Code Quality Conformance Test Suite for VVSG 2005/2007

June 07, 2007

Researchers at the National Institute of Standards and Technology have prepared this paper. It may represent preliminary research findings and does not necessarily represent any policy positions of NIST or the TGDC.

The Technical Guidelines Development Committee is an advisory group to the Election Assistance Commission (EAC), which produces Voluntary Voting System Guidelines (VVSG). The Help America Vote Act of 2002 established both the TGDC and EAC. NIST serves as a technical advisor to the TGDC.

TABLE OF CONTENTS

51
Introduction

51.1
Test Suite Scope

72
Required Conformance Testing Activities

83
Pass/Fail Criteria

84
Test Cases

84.1
Tests for Software Suitability

84.1.1
Source Code Language

94.2
Tests for Software Integrity

94.2.1
Self-modifying Code

104.2.2
Dynamically Loaded Libraries:

104.2.3
Interpreted Code

114.2.4
Exceeding Array or Sting Boundaries

114.2.5
Improper pointer addressing

114.2.6
Improper dynamic memory management

124.3
Tests for Software Modularity and Programming

124.3.1
Code Modularity

124.3.2
Header Requirement

124.3.3
Header Requirement for Libraries

134.3.4
Single Entry Point

134.3.5
Single Exit Point

134.3.6
Formal Exception Handling

134.4
Tests for Control Constructs

144.4.1
Acceptable Control Structures

144.4.2
No Do-While (False) Constructs

144.4.3
Intentional Exceptions are Prohibited

144.5
Tests for Naming Conventions

154.5.1
Object, Function, Procedure and Variable Names

154.5.2
Consistent Code and Documentation Names

154.5.3
Unique Names

154.5.4
Name Differentiation

154.5.5
Background: Names shall differ by more than a single character.

154.5.6
Single Character Names

164.5.7
Name Scoping

164.5.8
Language Keywords

164.6
Tests for Comment Conventions

164.6.1
The purpose of the unit and how it works

174.6.2
Other units called and the calling sequence

174.6.3
A description of input parameters and outputs

174.6.4
File references by name and method of access (i.e., read, write, modify or append)

174.6.5
Global variables used

184.6.6
Date of creation and a revision record

184.7
Tests for Coding Conventions

184.7.1
Use uniform calling sequences.

184.7.2
Explicit Return Value

194.7.3
Return “0” for success

194.7.4
Uncorrected Error Return Value

194.7.5
No Returns in Macro Content

194.7.6
Controls for array bounds

204.7.7
Pointer controls

204.7.8
Default Choice for Case Statements

204.7.9
Vote Count Overflow Controls

214.7.10
Indentation

214.7.11
Module Size

214.7.12
Delineated Generated Code

224.7.13
Has no line of code exceeding 80 columns in width (including comments and tab expansions) without justification

224.7.14
Contains no more than one executable statement and no more than one flow control statement for each line of source code

224.7.15
Separation of executable statements

224.7.16
Avoid mixed-mode operations.

234.7.17
Exit Message Explanation

234.7.18
Clear Normal and Error Status Messages

234.7.19
Variable Indirection

244.7.20
Scope Indentation Limitation

244.7.21
Variable Initialization

244.7.22
Constant Definition

244.7.23
Minimum implementation of statement

254.7.24
No assert() statements present in production code

25References

26List of Acronyms

1 Introduction

This Source Code Quality Conformance Test Suite contains conformance tests for implementations of voting software built for compliance with NIST’s Voluntary Voting System Guidelines 2005.

These tests are “abstract”, meaning that they are complete, independent and unambiguous specification of the actions needed to satisfy conformance testing requirements, without specifically defining the techniques used for performing the tests (i.e. performing a visual code examination versus using an automated tool, or a combination of both techniques).

Unlike open-ended vulnerability testing (OEVT), whose testing methodology involves examining source code, identifying possible vulnerabilities and probing the running application to verify those vulnerabilities, software quality testing uses simpler test methods. Software quality testing focuses solely on examining source code and identifying its compliance (or lack thereof) with specified coding conventions defined in VVSG 2005, or in a published, reviewed, and industry-accepted coding convention
Because of the relative simplicity in examining source code, discrete test cases have been

developed to verify conformance of voting software to VVSG 2005 and (to the extent that those requirement overlap) VVSG 2007.

