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Interlaboratory Studies:
The Scenario

Each of p l[aboratories makes repeated mea-
surements of m quantities (perhaps corre-
sponding to different concentrations of a
chemical analyte).

The number of measurements made can
differ among the laboratories.

The measurement variability can depend
on the material being measured (perhaps
as an increasing function of concentration
or level).

The within-laboratory variabilities can dif-
fer (often, though, they are assumed to be
equal).



Interlaboratory Studies:
Some questions

How should one estimate ‘consensus’ val-
ues of the quantities measured?

What is the between-laboratory variability
(reproducibility)?

What is the within-laboratory variability (re-
peatability)? How do they compare?

How should one look for outliers?



Why Interlaboratory Studies?

e Interlaboratory studies are primarily performed
for one of two reasons:

1.

Validating a measurement method or
standard material

. Assessing the proficiency of

measurement laboratories.



Outline

e A single material measured by multiple lab-
oratories — one-way random model (het-
eroscedastic and unbalanced)

— Likelihood Analysis
— Bayesian Model and Credible Regions

— Examples

e Some results for two-way models.



Dietary Fiber in Apricots
Li and Cardozo (1994)

x; 82-2
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Mean: x = 26.567

Weighted Means:

MP

GD
ANOVA
MLE

26.472
26.164
26.420
27.275



Statistical Framework:
One-Way, Unbalanced, Heteroscedastic
Random-Effects ANOVA

e Laboratory sample means x; distributed in-
dependently normal with mean p and vari-
ance o2 + 72, where 72 = o2 /n;.

e Expected mean for :th laboratory is also

normal, with mean p and variance o2.

e Sufficient statistics z; and t? = s2/n;.

If z;; denotes the jth measurement from the
1th lab, then

Tij = p+ b + e,
where b; ~ N (0,02) and e;; = N (0,02); mutu-
ally independent.



Maximum Likelihood
(Cochran, 1937)

Let wz = 1/(6?4+72), v; = n;—1, and determine
o, 7- , and p to satisfy
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Note that (B) can have multiple roots. Cochran
(1937) proposed setting 77 = t? and solving
(B) for o2, then using (C).



ML Equations
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Result #1.:
Monotone Convergence to Stationary
Points of the Likelihood

e For any starting values pg, o3, maximize
the likelihood over the weights by solving
the cubics. (If there are multiple real roots,
choose the one which causes the biggest
increase in the likelihood.)

o Let
42
, Y17 | (@ — pw)? + fz_tfyz
o] = SP o
=1 """
_ > i1 ViZi
H Zle Yz

solve for new weights, and iterate.

e [ hisiteration, regardless of starting values,
always converges to a stationary point of
the likelihood, and increases the likelihood
at each step.
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Result #2:
Location of Stationary Values of the
Likelihood

e At a stationary point of the likelihood,

52 — 2521 ’)’22(52 — M)Q
2521 Vi

hence

e A/l of the stationary points of the likeli-
hood u© and ¢ are within the rectangle in
the (u,0) plane given by

min(z;) < g < max(z;)
/ /
and

0 <o <max(z;) —min(z;).
(4 (4

e After the appropriate location-scale trans-
formation of the data, it is only necessary
to search the unit square in the (u, o) plane
for stationary values.

11



Lab. 6 an Outlier for Apricot

Profile Likelihood, Apricot Fiber:
T AlLabs

Lik.
¢, 00.20.40.60.8 1

Profile Likelihood, Apricot Fiber:
Not Lab

e

Lik.
" 0 0.20.40.60.8 1

Data
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Result #3:
Location of the Roots of Cubic
Equations for Weights (~;)

e Each cubic likelihood equation has one or
three roots ~; € [0, 1].

e A necessary condition for three roots is
that

(Z; — p)? > max(o?/q;, t2/h;),
where

. 1 . 1 n@—l T
g = —2—64/n;SIN< — |[SiN — —
3 n; 2
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hi_( )

)
= 27— 1) 27m, T O

e [ hese values g; and h; are the smallest for
which this is necessary.
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J

