Confidential and pre-decisional – for discussion use only
Contributors: David Flater, Alan Goldfine
Rev. 2005-02-23
THE RECOMMENDATIONS IN THIS DOCUMENT ARE ALL TENTATIVE, PRE-DECISIONAL DRAFTS THAT DO NOT REPRESENT THE CONSENSUS OF NIST OR OF THE SUBCOMMITTEE.
Changelog

2005-02-23 Replaced “testing authority” with “VSTL.” Expanded testing. Moved testing requirements from CRT Product Standard. Miscellaneous minor fixes.
2005-02-22 Improved use of terminology.

Extended model to define overvotes, undervotes, and other terms needed to determine the accuracy of vote data reports.

Moved voter eligibility into A(t,v).

Removed time parameter from N(r,v).

Added text indicating that the verbiage preceding formal assertions was only meant to elucidate the formal assertions.

Attempted to clarify various text.

Deferred ranked order voting et al. to future work.

2005-02-07 “Shall publish” means it’s in the PIP; “Shall report” means its in the Qualification Test Report.
Deleted “such functions are irrelevant in the verification process” because it’s still necessary to verify that the conditions are correct.
2005-01-05 Added bigger disclaimer.

2005-01-04
Expanded logic verification to deal with capacities and limits.

Moved functional testing after logic verification so I can refer to the terms defined in the logic model (esp. limits).

Filled in some tentative references to tentative requirements.

Modified logic model to include concept of overall ballot validity (e.g., stray marks policies).

Defined some test ballot forms.

Noted Robert Floyd contribution in Hoare Logic footnote.

2004-12-30 Replaced deprecated “ITA” term with more generic “testing authority.”

In logic verification section:
· Simplified notation by replacing cr with separate r parameters.

· Simplified model by merging E (eligibility) into N (number of votes you are entitled to cast).
· Added some missing invariants and deleted a redundant one.
· Put all of the formal parameters in alphabetical order.

· Simplified N of M by making max. 1 vote per choice an invariant (instead of treating more than 1 as an overvote).

Misc. editorial corrections.
2004-12-28 First versioned version.
Pieces for Testing [& Transparency] Document
Introduction

Traditionally, testing methods have been divided into black-box and white-box test design. Neither method has universal applicability; they are useful in the testing of different items.

Black-box testing is usually described as focusing on testing functional requirements, these requirements being defined in an explicit specification. It treats the item being tested as a “black box,” with no examination being made of the internal structure or workings of the item. Rather, the nature of black-box testing is to develop and utilize detailed scenarios, or test cases. These test cases include specific sets of input to be applied to the item being tested. The output produced by the given input is then compared to a previously defined set of expected results.

White-box testing (sometimes called clear-box testing to suggest a more accurate metaphor) allows one to peek inside the “box,” and focuses specifically on using knowledge of the internals of the item being tested to guide the testing procedure and the selection of test data. White-box testing can discover extra non-specified functions that black-box testing wouldn’t know to look for and can exercise data paths that would not have been exercised by a fixed test suite. Such extras can only be discovered by inspecting the internals.
Complimentary to any kind of testing is logic verification, in which formal methods are used to prove that the logic of the system satisfies certain assertions. When it is impractical to test every case in which a failure might occur, formal methods can be used to prove the correctness of the logic generally. However, verification is not a substitute for testing because there can be faults in a formal proof just as surely as there can be faults in a system. Used together, testing and verification can provide a high level of assurance that a system’s logic is correct.

Data To Be Provided

[Technical Data Package]
(Changes / additions to current spec)

· A claim of conformance, as defined in xref (Conformance clause), including explicit statement of the capacities and limits within which the system is claimed to operate correctly.

· Source code, for systems using software; analogous formal logic designs, for systems not using software.

· For each distinct function, method, procedure, operation, etc., in source code or analogous logic design:

· The preconditions and postconditions, formally stated using the terms defined in xref (Domain of Discourse), including any assumptions about capacities and limits within which the system is expected to operate.

· A convincing argument (possibly, but not necessarily, a formal proof) that the preconditions and postconditions accurately represent the behavior of the function, method, procedure, operation, etc.

·
A formal proof, using the preconditions and postconditions, that the software or logic design as a whole satisfies each of the assertions indicated in xref (Assertions) for the profiles to which conformance is claimed, for all cases within the aforementioned capacities and limits.
Logic Verification

Because of its high complexity, the scope of logic verification is necessarily limited to the core vote gathering and tabulating functions of specific components of the voting system (a voting machine and/or a central tabulator).
This standard does not address ranked order voting and does not attempt to define every voting variation that jurisdictions may use. It suffices for 1 of M, N of M, and cumulative voting.
Domain of discourse

Preconditions and postconditions shall be stated using the following terms.