1.1 Test Suite Scope

The scope of this test suite is limited to conformance testing of voting applications with respect to VVSG 2005:

· Volume I, section 1.6 (Conformance Clause)

· Volume I, section 5.2 (Software Requirements)

· Volume II, section 5 (Software Testing) of VVSG 2005

Some of the source code quality requirements carry over to VVSG 2007.

This includes portions of VVSG 2007:

· Volume I, section 1.6 (Conformance Clause)

· Volume I, section 5.2 (Software Requirements)

· Volume II, section 5 (Software Testing) of VVSG 2005

Software to which this test suite is applicable is limited to:

· Software that operates on voting devices and vote counting devices installed at polling places under the control of the voting jurisdiction

· Software that operates on ballot printers, vote counting devices, and other hardware typically installed at central or precinct locations (including contractor facilities)

· Election management software

2 Required Conformance Testing Activities

Software code quality testing includes the following activities:

· Collecting all of the relevant source code for a particular system or system component.

· This includes all associated library files and header files.

· This also includes any “build files” (e.g. makefiles) associated with compiling the unit, module or system.

· Systematically examining (either manually, or in conjunction with the use of automated source code analysis tools) each source file for the following qualities:

· Software suitability

· Software integrity

· Software modularity and programming

· Control constructs

· Naming conventions

· Coding conventions

· Comment conventions

3 Pass/Fail Criteria

A voting application will fail in its code quality conformance to VVSG 2005 if:

The vendor identifies the published, reviewed, and industry-accepted coding convention it used in developing its source code and the accredited test lab finds that the voting application did not meet that particular coding convention requirement through examination of the software.

The vendor did not identify a published, reviewed, and industry-accepted coding convention it used, and failed to pass the tests listed in this document.
4 Test Cases

Test cases for software quality conformance testing of voting applications against requirements in VVG 2005 provide:

· Background information for the test

· A unique identifier for each test

· A reference to the requirement in VVSG 2005 from which the test is derived

· A reference to the corresponding requirement in VVSG 2007 (if applicable)

· Method for performing the test

4.1 Tests for Software Suitability

4.1.1 Source Code Language

Test ID: 01
VVSG 2005 Reference: Vol I: Sec 5.2.1

Background: VVSG 2005, Volume I, Section 5.1.1 states that source code used for any voting software that must be examined for compliance to coding conventions must be “high level”, with the exception of hardware-related code (used in device drivers) or operating system code.

“High-level language" refers to the higher level of abstraction from machine language. Rather than dealing with registers, memory addresses and call stacks, high-level languages deal with variables, arrays and complex arithmetic or boolean expressions. In addition, they have no opcodes that can directly compile the language into machine code, unlike low-level languages like assembly language.

Suitable candidates for inclusion as high-level languages include Ada, Basic, C, C++, C#, FORTRAN, COBOL, Java, Pascal and (compiled) Visual Basic. This list is not exhaustive, and there may be other high-level languages used to write software for voting applications.

Test Method: Examination of all code for language type. Search for embedded assembly language in C code. Such code should only exist for “hardware-related”

functionality (e.g. driver code). Examine makefiles for calls to assembly language compilers.

4.2 Tests for Software Integrity

Software integrity is the notion that the software in a voting system application performs as intended and is not altered in any way, either through compilation or run-time behavior. In order to assure that this is the case, certain constraints are placed upon the code that is submitted for quality inspection. This includes that the source code is not:

1. Self-modifying

2. Dynamically loaded

3. Interpreted

4. Susceptible to memory corruption through

a. Exceeding array or string boundaries

b. Improper pointer addressing (in a language that implements)

c. Improper dynamic memory management

4.2.1 Self-modifying Code

Test ID: 02
VVSG 2005 Reference: Vol I: Sec 5.2.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.7-A.1
Background: Self-modifying code is code that alters its instructions while it is executing. This can be done (most easily) in assembly language. Machine code can be treated reflectively because the distinction between instruction and data becomes just a matter of how the information is treated by the computer. Normally, 'instructions' are 'executed' and 'data' are 'processed', however, the program can also treat instructions as data and therefore make reflective modifications.

