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1 What is pressure?

Pressure is a measure of the impact of molecules of a gas or liquid bombarding

the containing walls of the vessel for which they are con�ned. Its magnitude

is the force of impacts per unit area, i.e.

p =
F

A
:

The SI unit for measuring pressure is the pascal, abbreviated Pa, which

represents one newton per square meter (N=m2). In relation to the world

we live, a pascal is a very small quantity. Atmospheric pressure is roughly

100,000 Pa. Other common units of pressure are the bar, millibar, pound-

force per square in, torr.

Various instruments are used to measure pressure, eg. barometers, manome-
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ters, transducers, dead weight gauages, and several others. In this study the

statistical calibration of pressure transducers is considered.

2 Pressure Transducers

One instrument among the many that the NIST Pressure Measurements Di-

vision calibrates is the pressure transducer gauge. The pressure transducer

is an instrument that converts pressure in a manifold to an electrical sig-

nal. How it operates can be easily understood by comparing it to a simple

electrical condenser, ie. two parallel plates seperated by a distance d with a

voltage applied to one plate and the other grounded. The electical �eld, ~E,

Voltage d

pressure
diaphragm

d

Figure 1: Illustration of condenser and tranducer

created between the plates has components Ex = 0 and Ey = V=d where V is

the magnitude of the applied voltage. Thus, the capacitance and other elec-

trical constants associated with the condenser all depend on the seperation

distance, d of the plates. Similarly, the upper part of the transducer acts
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like a condenser and as pressure enters the gauge it deforms the diaphragm

thus changing the electric �eld. From principals of physics one can derived

a pressure reading from the deformation of the electric �eld.

Because of degradation of the mechanical parts, the transducer has to be

periodly recalibrated to correct for inaccuracies that occur over time. A more

accurate and stable comparison pressure gauge is used to determine how far

o� the readings of the inaccurate instrument are from the truth.
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Figure 2: Illustration of Manometer
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One such gauge used by NIST to calibrate a transducer is the manome-

ter. The manometer is essentially a liquid �lled U � tube where the vertical

seperation of the liquid's surfaces gives a measure of the di�erence between

the pressures at the ends. The liquid is usually mercury, water or oil, whose

densities, �, are well known. The constant h denotes the height of the column

of liquid above the p1 equilibrium level. The pressures p1 and p2 at the ends

of the manometer are related by

p1 = p2 + pressure caused by the column of liquid above p1 equilibrium level

= p2 + g�h (1)

where g denotes the graviational constant. Because of its simplicity and

because the constants on the right hand side of Eq. (1) can be very accurately

determined, NIST uses a manometer to calibrant pressure gauges over a

certain range. For high pressures the manometer would not be a reasonable

instrument since the column of liquid would have to reach an unmanageable

height. In this study transducers are considered in the pressure range of .01

torr to 1 torr. A torr is approximately 133 pascals. So these are low vaccum

pressures.

An illustration of the coupling used in the calibration is shown in the

�gure below. The gauges are connected by a manifold, which is connnected to
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a pressure generator. At the start of the calibration, pressure at a certain level

is released into the manifold. This pressure produces pressures at both the

manometer and the transducer and they are recorded as a pair (x1; y1). Then,

this starting pressure is ramped up to create two new pressures at the two

instruments, (x2; y2) and so on until say n comparison values are produced

(xn; yn). At each pressure setting the pressure induced at the manometer can

be accurately determined. Based on these data a calibration curve is found

between the x's and y's.
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pressure generator

(done in steps)

yi

     x i

Figure 3: Illustration of Calibration Set-Up

For example, consider transducer XX007 that was sent to NIST for cal-
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ibration with comparison data given below Obviously, the residuals suggest
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Figure 4: Calibration data for Transducer XX007

that a polynomial �t would be a better calibration curve that a straight line,

for example one might try a �fth degree polyomial, ie.

manometer = const+a1�transducer+a2�transducer+� � �+a5�transducer+error

The residuals of this �t look better. The following curve was eventually as

the calibration curve for the full range of pressure values
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Figure 5: Residuals for a 5th Degree Polynomial Fit

3 Prior Calibrations

The transducer discussed in the previous section was recalibrated 5 times over

the last ten years, 1990, 1992,1994,1996 and 1999. Each time the calibration

was done at NIST's Pressure Measurements Division calibration laboratory.

