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Outline

e Introduce interlaboratory studies, with motivation and
examples.
e Review influential work of W.J. Youden and John Mandel

— Youden plots, Ranking
— Row-Linear Models, Mandel-Paule Algorithm

e Present some recent work

— Generalize Youden plot
— Mandel-Paule procedure as approximate REML
— ML and profile likelihood analysis.

— Bayesian inference, including ranking




Interlaboratory Studies:
The Scenario

Each of p laboratories makes repeated measurements of m
quantities (perhaps corresponding to different concentrations of

a chemical analyte).

The number of measurements made can differ among the

laboratories.

The measurement variability may depend on the material being
measured (perhaps as an increasing function of concentration

or level).

The within-laboratory variabilities may differ (often, though,

they are assumed to be equal).




Interlaboratory Studies:
Some questions

How should one estimate ‘consensus’ values of the quantities

measured?
What is the between-laboratory variability (reproducibility)?

What is the within-laboratory variability (repeatability)? How
do they compare?

How should we look for outliers?

Which labs perform adequately; which have problems?




Why Interlaboratory Studies?

e Interlaboratory studies are primarily performed for one of two

reasons.

1. Validating a measurement method or standard material

2. Assessing the proficiency of measurement laboratories.




Examples of Both Types of Studies

e An enzymatic-gravimetric method is developed for measuring
the dietary fiber in foods. Standardized samples of foods are
prepared, and distributed to various testing laboratories, who

measure the concentrations using the proposed method.

e The National Research Council of Canada and NOAA together
conduct interlaboratory comparisons to evaluate the
proficiency of test laboratories at determining concentrations of
trace elements in marine biological tissues. Homogeneous
materials (e.g. oyster tissue, marine sediments) are distributed
among various laboratories, who return data on several trace

elements (e.g., arsenic).




Evaluating an Analytical Method for Dietary Fiber
Li and Cardozo (1994)
J. Of AOAC Int., 77, p. 689

Nine labs each measures fiber in six foods, in blind duplicates.

Sample Laboratory
1 2 oo 9
Apples 12.44 1287 --- 12.08
1248 1320 ... 12.38
Apricots 25.056 27.16 --- 25.31
25.58 2629 ... 2543
FIBRIM 74.07 76.55 --- 73.96
7™.01 7836 --- T4.24




Dietary Fiber Data:
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Metrology and the “Bureau”

e Metrology is the science of measurement

e The U.S. national laboratory for measurement science and
measurement standards is the National Institute of
Standards and Technology, formerly the National
Bureau of Standards

e Interlaboratory studies are central to characterizing
measurement systems, and assuring measurement quality;

hence NIST/NBS is a center for such investigations.

10




W.J. Youden and Interlaboratory Comparisons
Worked with ASTM and AOAC (Association of Official
Analytical Chemists)

Wrote AOAC manual for collaborative tests
Numerous contributions:

— Discussions of precision, accuracy, and bias
— Discussions of design issues

— Ranking laboratories

— Qutlier test
— The Youden Plot
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Youden on Replicates
(“Realistic Estimates of Error,” 1962)

“Repeat measurements cannot reveal the
vicissitudes of measurement making unless the

operator gives the vicissitudes a chance to occur”
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Youden on Controlled Conditions
(*“Systematic Errors in Physical Constants,” 1961)

“[Errors calculated under strictly controlled
conditions| had no more to do with the real errors
than the neatness of the laboratory, or the
promptness with which the investigator answered

his mail”
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Youden Plots
1959: Graphical Diagnosis of Interlaboratory Test Results
1959: Statistical Aspects of the Cement Testing Program

1948: Multiple Factor Experiments in Analytical Chemistry

[precursor?]
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The Youden Plot

e Instead of having several laboratories measure the same thing
in duplicate, have the labs measure two similar but different

materials, once each.

e The two measurements determine a point for each lab; these

points are displayed in a Youden Plot.

e Circular pattern indicates no between-lab variability; points
not on 45° line suggest possible problem with measurement or

homogeneity.