Self-modifying code can also exist in “high-level” languages such as COBOL (through the use of the ALTER verb). Additionally, reflection (the process by which a computer program can be modified in the while being executed, depending upon abstract features of its code and its runtime behavior) is a method by which certain high-level languages (such as Java) permit self-modifying code.

Test Method:

· High-level languages: Look for particular functions of the language that facilitate code alteration (such as the COBOL “ALTER” verb). Also look for specific references to reflection library calls (such as those found in Java’s java.lang.reflect package).

· Low-level languages: Look for instances in assembly code where data portions of the program are used as instructions in program execution.
4.2.2 Dynamically Loaded Libraries:

Test ID: 03
VVSG 2005 Reference: Vol I: Sec 5.2.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.7-A.3
Background: Dynamically loaded libraries (DLLs) are libraries that are loaded at times other than during the startup of a program. They're particularly useful for implementing plugins or modules, because they permit waiting to load the plugin until it's needed. However, from a software quality standpoint, they are often equated with “self-modifying code” because what is examined before compilation may not be what is executed at runtime.

Test Method:

Search for DLL function calls in the source code. Particularly, examine the source code for calls to DLL loading functions used by glib, libtdl, CORBA or other interface used by the voting application.

4.2.3 Interpreted Code

Test ID: 04
VVSG 2005 Reference: Vol I: Sec 5.2.2
Background: A language interpreter allows the end-user to write a program in some human-readable language, and have this program executed directly by the interpreter. This is in contrast to language compilers that translate the human-readable code into machine-readable code, so that the end-user can execute the machine-readable code at a later time. Since the code is interpreted at execution time and not before, code inspection and customary logic and accuracy testing would not detect manipulations beforehand.

Test Method:

Examine code to verify that no interpreter is used, and no interpreted code is input as part of the execution process. Some common interpreted languages include Perl, javascript, VBscript, Python and PHP. This can include verification that no function names associated with interpreter calls exist in the code.

4.2.4 Exceeding Array or Sting Boundaries
Test ID: 05
VVSG 2005 Reference: Vol I: Sec 5.2.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.8-B.1
Background: Certain coding practices can leave a voting application vulnerable to code modification. All are based upon the possibility that memory is overwritten with new instructions that change the behavior of the voting application.

Test Method: Verify that reads or writes to the array or string do not exceed the maximum length. This can be accomplished either through “brute force” (including verification that no value exceeds the maximum array/string length) or more elegantly through class definitions in object-oriented code.
4.2.5 Improper pointer addressing
Test ID: 06
VVSG 2005 Reference: Vol I: Sec 5.2.2

VVSG 2007 Reference: Vol III: 11.4.1.8-C
Background: Certain coding practices can leave a voting application vulnerable to code modification. All are based upon the possibility that memory is overwritten with new instructions that change the behavior of the voting application.

Test Method: Verify that pointer addresses values will not result in a read or write outside the bounds of the data type associated with that address. This is a difficult verification task.
4.2.6 Improper dynamic memory management
Test ID: 07
VVSG 2005 Reference: Vol I: Sec 5.2.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.8-C.2
Background: Improper dynamic memory management can result in memory leaks, information leaks and other problems.
Test Method: Verify (manually or through use of tools) that memory is freed after use to prevent memory leaks. Verify that memory is “scrubbed” prior to being freed.
4.3 Tests for Software Modularity and Programming

The overall structure of a voting application must be “modular” in the sense that function is logically compartmentalized, whether the source code is written in a procedural or an object-oriented fashion. Modularity promotes understandability and encapsulation of data and function, and promotes logical examination and testing. The conditions must be verified for all relevant source code for the voting application:

4.3.1 Code Modularity
Test ID: 08
VVSG 2005 Reference: Vol I: Sec 5.2.3.a

VVSG 2007 Reference: Vol III: Sec 11.4.1.4-A
Background: Each module shall have a specific function that can be tested and verified independently of the remainder of the code.