	Term
	Definition

	A(t,v)
	Boolean function, returns true if and only if voter v’s ballot or ballot image conforms to jurisdiction-dependent criteria for accepting or rejecting entire ballots, such as stray marks policies and voter eligibility criteria, as of time t. The system may not be able to determine the value of A(t,v) without human input; however, it may assign tentative values according to local procedures and state law, to be corrected later if necessary by input from election workers.
The value of A(t,v) may change over time as a result of court decisions, registrar review of voter eligibility, etc.
In a paper-based system, A(t,v) will be false if voter v’s ballot is unprocessable.

	B(v)
	The time at which voter v begins voting (i.e., when the ballot is enabled).

	C(r)
	The set of all ballot positions (candidates or choices) that are “on the ballot” in a contest r.

	C′(r,t)
	The set of all ballot positions (candidates or choices) for a contest r, including any write-ins that the voters have written in as of time t. Where write-ins are not allowed, C′(r,t) = C(r).

	c, cn, etc.
	Individual ballot positions.

	D(v)
	The time at which voter v is done voting (the time at which the ballot is cast or the ballot of a fleeing voter is spoiled).

	K(r,t)
	For a given contest, the count of ballots such that A(t,v) is true and S(r,t,v) = N(r,v) and N(r,v) > 0 (the count of normal, counted ballots).

	LB
	A limit on the number of ballots or ballot images that the system is claimed to be capable of processing correctly.

	LC
	A limit on the number of ballot positions per contest that the system is claimed to be capable of processing correctly.

	LF
	A limit on the number of ballot forms that the system is claimed to be capable of processing correctly.

	LR
	A limit on the number of contests that the system is claimed to be capable of processing correctly.

	LT
	A numerical limit on vote totals that the system is claimed to be capable of processing correctly.

	LV
	A limit on the number of voters (including voters that cast provisional or challenged ballots) that the system is claimed to be capable of processing correctly.

	N(r,v)
	The total number of votes that voter v may be entitled to in contest r, pursuant to the applicable ballot form and the definition of the contest (e.g., for N of M contests, the value would be N).

For a provisional, challenged, or review-required ballot, N(r,v) reflects the number of votes that voter v is entitled to if the jurisdiction decides that the ballot should be counted. The input regarding the jurisdiction’s decision appears via A(t,v).

If the applicable ballot form does not include contest r at all, the value of N(r,v) is zero.

The value of N(r,v) does not change as a consequence of a voter having voted already.

	O(r,t)
	For a given contest, the count of ballots such that A(t,v) is true and S(r,t,v) > N(r,v) (the count of overvotes).

	P(r,t)
	For a given contest, the count of ballots such that A(t,v) is false and N(r,v) > 0 (the count of provisional, challenged, and review-required ballots that have not [yet] been validated).

	R
	The set of all contests.

	r, rn, etc.
	Individual contests in R.

	S(c,r,t,v)
	Voter v’s vote with respect to ballot position c in contest r as of time t. For checkboxes and the like, the value shall be 1 (selected) or 0 (not selected). For cumulative voting, the value shall be the number of votes that v gives to ballot position c in contest r.

	S′(c,r,t,v)
	Voter v’s vote with respect to ballot position c in contest r as accepted for counting purposes, as of time t.

	S(r,t,v)
	The total number of votes that voter v has cast in contest r as of time t,
[image: image1.wmf](

)

å

Î

=

t

r

c

v

t

r

c

,

'

C

)

,

,

,

(

S

	T(c,r,t)
	The vote total for ballot position c in contest r as of time t. This does not include votes that are invalid due to overvoting or votes that are in limbo pending the review of a provisional, challenged, or review-required ballot.

	t, tn, etc.
	Individual time points.

	tO
	The time at which polls are opened.

	tC
	The time at which polls are closed.

	tE
	The time at which the value of A(t,v) is frozen for all voters, the counting is complete, and final vote totals are required (“end”).

	U(r,t)
	For a given contest, the count of ballots such that A(t,v) is true and S(r,t,v) < N(r,v) (the count of undervotes).

	V(t)
	The set of all voters who have presented within our context by time t, including any voter that is presently voting.

	v, vn, etc.
	Individual voters in V(t).