15




Inference on Youden Plots

g L1+ Toy ‘ B3
Var (%) ~ (207 +o2)x2_1/(p— 1)

. LT1j — L2j 2 9
Var | ———— | ~ ¢ —1
( \/5 ) sXp—l/"l(p )

e The ratio of these estimates is the F-statistic for testing o = 0.

e Confidence and prediction regions are straightforward to

calculate.
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Arsenic Data From NOAA/NRC Study
Ninth Round
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A Generalized Youden Plot

The objective is to construct a “Youden-like” plot for three
equicorrelated responses, hopefully in a way that generalizes to
higher dimension. As an example, consider dietary fiber for three

foods:
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Lab Apples Apricots Cabbage
1 25.32 26.35 28.57
L 26.73 26.62 29.48
3 27.89 26.09 31.46
4 27.70 27.20 30.22
5 27.42 26.67 30.04
6 24.30 25.69 26.76
7 e | 27.49 30.23
8 27.28 27.41 31.20
9 25.37 25.58 28.49
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e Index foods and labs by i =1,2,3 and j =1

respectively. Assume

Yig

Model

&

:Pi-i—l—bj—l—ﬁ.ij

where b; ~ N (0,0?), e;; ~ N (0,02).

e Then (mljgmgj,;rgj) 18 trivariate normal with covariance matrix

e The eigenvalues of this matrix are o2, with multiplicity 2, and

o + c:rg o2 a?
o2 a? + a}j o2
a? ol ol + O’E

302 + 02, with multiplicity 1.

&
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Plan

e Consider all planes containing [1,1,1]".

e For each of these, project the data onto this plane.

e Summarize these results in a single plot. It’s not immediately
obvious how best to do this. One possibility is to show the
range of projections for each lab, along with the “average”

projection.




Computational Details

e We need to find all planes containing

1 T
J=—|11 1]
V3
e Each such plane is determined by a vector [a, (3,7] such that
a+8+y=0and a®+ 8% +~% =1.
e The solution can be shown to be

ez B Bt
3 3

_l,l.'l?:l: 2T 2 A 352
2

v = —a-—f

¥y =
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Computation in Higher Dimensions

In higher dimensions, it becomes more efficient to

approximately average over projections by simulation.
Choose a k-dimensional vector u with iid normal components.
Center and then normalize u; call the result u'.

Project the k-dimensional data for each lab onto the plane

spanned by Ji and u'.

Discard any projection which is not within +7/2 of a

particular plane containing J.

Average over many such projections.
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Ranking Laboratories

e Laboratory ranks are often reported in proficiency studies.

(Labs with high or low ranks might be suspect.)

e Youden proposed ranking the labs within each material in a
two-way table, and comparing the mean rank with its

permutation distribution.

e A Bayesian approach (following Spiegelhalter) is probably

preferable.
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Ranking Labs: Youden’s Approach

Lab. Food Sum
1 2 3 2. 8 8
1 6 6 9 6 6 6 39
2 9 1. 6 9 9 9 43
3 3 83 1. ¥ 1 18
41 1 2 1 2 2 4 12
5 4 7 2 5 8 5 31
§ 2 8 5 4 T 2 28
i T 84 T 5 3 3
8 5 4 8 8 3 8 36
9 8 3 7T 3 4 7 32

Rank sums are compared [13, 47| permutation interval.
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Hierarchical Model With Noninformative Priors:
Two-Way Model

i =1,...,pindexes laboratories
7 =1,...,n; iIndexes measurements
k=1,...,m indexes materials
p(zijkl0i, Ok, 07) = N (6 + 0k, 07)
plo;) x 1/o;
Pl e, z:rg) = N (g, 52)
p(Ok) o 1
plo) o 1
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BUGS Code for Model
Excerpt

e 9; is the laboratory “random effect”.

e After each draw from the approximate posterior, determine the

ranks of the 4; by using the funcitons step and sum.

for (i in 1:LABS){
for (j in 1:LABS){
greater.than[i, jl<- step(delta[i]-deltal[jl);
}
rank [i]<-sum(greater.than[i,]);

32
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Interlaboratory Study
Methodology at NBS
John Mandel (1948- )

e John Mandel Also a chemist with statistical training,
Mandel’s career has been devoted to work in interlaboratory
studies, and to understanding measurement as a process. His
most influential contributions center on the Row-Linear
Model for two-way tables in interlaboratory studies, and on
the Mandel-Paule approach to single material studies. He has
long been an influential member of the American Society for

Testing and Materials.
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Single-Material Interlaboratory Model:
One-Way, Unbalanced, Heteroscedastic
Random-Effects ANOVA

e Laboratory sample means z; distributed independently normal

with mean g and variance o? + 72, where 72 = o2 /n;.

e Expected mean for ith laboratory is also normal, with mean u
2

and variance o

S m "‘ Y - L 2 1 2 Ll =] - " L d 2 — 2 "

e Sullicient statistics I; and 1] = s; /n;.
If z;; denotes the jth measurement from the ith lab, then