Test Method: Examination of the source code must show modularity of design by function, whether constructed procedurally or via object-oriented design. Modules should be of reasonable size and “functional” by design.
4.3.2 Header Requirement

Test ID: 09
VVSG 2005 Reference: Vol I: Sec 5.2.3.b

Background: Headers are optional for modules of fewer than ten executable lines where the subject module is embedded in a larger module that has a header containing the header information.

Test Method: Verify (where appropriate, based upon the language) by line count that a “small” module is in fact embedded in a larger one, and that the larger module does have a header.
4.3.3 Header Requirement for Libraries

Test ID: 10
VVSG 2005 Reference: Vol I: Sec 5.2.3.b

Background: Library modules shall have a header comment describing the purpose of the library and version information.

Test Method: Locate any library calls in the source code. Find the corresponding library code and verify that a header is present for that library.

4.3.4 Single Entry Point

Test ID: 09
VVSG 2005 Reference: Vol I: Sec 5.2.3.e

Background: Each module shall have a single entry point for normal process flow.

Test Method:

4.3.5 Single Exit Point

Test ID: 10
VVSG 2005 Reference: Vol I: Sec 5.2.3.e

Background: Each module shall have a single entry point, and a single exit point, for normal process flow.

Test Method:

4.3.6 Formal Exception Handling

Test ID: 11
VVSG 2005 Reference: Vol I: Sec 5.2.3.e

Background:
In the situation where the voting application cannot continue, the design must explicitly protect all recorded votes and audit log information and must implement formal exception handlers provided by the language.

Test Method:
4.4 Tests for Control Constructs

ABC

4.4.1 Acceptable Control Structures
Test ID: 12
VVSG 2005 Reference: Vol II: Sec 5.4.1

VVSG 2007 Reference: Vol III: Sec 11.4.1.2

Background:
Process flow within the modules shall be restricted to combinations of the control structures defined in VVSG 2005 Volume II, Section 5. Acceptable constructs are Sequence, If-Then-Else, Do-While, Do-Until, Case, and the General Loop (including the special case for loop).

Test Method: Any deviation from those constructs can be flagged by the tool for examination by lab staff.

4.4.2 No Do-While (False) Constructs

Test ID: 13
VVSG 2005 Reference: Vol II: Section 5.4.1

Background: Do-While (False) constructs are prohibited.

Test Method: Any deviation from those constructs can be flagged by the tool for examination by lab staff.

4.4.3 Intentional Exceptions are Prohibited
Test ID: 14
VVSG 2005 Reference: Vol II: Section 5.4.1

VVSG 2007 Vol III: 11.4.1.5-B.2
Background: Intentional exceptions used as GOTOs are prohibited

Test Method: Any deviation from those constructs can be flagged by the tool for examination by lab staff.

4.5 Tests for Naming Conventions

Voting system software shall use the naming conventions below.

4.5.1 Object, Function, Procedure and Variable Names

Test ID: 15
VVSG 2005 Reference: Vol I: Sec 5.2.5.a

Background: Object, function, procedure, and variable names shall be chosen to enhance the readability and intelligibility of the program.

Test Method: Insofar as possible, names shall be selected so that their parts of speech represent their use, such as nouns to represent objects and verbs to represent functions.

4.5.2 Consistent Code and Documentation Names

Test ID: 20
VVSG 2005 Reference: Vol I: Sec 5.2.5.b

Background: Names used in code and in documentation shall be consistent.

Test Method:

4.5.3 Unique Names

Test ID: 16
VVSG 2005 Reference: Vol I: Sec 5.2.5.c

Background: Names shall be unique within an application.

Test Method:

4.5.4 Name Differentiation

Test ID: 17
VVSG 2005 Reference: Vol I: Sec 5.2.5.c

4.5.5 Background: Names shall differ by more than a single character.

Test Method:

4.5.6 Single Character Names

Test ID: 18
VVSG 2005 Reference: Vol I: Sec 5.2.5.c

Background: All single-character names are forbidden except those for variables used as loop indexes.
Test Method:

4.5.7 Name Scoping

Test ID: 19
VVSG 2005 Reference: Vol I: Sec 5.2.5.c

Background: In large systems where subsystems tend to be developed independently, duplicate names may be used where the scope of the name is unique within the application.

