests and progressing to the point of diminishing returns or wherever our funding runs out.

a. Develop a small core of basic functionality tests that all systems should pass. These are the "no brainers." They suffice to detect totally broken systems, but are not sophisticated enough or high enough volume to detect subtle faults.

b. Develop one basic end-to-end test for each voting variation and for each class of voting system and device that has unique requirements. This ensures that every major variation and type of equipment gets tested at least once, to some extent.

c. Develop one basic volume test that all systems should pass. This provides some opportunity to gauge the reliability and accuracy on a large data set without getting too complicated or expensive.

d. Develop basic tests targeted to specific functions and requirements that are known to be problematic in practice. This ensures that we will have done something to respond to catastrophes that are already on record. For example, we should have a combined functional/environmental test to make sure that optical scanners can function at the high end of allowable humidity because we have heard horror stories of malfunctions triggered by high humidity.

e. Develop one "typical case" test for each voting variation and for each class of voting system and device that has unique requirements. The only differences between these and the basic end-to-end tests are the volume and complexity of the data and scenarios. These tests are more likely to find faults, but are more expensive to develop and execute. Input from jurisdictions on what is typical is required to produce valid tests.

Alternative: If we can obtain really good intelligence on the combinations of features that are used in practice, and it turns out there is a common core that everyone uses, we can cut to the chase and develop one test that tests all of that and leave the feature-by-feature tests for later.

f. Develop volume tests tailored to voting variations and classes of systems and devices where the additional features and characteristics create additional modes of failure (e.g., systems supporting write-ins can fail if too many people write in candidates, even if the systems passed the previous volume test using pre-marked ballot positions).

g. Develop capacity tests that determine how the system reacts when one attempts to exceed vendor-declared limits (e.g., maximum number of ballots that can be tabulated). The VVSG contain requirements stating that losing votes or crashing is not an acceptable behavior in any scenario.

h. Develop error case tests to determine that inputs are properly validated and we do not get "garbage in, garbage out."

i. Go through the VVSG requirement by requirement, and if any requirement has not yet been tested at least once in some fashion, develop a test for it.

j. Develop tests that exercise features in realistic combinations. This task is potentially never-ending because of the combinatorial explosion of features that one could possibly test. Crucial to the cost-effectiveness of this task is obtaining good intelligence on the combinations of features that are used in practice to avoid wasting time on the others.

Alternative: If we can obtain really good intelligence on this, we could swap this task with task e.

k. Develop robustness tests that deliberately try to foul up the system by exercising functionality in unexpected ways. This may overlap with security testing, as any means of fouling the system up is a potential attack vector. On the other hand, this kind of test is effective at detecting badly designed systems in which features are not implemented in a modular fashion (can't do X when in Y mode, etc.).

l. Continue ad infinitum adding more and different variations on existing test cases with different inputs and expected outputs.

5.2.4 Security coverage

Not a CRT deliverable.

5.3 Benchmarks

The three major benchmarks (reliability, accuracy, and probability of misfeed) use the same technical approach, and it differs from current test lab practice.

For reliability and accuracy, current practice is for the benchmarks to be assessed in single tests. VVSG'05 does not require it to be done this way, but this is how the standard has been interpreted. The single test approach is hardly optimal as it throws away all of the pertinent data that could be collected from all of the other tests that must be run anyway.

The new approach is to collect these data throughout the entire test campaign and to fail the system at any point where we can be statistically confident that it does not satisfy the minimum requirements for reliability, accuracy, or probability of misfeed. The calculations need only be performed at such time as the system actually exhibits a failure, an error, or a misfeed. When that occurs, the test lab determines whether there is sufficient evidence to fail it.

This approach needs to be vetted and formalized with assistance from Statistics. One of the issues is whether testing must be continued until we have sufficient positive evidence that the requirements are satisfied, as opposed to merely failing those systems that clearly do not satisfy the requirements. In VVSG'05, positive evidence is required. However, the current Mean Time Between Failure benchmark for reliability is so low that such evidence is easily obtained for nearly any system.

The issue of reliability has become a hot-button issue, with numerous advocates highlighting the indisputable shortcomings of the current approach. We seem to have two choices here:

a) Replacing the existing reliability benchmark with one in which any single failure during a normal testing campaign (or during some minimum testing time) will suffice as evidence that the requirement is not met. This adopts the "populist" viewpoint that we should not certify systems that crash even once during testing. This change would without doubt be an improvement on the status quo. Having completed the testing, one can work backwards from the data collected to estimate the statistical confidence with which a particular MTBF has been established, or vice-versa—estimate the MTBF that has been established with a particular statistical confidence. However, this approach does not yield any particular statistical confidence that any particular MTBF has been achieved (for an a priori specified MTBF/confidence level). That would depend on how long the testing campaign lasts.

b) Continuing the practice of VVSG'05 by requiring a particular statistical confidence to pass, utilizing MTBF or some other metric, but with a significantly elevated benchmark. This approach might require much longer or more expensive testing: If the rest of the test suite is finished but there is still insufficient evidence to support the MTBF determination, additional tests must be run until sufficient evidence has been collected.

With respect to accuracy, even in VVSG'05 the benchmark is sufficiently high that a volume test is required to obtain enough data for positive evidence. However, testing is stopped after two errors, yielding a worst case testing volume of 3,126,404 ballot positions. Thus, as long as we specify at least one good volume test and count at least 3,126,404 ballot positions in total, the new benchmarking protocol for accuracy will be as good as or better than the old one.

VVSG'05 did not specify any test for probability of misfeed, so we can hardly do worse.

5.4 Usability (performance-based testing)

Not a CRT deliverable.

5.5 Open-ended security penetration testing

Not a CRT deliverable.