The data for each calibration is �led and given by

(xi(t); yi(t)) = calibration data t = 1990; 1992; 1994; 1996; 1999

xi(t) = ith transducer reading at time period t

yi(t) = ith manometer reading at time period t

An analysis of the data led to models of following form for calibration
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curves

y = a0 + a1x + � � �+ ajx
j + b1Log10(x) + b2(Log10(x))

2

Note that inverse calibration is used, i.e. the primary standard is taken as the

y-value. This was done because the variability between the primary standard

and the tranducer is very small, for each calibration period.

4 Bayesian Calibration

Calibration is a prediction problem. On one hand, one has a very well made,

precise instrument (call it the standard) and on the other hand, one has a not

so precise instrument (call it the test). Both instruments measure the same

quantity and one wants to correct the inaccuracy in the test instrument based

on a comparison with the standard. So, the prediction problem is: for each

new observation on the test instrument, �nd a correction for it based on the

comparison data (transduceri; primary standardi); i = 1; : : : ; n. In terms

of the model above one wants to �nd a predicted value for the correction y

based on seeing a value x from the test.

Since calibration is a prediction problem, the predictive density plays a

major role in bayesian calibration. For a random sample yi; i = 1; : : : ; n from
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a density p(y j �), the predictive density of observing another independent

value y from p(y j �) is given by

p(y j y1; : : : ; yn) =
Z
�

p(� j y1; : : : ; yn)p(y j �)d�

where p(� j y1; : : : ; yn) is the posterior density of p(�), the prior density. In

the calibration problem on seeks the predictive density, p(y j x; data). This

requires a prior and a posterior density.

Because the instrument has been calibrated several times before, these

data sets provide excellent prior information. Below an algorithm is given

that ties these prior data sets together in such a way that at time t a posterior

density can be determined and thus a predictive density for the calibration.

Now at NIST, the data used to calibrate a gauge is just the present calibration

data. It does not used prior calibration data. Bayesian calibration provides a

means to use these prior sets of data, and thus producing a better and more

eÆcient method of calibration.

Consider the calibration problem where an instrument has been previ-

ously calibrated at times t = t1; t2; : : : ; tm�1 and a calibration is sought at

time t = tm. At each time period t the data are modeled as

yi(t) = �1(t) + �2(t)f1(xi(t)) + : : : ; �p(t)fp(xi(t)) + ��i(t) i = 1; : : : ; n(t):
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for some known functions fi(x) and � = 1=� denotes the precision. The

model can be written more succintly in vector form:

Y (t) = X(t)�(t) + ��(t)

where Y (t) = (y1(t); : : : ; yn(t))
t, X(t) = (fi(xj)); 1 � i � n(t); 1 � j � p an

n(t) � p matrix, �(t) = (�1(t); : : : ; �n(t))
t and �(t) = (�1(t); : : : ; �n(t))

t. The

error vector, �(t) has a multivariate normal distribution with mean zero and

variance-covariance matrix the identity matrix.

Consider the inverse calibration model where the test is the independent

variable. So, yi(t) represents the standard and xi(t) represents the test. Then

the calibration problem is identical to the regression problem. The dynamic

linear model is

Y (t) = X(t)�(t) + ��(t) (2)

�(t) = �(t� 1) + �!(t) (3)

where !(t) has a multivariate normal distribution with mean zero and variance-

covariance matrix V (t). It is assumed that !(t) is independent of �(t � 1)

and �(t). This is the standard dynamic linear model with parameters (�; �),

see Pole, West and Harrison (1994).

At each time period, t = ti the priors are chosen recursively, start with
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a vague Normal Gamma prior on (�(t0); �). The vector (�(t0); �) is said to

have a normal gamma prior with parameters �(t0); �(t0); �(t0); �(t0) if its

density is given by

p(�(t0); �) = Np(�(t0) j �(t0); ��(t0))Ga(� j �(t0); �(t0))

where Np(z j �; �) denotes the p dimensional multivariate normal density

with mean � and precision matrix � and Ga(� j �; �) = e���x��1�(�)=�� is

the gamma density.

