Evaluating Tools for use in VVSG 2005/2007 Code Quality Conformance Testing
June 17, 2007

Researchers at the National Institute of Standards and Technology have prepared this paper.  It may represent preliminary research findings and does not necessarily represent any policy positions of NIST or the TGDC.

The Technical Guidelines Development Committee is an advisory group to the Election Assistance Commission (EAC), which produces Voluntary Voting System Guidelines (VVSG). The Help America Vote Act of 2002 established both the TGDC and EAC. NIST serves as a technical advisor to the TGDC.

TABLE OF CONTENTS

41
Introduction


41.1
Static Source Code Analysis Tool Functionality


41.1.1
Tools and Coding Conventions


51.1.2
Tool Functions


51.2
Verifying tool suitability for use in  VVSG 2005 code quality conformance testing


51.3
The source code quality analysis tool test suite


61.4
Test Suite Listing


7References




1 Introduction

Automated tools are commonly used in developing today’s software. In particular, static source code analysis tools are integrated into commercial and open-source integrated development environments (IDE) to help enforce (at the earliest stage in the development process) quality coding practices.  Automated analysis of source code saves the developer substantial time, effort and money to “patch” the code later if the code quality is good from the start.  

This document provides guidance and testing materials for accredited laboratories to use in evaluating the capabilities of source code quality analysis tools for use in VVSG 2005/2007 source code quality conformance testing.
1.1 Static Source Code Analysis Tool Functionality
1.1.1 Tools and Coding Conventions
VVSG 2005 and VVSG 2007 require particular coding conventions to be followed in developing voting applications.  Source code quality analysis tools have the capability to enforce some of these code quality conventions “out of the box”.  Some commonly used coding conventions include:

· GNU Coding Standard
· Linux Kernel Style Guide

· C++ coding rules from Ellemtel

· Sun Java Coding Convention

· .NET Coding Guidelines

· ADA 95 Quality and Style Guide
Additionally, many of these tools permit the “extension” of their default code quality rules libraries. .  In this way, if a particular coding convention that is not provided by the tool, a developer ( or lab tester ) can “customize” that tool for their own particular needs.
1.1.2 Tool Functions

The primary functions of source code quality analysis tools are:

· Source code scanning

· Includes examining build files (e.g. makefiles)
· Includes macro expansion and examination
· Report generation, including:

· Identifying the  code quality rule violation

· File name of violation
· Line number

· Column number
Additional tool functions valuable to testers may include:

· Code metric generation

· Code complexity 
· Line counts per function

· Identification of cycles

· Identification of “dead/unreachable code”

1.2 Verifying tool suitability for use in VVSG 2005 code quality conformance testing

In order to use tools as part of the code quality examination process, a testing lab must be confident that the tool(s) can identify violations of the coding conventions defined in VVSG 2005.  A tool does not need to identify all the code quality issues in VVSG 2005.  Some tools may only be useful for performing particular types of examinations.  There may be some code quality requirements that cannot be satisfactorily tested by any tool.  Additionally, there may be some code quality requirements that will require both an automated approach as well as a visual inspection in order to verify that that requirement has been met.
The purpose of these tool test suites is to help laboratories test and identify useful tools that they can trust in the examination of voting application software.
1.3 The source code quality analysis tool test suite
The test suites (freely available at http://samate.nist.gov/SRD/testsuite.php?login=Guest) provide code samples in some of the more commonly used languages used to develop voting applications.  While the tests themselves are not “real” voting application code samples, they nevertheless contain violations of conformance to the coding conventions specified in VVSG 2005 and (where applicable) VVSG 2007.
The code samples are cross-referenced against its companion Code Quality Conformance Test Suite for VVSG 2005 document, which provides background information and high-level test methods for evaluating source code for code quality conformance to VVSG 2005 and (if applicable) VVSG 2007.
Test case metadata (included with each test case) includes:

· Tool test case ID

· Tool test case description (including cross-reference to the Software Quality Conformance Test Suite document)
· Author

· Submission date

· Filename(s) making up the test case

· Special instructions/recommendations for examining the code
1.4 Pass/Fail Criteria for Tests

Each test is “self-documented”, with test case metadata containing the necessary information to evaluate the tool for suitability against this test.  Test descriptions contain information describing the code quality flaw, along with the pertinent file names, and line numbers and column numbers associated with the flaw (where applicable).

Additionally, comments are embedded in the code to further inform the tool tester as to where the code quality flaw is, and provide any additional information to aid in understanding the test.
Ultimately, a tool must correctly identify the embedded code quality flaw by:

· Its semantically equivalent coding convention name

· The correct file name containing the flaw

· The correct line number ( if applicable )

· The correct column number ( if applicable )

1.5   Test Suite Listing

Below is the list of test suites.  All test suites measure tool capability to detect non-conformance to the coding convention defined in VVSG 2005.  Each test suite is specific to a particular programming language.  All test suites (to the extent that the programming language permits) test a tool’s ability to identify non-conformance to the coding conventions defined in VVSG 2005.
· C 
· C++

References

[]
 

[]






















