	Z(r,t)
	For a given contest, the count of ballots such that S(r,t,v) = N(r,v) = 0. (This accounts for voters who receive ballot forms that do not include a given contest, or who otherwise refrain from voting in a contest in which they are not entitled to vote.)

The scope of these terms is herein referred to as the domain of discourse. Postconditions that impact something outside the domain of discourse are not of interest unless that thing impacts the behavior of some function with respect to the domain of discourse. The vendor shall define such terms as are necessary to state any and all dependencies and assumptions that may impact the behavior of some function with respect to the domain of discourse and use them consistently in all affected preconditions and postconditions. An excess of extraneous dependencies may negatively impact the VSTL’s ability to determine the system’s correctness and thereby prevent qualification.
A function may have no impact on anything in the domain of discourse and no dependency on anything in the domain of discourse. Such a function shall have a true precondition and a postcondition that states that nothing in the domain of discourse is changed.
Assertions

General invariants:

tO < tC ≤ tE
v∈V(t) → B(v) ≤ t

B(v) < D(v)

S(c,r,t,v) ≥ 0

S′(c,r,t,v) ≥ 0

S(c,r,t,v) > 0 → c∈C′(r,t)

The following assertions formalize a subset of the compliance points appearing in xref. Each textual assertion is intended to elucidate the formal assertion(s) that follow it. In case of discrepancy or confusion, the formal assertions are normative.

No one shall vote before polls are opened or after polls have closed, or during the process of opening or closing the polls. (xref requirements 20050104 #2 (2), no other ballots are counted)
B(v) > tO
D(v) < tC
A voter shall have no votes before he or she begins voting.
t < B(v) → S(r,t,v) = 0
A voter’s votes shall not change once the voter is done voting. (xref requirements 20050104 #4, Accumulate Count and Report – Atomic Requirements 20041229 #5 – maintain integrity of voting and audit data, including ballot images).
t ≥ D(v) → S(c,r,t,v) = S(c,r,D(v),v)

Every ballot shall be accounted for.

K(r,tE) + O(r,tE) + P(r,tE) + U(r,tE) + Z(r,tE) =
[image: image2.wmf])

(

V

E

t

Cumulative voting

All valid votes shall be counted. (xref requirements 20050104 #2 and #4)
t ≥ D(v) ^ A(t,v) ^ S(r,D(v),v) ≤ N(r,v) → S′(c,r,t,v) = S(c,r,D(v),v)

No invalid votes shall be counted. (xref requirements 20050104 #4)
t ≥ D(v) ^ (S(r,D(v),v) > N(r,v) ∨ ~A(t,v)) → S′(c,r,t,v) = 0

The final vote totals shall accurately reflect all valid votes and only valid votes. (xref requirements 20050104 #4, 2002VSS Vol. 1 Sec. 1, p. 11: “Absolute correctness of all ballot processing software, for which no margin for error exists.”) This does not include votes that are invalid due to overvoting or votes that belong to provisional, challenged, or review-required ballots that were not validated. Such ballots are accounted for separately (O(r,t), P(r,t)) and their votes are not included in the vote totals.

[image: image3.wmf](

)

(

)

å

Î

=

)

(

V

E

E

E

,

,

,

S'

,

,

T

t

v

v

t

r

c

t

r

c

N of M contests
N of M is identical to cumulative voting but for the addition of the following invariant, which reflects the design of a ballot form that allows only one vote in each ballot position (equivalent to a checkbox).
S(c,r,t,v) ≤ 1
Reporting
The phrase “shall publish” indicates information that shall appear in the Public Information Package as well as the Qualification Test Report. The phrase “shall report” indicates information that shall appear in the Qualification Test Report. The term “finding” refers to a result of the VSTL’s formal inquiry (a verdict).

For each distinct function, method, procedure, operation, etc., in source code or analogous logic design, the VSTL shall publish a finding on whether the preconditions and postconditions correctly describe the behavior of the function in all cases. This finding shall be one of Correct, Incorrect, or Unable to Determine. No system shall be qualified unless all preconditions and postconditions are found Correct.

The VSTL shall publish a finding whether the assumptions about capacities and limits that appear in the preconditions, postconditions, and proofs are consistent with the capacities and limits that the system is claimed to be capable of processing correctly. This finding shall be one of Consistent, Inconsistent, or Unable to Determine. No system shall be qualified unless the assumptions about capacities and limits are found Consistent.