Tij = ,u—l—b,; + €4y,

where b; ~ N (0, 0?) and ei; = N (0, a'f); mutually independent.
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One-Way Models in
Interlaboratory Studies:
The Mandel-Paule Estimator
J. of Research of the NBS (1982)

e For arbitrary positive weights {w;}r_;,

weighted mean is
. ?:1 WyiT;,
= P
i=1

W;

o Mandel-Paule estimate of p is the weighted mean fi for which

1
“-]5': = f"j-'az—_l_tf
where o2 is the root (if any) of
p
Q = Zi;;g(;ﬁi, —p)l=p-1
i=1
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Mandel-Paule Mean for Two Laboratories

e It turns out that the Mandel-Paule estimator of the consensus

mean can be found in closed form for p = 2 laboratories:

o If
1Z1. — 2|
————uu] ==,
Vi + 8
then . .
= 2 2
1/t + ]./tg
otherwise

. i1,+-ig,+_1 12 — 2
| = — iy I SN
F 2 2 \T1 — o
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The Mandel-Paule Algorithm and ML/REML
Maximum-Likelihood for a linear model
Y=X3+e¢e,
where e ~ N (0, X) is equivalent to minimizing of ||, subject to

(y - XP)'S 7y~ XB) =n (1)
where § is the GLS estimate of G, and n is the number of

observations.

For our one-way model, if the G’E are replaced by S?: then (1), an

equation in o2 alone, is

P
> wi@ — i) =p

f=1

Had REML been used, rather than ML, then the p on the RHS

above would be a p — 1, precisely Mandel and Paule’s equation.
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Maximum Likelihood
(Cochran, 1937)

Let w; = 1/(0® + 77), vi = n; — 1, and determine &, 77, and [ to
satisfy
' - 2
(45) wi—w(@i— )+ v (& - &) =0

(B) Z?:l wi(Z;., — p)? = Zf:l Wi

& -
Wil
(©) = Zf:;
Zt’:l i
Note that (B) may have multiple roots. Cochran (1937) proposed
setting 72 = ¢? and solving (B) for o2, then using (C).
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The Loglikelihood Function:
A Better Parametrization

Define weights by

= 3
The loglikelihood becomes
p v
X = Zni log (g—Z)

i=l1

p 2
Vi _ 2 yzf.t ]

= — | &5 — )" +

P
— Z vilog(l — ;) + K.
i=1

2

Differentiate this with respect to parameters u,c* and

43




ML Equations

D =
i=1 Tidi. e i:lwixi'

= =
Zi i Z;«: Wi

= L U{I?
[ - 2]
o il — P

v — (a: + 27 +
[(ﬂi + 1):‘1.;; + ('ﬂ.—i — 1)5{ + 1] ¥

— Tty = 0
where .
iy = :
(. — p)?
and 5
1+
rl}i = t 2
(:r,., - ﬁ')
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Result #1:
Monotone Convergence to Stationary Points of the
Likelihood

e For any starting values pp, 02, maximize the likelihood over
the weights by solving the cubics. (If there are multiple real
roots, choose the one which causes the biggest increase in the
likelihood.)

e Let
p g it
_Sanfeonept
=1 T4
D
2o 3_]_ F}I‘imi
H1 =
i:l T'i':

solve for new weights, and iterate. This iteration always

monotonicall increases the likelihood.




Result #2:
Location of Stationary Values of the Likelihood

e At a stationary point of the likelihood,

52 — D ic1 Vi (s — )’

Zi'j:l Vi

hence

e All of the stationary points of the likelihood fi and & are within
the rectangle in the (u, o) plane given by

min(z; ) < i < max(Zz; )
1 T

and

0 < ¢ < max(z; ) — min(z; ).
] L
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Result #3:

Location of the Roots of Cubic Equations for Weights (~;)

e Each cubic likelihood equation has one or three roots +; € [0, 1].

e The “best” necessary condition for three roots is that

where

i

and

(@i — p)? > max(a®/gi, t} /hi),

. 1 s n; — 1 T
—2—6 mhln{glhln ( =y )—El}

8 3
7mm; 7O

_ (1-q)?* _ 1 2
M= tmi—1) ~ 2m; TOM )




Hierarchical Model With
Noninformative Priors

it =1,...,pindexes laboratories

i

7 =1,...,n; indexes measurements

p(ij|6i,07)
p(oi)
p(8i|p, 0?)
p(p)

p(o)

N (6;,07)
1/0;

N {qucrg}
1

1




Posterior given o =0, p > 1

Given o = 0, then the posterior distribution of the consensus mean

 is proportional to a product of scaled {-densities:

p _
| T; — W
p(ul{zij}o =0) o || +Tni1 (—)

X t'
i=1 "t .




