
DRAFT

21 Nov. 2007

W. E. Burr

Voting System Security Summary and Recommendation
A “stand alone” Direct Recording Electronic (DRE) voting system is typically an off-the-shelf personal computer system, running on top of a commercial operating system (e.g., Windows CE) that provides voters with a nicely formatted ballot display, totals their choices, and, when the polls close, outputs race by race election totals. Stand-alone Direct Recording Electronic (DRE) voting systems are insecure in principle, and the existing DRE products probably cannot be made secure without architectural change. These machines are convenient to setup, operate and use, and offer real voter convenience, usability and accessibility advantages. But the computer science community consensus is that their security is unacceptable, and cannot be made acceptable without architectural changes. After studying the problem and considering alternatives and palliatives, NIST agrees with the mainstream computer science community: we don’t know how to make stand alone DRE systems secure, so we should not include security specifications for stand alone DRE systems in the VVSG 2007.
Why are stand alone DRE’s fundamentally insecure? They are insecure because:

· Elections run on stand alone DREs cannot be audited. There is no possibility of a meaningful audit or recount, because there is no independent record to audit from. The absence of meaningful audits means that many kinds of attacks and malfunctions may never be detected. If a DRE machine displays “Lincoln” but records a vote for “Douglas” there is no way to detect this.
· The DREs are highly software dependent: vulnerable to software errors or malicious code, potentially inserted by subverted developers or by anybody involved producing, handling or distributing the voting machines and software.
It intuitively seems that many security critical applications ought to be equally or even more vulnerable to malicious code than voting systems, yet run them on commercial computers and operating systems of equal or greater complexity. Why then not voting? Because such security critical systems are usually designed from the ground up so they can be rigorously audited. For example, consider financial applications, bank accounts, credit cards and the like. Customers get receipts and payments and canceled checks. They get periodic statements. We are expected to balance our checkbooks, and review statements. This is an “end-to-end” audit, errors or fraud will be detected when you balance your checkbook and review your statement.

Additionally, financial institutions follow rigorous audit regimes. The systems allow auditors to track transactions in detail. We’ve been auditing the books since the days of paper; we now do it with computers. A significant number of transactions are audited. Systems are full of checks and balances. The “books” are typically reconciled every day. The whole system is designed from the ground up to detect errors or fraud. Therefore we trust financial systems, and we expect to catch most deliberate fraud or errors.
We are sometimes given the counterexample of aircraft flight control computers so show that we don’t always rely on audit systems to get reliable software or prevent malicious code in critical systems. This argument would be stronger if existing DRE voting systems were designed and implemented like flight control systems. But there are few triply redundant election systems. General purpose operating systems like Win CE are rarely interposed between pilots and control surfaces. Safety critical flight systems are designed from the ground up for that purpose, under mature Federal Air Regulations. Aircrews and mechanics are trained, licensed professionals, doing what they do full time, not retirees given one evening of training for something they do once or twice a year. And we still audit flight systems: the flight recorder is an audit device of last resort.
We could perhaps apply flight software like methods to voting; but then would begin by scrapping the systems we have now, and starting over from scratch. We would have a much more rigorous design, development and testing process. We would allow no large general purpose operating systems. We would use languages and design methodologies chosen for security and reliability; for example languages with run time bounds checking; we could do this fairly easily, since voting computational requirements are easily met. And we probably would also make all source code public for independent analysis.
But we need not go this far. DRE security problems can be relieved by adding a printer to a DRE machine and keeping both paper and electronic records. First generation Voter Verified Paper Audit Trail (VVPAT) systems, with a printer grafted onto a DRE system, may leave much to be desired from a usability and accessibility perspective, but that’s more due to implementation detail than the architecture. With VVPAT voters can review the paper record directly, and we have an exactly corresponding electronic record. Now there are independent records to compare, so we can have a meaningful audit. If malicious code changes “Lincoln” to “Douglas” on the paper, then the voter can catch that when she reviews her ballot. If the paper often says “Lincoln”, when the electronic record says “Douglas”, then an audit should catch that. This is easy to understand, and it’s easy to convince voters that it works.
Therefore, the practical near term solution to DRE voting system security problems is to add separate voter verifiable paper records, and electronic records, with a good audit regime. This is surely practical, and with better specs, better procedures and more experience we can make this work better..
NIST also spent some time considering all electronic “independent verification” (IV) systems, and these also have promise, but are also somewhat controversial because they could be subverted entirely by software errors or malicious code. In the end, the biggest problems with these may be usability problems and business model problems. NIST did paper exercise designs of several all electronic IV architectures, but is not ready to propose a testable standard for IDV systems, in the absence of more worked examples and at least some actual trials or operational experience..

The other obvious avenue to pursue is “end-to-end” (E2E) systems where a voter gets a receipt allowing her to determine if her vote has been counted, by comparison to a public “bulletin board” and any third party to verify from the bulletin board that all the votes have been tallied correctly. If we were unconcerned with voter coercion and vote buying this would be simple, but, if we are to protect voters from coercion and from proving how they voted to those buying votes, then the problem is more difficult, even a research topic, but surely not impossible; a good amount of work has been done in this area already, some of it by Security and Transparency Subcommittee members.

Both all electronic IV and E2E systems promise impressive advantages in security with good accessibility/usability. We think that it is premature at this point to attempt to write specific testable standards for either all electronic IV or E2E election systems, and thereby largely cut off much further experimentation and innovation. We have some examples of workable or nearly workable systems, but little practical experience to go from. We recommend that as a companion to VVSG07, the EAC initiate a process for IV fostering and evaluating an “innovation class” of new voting systems, that provide either end-to-end audit capability, or, alternatively, secure all electronic audit. Although some of the laboratory testing in VVSG07 would be applicable to such innovation class machines, security evaluation of new systems is more difficult. Such an evaluation would probably involve a board of experts and a thorough design review, as well as tests to ensure that design goals were met. The process would probably involve at several stages, including one to review the basic designs, another to evaluate the security of the actual implementation, and a third to test to the applicable general and usability requirements of VVSG 07. We believe that the innovation class will give us, not an immediate fix, but a path to better, more secure, voting systems.