Test Method:

4.5.8 Language Keywords

Test ID: 21
VVSG 2005 Reference: Vol I: Sec 5.2.5.d

Background: Language keywords shall not be used as names of objects, functions, procedures, and variables or in any manner not consistent with the design of the language.

Test Method:

4.6 Tests for Comment Conventions

Header comments shall contain:

4.6.1 The purpose of the unit and how it works

Test ID: 22
VVSG 2005 Reference: Vol I: Sec 5.2.7.1

VVSG 2007 Reference: Vol III: Sec 11.4.1.6-A
Background:
Test Method:

4.6.2 Other units called and the calling sequence

Test ID: 25
VVSG 2005 Reference: Vol I: Sec 5.2.7.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.6-A
Background:
Test Method:

4.6.3 A description of input parameters and outputs

Test ID: 26
VVSG 2005 Reference: Vol I: Sec 5.2.7.3

VVSG 2007 Reference: Vol III: Sec 11.4.1.6-A
Background:
Test Method:

4.6.4 File references by name and method of access (i.e., read, write, modify or append)

Test ID: 27
VVSG 2005 Reference: Vol I: Sec 5.2.7.4

VVSG 2007 Reference: Vol III: Sec 11.4.1.6-A
Background:
Test Method:

4.6.5 Global variables used

Test ID: 28
VVSG 2005 Reference: Vol I: Sec 5.2.7.5

VVSG 2007 Reference: Vol III: Sec 11.4.1.6-A
Background:
Test Method:

4.6.6 Date of creation and a revision record

Test ID: 29
VVSG 2005 Reference: Vol I: Sec 5.2.7.6

VVSG 2007 Reference: Vol III: Sec 11.4.1.6-A
Background:
Test Method:

4.7 Tests for Coding Conventions

ABC

4.7.1 Use uniform calling sequences.
Test ID: 30
VVSG 2005 Reference: Vol II: Sec 5.4.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.8-B.1
Background: All parameters shall either be validated for type and range on entry into each unit or the unit comments shall explicitly identify the type and range for the reference of the programmer and tester. Validation may be performed implicitly by the compiler or explicitly by the programmer

Test Method: If programmer does not explicitly check, then evaluate compilation report to verify that no “type” errors or warnings are present.

4.7.2 Explicit Return Value

Test ID: 31
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Have the return explicitly defined for callable units such as functions or procedures (do not drop through by default) for C-based languages and others to which this applies, and in the case of functions, has the return value explicitly assigned.

Test Method: Manual or Verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.3 Return “0” for success

Test ID: 32
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Where the return is only expected to return a successful value, the C convention of returning zero shall be used or the use of another code justified in the comments.

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.4 Uncorrected Error Return Value
Test ID: 33
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: If an uncorrected error occurs so the unit must return without correctly completing its objective, a non-zero return value shall be given even if there is no expectation of testing the return. An exception may be made where the return value of the function has a data range including zero

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.5 No Returns in Macro Content

Test ID: 34
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Code does not use macros that contain returns or pass control beyond the next statement.

Test Method: Manual or Verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.6 Controls for array bounds
Test ID: 35
VVSG 2005 Reference: Vol II: Sec 5.4.2

VVSG 2007 Reference:

Background: For those languages with unbound arrays, provides controls to prevent writing beyond the array, string, or buffer boundaries

Test Method: Verify that the above rules are adhered to in the source code if validation is performed explicitly by the programmer, or if additional “instrumenting” code is added by a compiler to perform memory bounds checking.

4.7.7 Pointer controls
Test ID: 36
VVSG 2005 Reference: Vol II: Sec 5.4.2

VVSG 2007 Reference: Vol III: Sec 5.4.1.8-B.1
Background: For those languages with pointers or which provide for specifying absolute memory locations, provides controls that prevent the pointer or address from being used to overwrite executable instructions or to access inappropriate areas where vote counts or audit records are stored

Test Method: Verify that the above rules are adhered to in the source code if validation is performed explicitly by the programmer, or if additional “instrumenting” code is added by a compiler to perform memory bounds checking.