By a vague prior one means a prior density that is 
at, i.e. it looks in

some sense like a uniform prior. For a normal random variable, this can be

done by making the precision very small. For a gamma random variable, this

can be done by making � very small and making � reasonably large. Indeed,

for � small one can approximate the gamma density by x��1�(�)=��. Using

the fact that log(�(�)) = (�� :5)log(�)��+ smaller order terms, one has

logGa(� j �; �) = (�� :5)log(�)��+(�� 1)log(x)��log(�). So, for � big

this term will be dominated by the constat �log(�) for reasonably sized x.

Caution if � is taken too large, computing 
(�) can slow ones computations.

The dynamic linear modeling algorithm goes as follow:

� Start with a Vague Normal Gamma Prior on (�(t0); �) with parameters
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�(t0); �(t0); �(t0); �(t0)

e.g. �p(t0) = 0; �(t0) = 10�6I; �(t0) = 104; �(t0) = 10�6.

� Use the state equation �(t1) = �(t0) + �!(t1) to compute a derived prior

for (�(t1); �).

It will be normal gamma with parameters

�d(t1) = �(t0); �d(t1)�(t0) + V (t1)

�d(t1) = �(t0) �d(t0) = �(t0)

� Compute the posterior density of (�(t1); �) given the data y(t1); X(t1).

It will be normal gamma with parameters

�pos(t1) = (�d(t1) +X(t1)
tX(t1))

�1((�d(t1)�(t0) +X t(t1)Y (t1))

�pos(t1) = �d(t1) +X(t1)
tX(t1)

�pos(t1) = �d(t0) +
1

2
n(t1)

�pos(t1) = �d(t1) +
1

2
(Y (t1)�X(t1)�(t1))

tY (t1) +
1

2
(�d(t1)� �pos(t1)�d(t1)�d(t1)

Compute the marginal density �(t1). It will be Student T with known

parameters. Use its mean to estimate �(t1). This can be used to check �t
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with the data, ŷ(t1) = X(t1)E[�(t1) j Data). Compute the predictive density

of yfut(t1) it will be Student T with known parameters.

At time t2, use the posterior of (�(t1); �) as the prior for for the next

iteration at time t = t2

Repeat.

The following equations curves were supplied as calibration curves for the

transducer at times t1=1990,t2=1992, t3=1994,t4=1996,t5=1999.

y(90) = 5:1400207E � 4 + :99706543 � x(90)� 7:59022E � 5 � x(90)2 + 1:0655982E � 5 � x(90)3

+ :0012814899 � log10(x(90)) + 4:096750E � 4 � (log10)
2(x(90))

y(92) = :416733E � 4 + :995612 � x(92)� :712361E � 4 � x(92)2 + :963455E � 5 � x(92)3

+ :103228E � 2 � log10(x(92)) + :383161E � 3 � (log10(x(92)))
2

y(94) = �7:38460E � 4 + 9:96765E � 1 � x(94)� 6:00106E � 4 � x(94)2 + 8:31965E � 5 � x(94)

� 3:39525E � 6 � r4 + 8:28179E � 5 � log10(x(94)) + 1:44930E � 4 � (log10(x(94)))
2

y(96) = 0:995150 � x(96)� 4:46523E � 4 � x(96)2 + 6:59320E � 5 � x(96)3

� 2:71946E � 6 � x(96)4 + 1:14660E � 3 � log10(x(96)) + 5:14573E � 4 � (log10(x(96)))
2

y(99) = 5:79384E � 4 + 0:994388 � x(99) + 9:36232E � 5 � x(99)2 + 1:57063E � 3 � log10(x(99))
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+ 5:80231E � 4 � (log10(x(99)))
2

These models were used in the dynamic linear model algorithm above. Be-

low is a comparison of NIST's previous calibration results and the Bayesian

calibration results based on the dynamic linear model algorithm. The com-

parison is based on the �tted models ŷ(t) = X(t)�(t) and ŷ(t) = X(t)E[�(t) j

Data], ie. their R2 parameters are compared.

NIST R2(1990) = 0:225292 R2(1992) = :0000889048 R2(1994) = 1:61953 R2(1996

Bayesian R2(1990) = 1:71688E � 06 R2(1992) = :0000874232 R2(1994) = 1:28331 R2(1996

Other comparisons are in the works. For example a comparison of pre-

dicted values. Here one row is removed from each data set and a comparison

is made to determine which method is better in predicting the value of the

deleted row.
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