The General Case: o > ()

In general, p(p|o., {x;;}) is proportional to a product of the

distributions of the random wvariables

VT

Ui =I; + —T;'l{—l +gZ:

Sy

where T}, ;1 is a t-distributed random variable with n; — 1 degrees
of freedom, Z is distributed N (0,1), and T),, 1 and Z are

independent.




A Useful Probability Density

Let T, and Z denote independent Student-f and standard normal
random variables, and assume that ¢» > 0 and v > 0. Then

= 252
2
has density

p+1);2 1 —y[1+t.:;‘ip]
& ) = dy.
f ( u;’E\/_ [ 1":ilr +v 4




Posterior of (u, o)

Assume & ~ N (u,0?), o ~ p(o),
p(p) o 1, p(o;) o 1/0;.

Then the posterior of (p, o) is

:iril—;L_ZZJE
B Y|

2
plunal{e)) x o) [T 1 fu |
=1 *

The posterior of p given o = (0 is a product of scaled t-densities

centered at the x; , since

1 Ti — U o T —
S 0| = =T _ .
tifh 1 [ i []] s n;—1 ( ti

We will take p(o) = 1, though an arbitrary proper prior does

not introduce additional difficulties.

]
o
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Small Simulation Comparing
Bayesian and Frequentist Intervals
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Two-Way Tables

e The typical data structure for an interlaboratory study is a
two-way table, although sometimes (as above) the data are

analyzed one material at a time.
e One way to model such data is a two-way ANOVA with
interaction:

Yijk = B+ ai + B; +ij + €ijk

where
— a4, 1 =1,...,p1is the laboratory effect (perhaps random)
— 85,3 =1,...,mis the material effect (fixed)

— eijk, k= 1,...,n4; is the measurement error, with variance
which probably

depends on material.
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Mandel’s Approach to Two-Way Tables

e Typically, one sees unequal error variances for different

materials, and often nonadditivity as well.

e Transforming the data can help, but Mandel argues that this is

not appropriate since there are multiple variances in the model.
e Mandel’s approach consists of
1. Estimating the within variance separately for each material,
and then reducing the data to cell means.
2. Estimating the row effects, column effects, and interaction.

3. Regressing the estimated interaction against the column
(material) effects. This results in a decomposition of the
interaction into a part due to slopes among labs, and a

residual.
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Calculations for the Row-Linear Model

e LFrror variances:

p nij . \2

g2 — Zui=l ko1 (Yijk — U.5.)
8§ = P

; i1 (g5 — 1)

e Effects:

io= 0.

&; = Ui — Y.

& = B

Yi = Uij. —B— G — G

e Row-linear model for interaction:
Yij = bif; + hij

where b; is the least-squares slope for the ith lab., and h;; is the

part of the interaction not explained by the linear regression.
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Laboratory Linear Regressions
for the Fiber Data

e If we do these linear regressions for the fiber data, we find some

very significant slopes. But also some insignificant ones.

e The significant slopes are strongly influenced by the Fibrim

data.
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Lab. b; S, b; / S, P-Value
1 -0.0256 0.0075 -3.4129  0.0270
2 0.0140 0.0044  3.1827 0.0334
3 0.0123  0.0207 0.5940 0.5845
4 -0.0095 0.0115 -0.8274  0.4545
5 -0.0005 0.0058 -0.0814  0.9391
6 -0.0504 0.0137 -3.6760  0.0213
i 0.0686 0.0064 10.7495  0.0004
8 0.0183 0.0120 1.5239 0.2022
9 -0.0272  0.0041 -6.5961  0.0027
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The Row-Linear ANOVA Table
We can write Mandel's model as:
Uij. = Ui.. + (b + 1) (75 — 7...) + hi;

Some refer to this as Mandel’'s ‘bundle-of-lines’.

The ANOVA table is

Rows p—1 my . (9i. — '*';")2

Columns m — 1 2= T

Interaction (p—1)(m—-1) > (v — . —¥j + y)°
Slopes p—1 Zij 55(?‘;’; —g..)?

Remainder (p— 1)(m — 2) Zi;j h';fj




Row-Linear ANOVA Table for Dietary Fiber Data

Source SS  df F-Ratio

Labs. 64.48 8 23.08

Foods 12447871.91 5 T7127822.96

Interaction 36.04 40 2.58
Slopes 24.86 8 8.90
Resid. 11.18 32

P-Value for Slopes: 2.5x1076
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Summary

Interlaboratory studies are important in many fields.

W.J. Youden and John Mandel of the National Bureau of
Standards have left an important mark on the simple methods
in common use today, through the Youden plot, the

Row-Linear Model, and other ideas.

These methods have been reviewed, and some extensions

presented.

There remains considerable opportunity for new methodology,

more realistic and computationally intensive.
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