4.7.8 Default Choice for Case Statements

Test ID: 37
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: For those languages supporting case statements, has a default choice explicitly defined to catch values not included in the case list

Test Method: Verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.9 Vote Count Overflow Controls
Test ID: 38
VVSG 2005 Reference: Vol II: Sec 5.4.2

VVSG 2007 Reference: Vol III: Sec 5.4.1.8-B.5
Background: Provides controls to prevent any vote counter from overflowing. Assuming the counter size is large enough such that the value will never be reached is not adequate.

Test Method: Manual or Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.10 Indentation

Test ID: 39
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Is indented consistently and clearly to indicate logical levels

Test Method: Manual or Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.11 Module Size

Test ID: 40
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Excluding code generated by commercial code generators, is written in small and easily identifiable modules, with no more than 50% of all modules exceeding 60 lines in length, no more than 5% of all modules exceeding 120 lines in length, and no modules exceeding 240 lines in length.

Test Method: “Lines” in this context, are defined as executable statements or flow control statements with suitable formatting and comments. The reviewer should consider the use of formatting, such as blocking into readable units, which supports the intent of this requirement where the module itself exceeds the limits. The vendor shall justify any module lengths exceeding this standard

4.7.12 Delineated Generated Code

Test ID: 41
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Where code generators are used, the source file segments provided by the code generators should be marked as such with comments defining the logic invoked and, if possible, a copy of the source code provided to the accredited test lab with the generated source code replaced with an unexpanded macro call or its equivalent

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.13 Has no line of code exceeding 80 columns in width (including comments and tab expansions) without justification

Test ID: 42
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background:
Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.14 Contains no more than one executable statement and no more than one flow control statement for each line of source code

Test ID: 43
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background:
Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.15 Separation of executable statements

Test ID: 44
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: In languages where embedded executable statements are permitted in conditional expressions, the single embedded statement may be considered a part of the conditional expression. Any additional executable statements should be split out to other lines

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.16 Avoid mixed-mode operations.

Test ID: 45
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: If mixed mode usage is necessary, then all uses shall be identified and clearly explained by comments

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.17 Exit Message Explanation

Upon exit() at any point, presents a message to the user indicating the reason for the exit()

VVSG 2005 Reference: Vol II: Sec 5.4.2

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.18 Clear Normal and Error Status Messages

Test ID: 46
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Uses separate and consistent format to distinguish between normal status and error or exception messages. All messages shall be self-explanatory and shall not require the operator to perform any look-up to interpret them, except for error messages that require resolution by a trained technician

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.19 Variable Indirection

Test ID: 47
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: References variables by fewer than five levels of indirection (i.e., a.b.c.d or a[b].c->d)

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.20 Scope Indentation Limitation

Test ID: 48
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Has functions with fewer than six levels of indented scope:

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.21 Variable Initialization

Test ID: 49
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Initializes every variable upon declaration where permitted

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.22 Constant Definition

Test ID: 50
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Has all constants other than 0 and 1 defined or enumerated, or shall have a comment which clearly explains what each constant means in the context of its use. Where “0” and “1” have multiple meanings in the code unit, even they should be identified. Example: “0” may be used as FALSE, initializing a counter to zero, or as a special flag in a non-binary category

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.23 Minimum implementation of statement

Test ID: 51
VVSG 2005 Reference: Vol II: Sec 5.4.2

Background: Only contains the minimum implementation of the “a = b ? c : d” syntax. Expansions such as “j=a?(b?c:d):e;” are prohibited

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

4.7.24 No assert() statements present in production code

Test ID: 52
VVSG 2005 Reference: Vol II: Sec 5.4.2

VVSG 2007 Reference: Vol III: Sec 11.4.1.8-F
Background: Has all assert() statements coded such that they are absent from a production compilation. Such constructs can be implemented by ifdef()s that remove them from or include them in the compilation. If implemented, the initial program identification in setup should identify that assert() is enabled and active as a test version

Test Method: Analysis can verify that the above constructs are adhered to in the source code, and that macros do not create such constructs.

References

[]

[]