For the software or logic design as a whole, and for each assertion indicated for the profiles to which conformance is claimed, the VSTL shall publish a finding whether the assertion is satisfied in all cases within the aforementioned capacities and limits. This finding shall be one of Satisfied, Unsatisfied, or Unable to Determine. No system shall be qualified unless all assertions are found Satisfied.
Design Requirement Verification
 [The VSTL shall verify by code / design review that information extracted to machine-readable media and/or transmitted over telecom lines is accuracy and integrity checked.]

[The VSTL shall verify 22-month archivalness.]
Functional Tests

Test ballot forms

Test ballot form 1

Test ballot form 1 shall contain LR 1-of-M contests where M = LC.

The contests shall be described as follows (substituting numbers from 1 to LR for r):

This is Contest r in Test Ballot Form 1. Vote for at most one of the following choices.
The choices in each contest shall be of the following form (substituting numbers from 1 to LC for c):

Contest r Choice c

There are no write-in choices in this ballot form.
Test ballot form 2

Test ballot form 2 shall contain LR 1-of-M contests where M = LC.

The contests shall be described as follows (substituting numbers from 1 to LR for r):

This is Contest r in Test Ballot Form 2. Vote for at most one of the following choices.
The choices from 1 to LC-1 in each contest shall be of the following form (substituting numbers from 1 to LC-1 for c):

Contest r Choice c

The final choice in each contest shall be a write-in opportunity.
Test ballot form 3

Test ballot form 3 shall contain 1 1-of-M contest where M = 1.

The contest shall be described as follows:

This is the only contest in Test Ballot Form 3. There is only one candidate on the ballot.

The only choice in the contest shall be the following:

Unopposed Candidate
Test ballot form 4
Test ballot form 4 shall contain 1 1-of-M contest where M = 1.

The contest shall be described as follows:

This is the only contest in Test Ballot Form 4. There are no candidates on the ballot.

The only choice in the contest shall be a write-in opportunity.

Test ballot form 5

Test ballot form 5 shall contain LR N-of-M contests where N = M = LC.

The contests shall be described as follows (substituting numbers from 1 to LR for r):

This is Contest r in Test Ballot Form 5. Vote for at most LC of the following choices.
The choices in each contest shall be of the following form (substituting numbers from 1 to LC for c):

Contest r Choice c

There are no write-in choices in this ballot form.

Test ballot form 6

Test ballot form 6 shall contain LR N-of-M contests where N =
[image: image4.wmf]ú

û

ú

ê

ë

ê

2

L

C

and M = LC.

The contests shall be described as follows (substituting numbers from 1 to LR for r):

This is Contest r in Test Ballot Form 6. Vote for at most N of the following choices.
The first M-N choices in each contest shall be of the following form (substituting numbers from 1 to M-N for c):

Contest r Choice c

The final N choices shall be write-in opportunities.
Test ballot form 7
Test ballot form 7 shall contain LR N-of-M contests where N = M = LC.

The contests shall be described as follows (substituting numbers from 1 to LR for r):

This is Contest r in Test Ballot Form 7. There are no candidates on the ballot. Write in at most LC choices.

All LC choices in each contest shall be write-in opportunities.

Filler test ballot forms
In an abstract test case in which it is required to test with the maximum number of ballot forms supported by the voting system, additional ballot forms shall be derived from one of the above ballot forms as specified by the test case, only substituting “Filler Test Ballot Form y (from x)” for “Test Ballot Form x” in the descriptions of the contests, with y ranging from 1 to LF.
Abstract test cases
General template
Most test cases will follow this general template.
1. Set up (program election, prepare ballots, etc.)

2. Open poll

3. Run test ballots

4. Close poll

5. Report

6. Inspect reports

[Incorporate details from II.3.3.1 and 2]
General pass criteria

If the VSTL is unable to execute a given test because the system does not support required functionality, the test verdict shall be Fail.

During all tests, the VSTL shall keep track of real time and any operational failures (crashes, unexpected errors, and other apparent failures of hardware, software or firmware).
If an operational failure should occur during a particular test execution, the VSTL shall note the failure for use in the calculation of MTBF. The VSTL shall then follow the vendor’s documented procedures for recovering from operational failures. After recovery, the VSTL shall attempt to re-execute the test that was affected by the operational failure. If the failure reoccurs, the test verdict shall be Fail.

If a test runs to completion without operational failure, the VSTL shall inspect the reports and compare the reported totals with the values of T(c,r,tE), K(r,tE), O(r,tE), P(r,tE), U(r,tE) and
[image: image5.wmf])

(

V

E

t

 as specified in [xref]. If all reported totals are identical to the specified values, the test verdict shall be Pass; otherwise the test verdict shall be Fail.
FIXME: Lots of reporting levels – one test or all tests? Never got an answer to the question of whether particular levels or a general capability is required.
[Requirements from 2002 VSS follow]

· The procedure to simulate closing of polls shall perform
any
hardware operations required to disable ballot counting and close the polls. {Reworded from VSS II.3.3.1} <Part of testing strategy>

· The procedure to simulate closing of polls shall obtain data reports and verify correctness. {Reworded from VSS I.3.3.1} <Part of testing strategy>
· The procedure to simulate election reports shall obtain reports at the precinct, polling place and jurisdiction levels. {Reworded from VSS I.3.3.2.c.1} <Part of testing strategy>

· The procedure to simulate election reports shall obtain consolidated reports. {Reworded from VSS I.3.3.2.c.2} <Part of testing strategy>

· The procedure to simulate election reports shall test ad-hoc query access, if this is a feature of the
system. {Reworded from VSS II.3.3.2.c.3} <Part of testing strategy>

· The procedure to simulate election reports shall verify correctness of all reports and queries. {Reworded from VSS I.3.3.2.c.4} <Part of testing strategy>
Functional tests
The purpose of a functional test is to establish that one or more functional features that are required to be supported, are supported. Functional tests are not stress tests. For these, refer to [xref Capacity tests and Environmental tests].

Closed primaries
Open primaries
Partisan offices
Non-partisan offices
Write-ins
Primary presidential delegation nominations
Ballot rotation
Straight party voting
Cross-party endorsement
Split precincts
N of M voting
(For N > 1)
Recall issues with options
Cumulative voting
Ranked order voting
[NO SPEC FOR THIS]

Provisional / challenged ballots
Review-required ballots
Capacity tests

[Requirements from 2002 VSS follow]
· For all systems, the total number of ballots to be processed by each precinct counting device during system level integration testing shall reflect the maximum number of active voting positions and the maximum number of ballot styles that the TDP claims the system can support. {Reworded from VSS I.6.2.3} <Part of testing strategy>
· The procedure to simulate counting ballots shall cast test ballots in a number sufficient
 to demonstrate proper processing, error handling, and generation of audit data. {Reworded from VSS I.3.3.1} <Part of testing strategy>
· The procedure to simulate counting ballots shall count test ballots in a number sufficient
 to demonstrate proper processing, error handling, and generation of audit data. {Reworded from VSS I.3.3.2} <Part of testing strategy>
Environmental tests

[Insert references to commercially available environmental testing when known]

Accuracy tests
[Any test that runs long enough to satisfy the statistical criteria and ends with checking of the totals suffices.]
[Requirements from 2002 VSS follow]

· All of the accuracy requirements contained language saying “no more than one in 10,000,000 ballot positions, with a maximum acceptable error rate in the test process of one in 500,000 ballot positions.”
Other tests
Ballot counters.

Audit trails.
Security.

Usability.
Accessibility.

� The use of preconditions and postconditions as we have recommended first appeared in C. A. R. Hoare, “An Axiomatic Basis for Computer Programming,” Communications of the ACM, v. 12, n. 10, October 1969, pp. 576-580, 583, with ideas derived from Robert W Floyd, “Assigning Meanings to Programs,” in J. T. Schwartz, ed., Mathematical Aspects of Computer Science: Proceedings of Symposia in Applied Mathematics, v. 19, American Mathematical Society, 1967, pp. 19-32.

� Based on finding, definition 6, in the New Shorter Oxford English Dictionary, 1993.

�Possibly this text belongs in rationale.

�Informality is permitted here to bridge the gap between a programming language with informal semantics and the formality that we require. However, allowing informal proofs for functions while requiring formal proofs for the system as a whole would, without additional regulation, lead vendors to pile as much as possible into as few functions as possible. To combat this, some limitation on the complexity of individual functions (such as are already there) must be retained in the coding rules. Possibly this commentary also belongs in rationale.

�FIXME: multiple reporting levels are not clearly addressed by this model. Just need appropriate scoping of the totals – the logic is the same. Never got an answer to the question of whether particular levels or a general capability is required.

�This section predates the onets that follow and needs to be revisited.

�Shouldn’t there be a separate requirement mandating the simulation procedure?

�^^ Implementation-specific. II.3.3.1 tries to enumerate steps while remaining completely general.

�What functionality is required, exactly?

�completely ambiguous

�completely ambiguous

_1165918606.unknown

_1170678716.unknown

_1170678805.unknown

_1166350601.unknown

_1165918247.unknown