Hierarchical Model With
Noninformative Priors

1= 1,...,p indexes laboratories

1,...,n; indexes measurements

p(x;;16;,07) N (6;,07)
p(o;) o< 1/o;

p(5i|:u)0-2) — N(:UHO-Q)
p(p) = 1
p(c) = 1
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A Useful Probability Density

Let 7, and Z denote independent Student-t
and standard normal random variables, and as-
sume that ¢» > 0 and v > 0. Then

_ v

2
<u+1>/2—1e—y{1+m}

1 /Ooy
,V/2ﬁ 0 Vy + v

has density

fv(u;¥) = dy.
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Posterior of (u,o)

Assume &; ~ N (u,02), o ~ p(o),
p(p) =1, p(o;) = 1/0;.

Then the posterior of (u,o) is

Ty — p 207
t; | t2 |

7

P q
p(p,ol{zi;}) x p(o) ]] ;fni—l [
=1 "1

The posterior of u given ¢ = 0 is a prod-
uct of scaled t-densities centered at the x;,
since

1 T;— | L T; — |
—f . 0| = -1, _ :
tifnz 1[ tz ] tZ T 1( .

We will take p(o) = 1, though an arbitrary
proper prior does not introduce additional
difficulties.
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Probability

Probability
00 02 04 06 0.8
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Approximate Confidence Intervals:
Apricot Fiber Data

Marginal Posterior of Mean With
5% Probability Interval

22 24 26 28 30

Mean
Post. mean = 26.499 Post. S.D. = 0.587 25.246 < mean < 27.588

Marginal Posterior of Between-Lab. S.D. With
95% Probability Interval

0 2 4 6

Between-Lab. Standard Deviation
Post. mean = 1.438 Post. S.D. = 0.558 0.633 < sigma < 2.763
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Small Simulation Comparing
Bayesian and Frequentist Intervals

p = 0
o; = Oe
o + ag = 1
p = 02/(02+02) =1/2

Simulation Comparing Confidence Intervals
(5 Groups of 5, rho=.5, mu=0, sigma =1)

Replicate

15

10

5

Confidence Intervals
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A Gage Study Example:
Vardeman and VanValkenberg, Tech.
(1999)

Rep. Operator

€

1 3.258 3.254 3.256 2.249 3.241
2 3.254 3.247 3.257 3.238 3.250
3 3.258 3.239 3.245 3.240 3.254

— Single part, 5 operators, 3 replicates

— Note tied values for Operator 1
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Profile Likelihood

. Gage Study: Part #2.

(Vardeman and VanValkenberg, Tech., 1999)
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Probability

0 20

Probability

Marginal Posteriors:
Vardeman and VanValkenberg Gage
Study, Part#2

Marginal Posterior of Mean With
5% Probability Interval

60

3.20 3.25 3.30

Mean
Post. mean = 3.252 Post. S.D. = 0.008 3.235 < mean < 3.264

Marginal Posterior of Between-Lab. S.D. With
95% Probability Interval

o
AN
—
o
[e 0]
o
<
o
0.0 0.05 0.10 0.15
Between-Lab. Stand d eV| tlon
Post. mean = 0.01 Post. S.D. = 0.012 0.002 < sigma < 0.039
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A Two-Way Mixed Model
(Heteroscedastic, no Interaction)

Tijk = Ok + i + ek,

e :=1,...,p Laboratories
e =1,...,n; Replicates
e k=1,...,m Materials

5; ~ N (0,0%)

e;jk ~ N (0,07)

Some notation: 72 = o?/(ny;m), v; = nym — 1.

22



ML Equations

NP @ig — F.) TP

0, — 0= o =

7— > i1 Vii..
Zle %)

Zle n;
Where 7'2 - E/(nzm), v; = mn; — 1,

Vi = 02/(0 + 7"2)1 and

S ik@ije — Tik)? + i S g (@i — Tieo — d)?

2 - '77,

o =

t7

V;n;m
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ML Equations (Cont’d)

The weights {y;}}_; are roots of the cubic
equations

v = (ai +2)77 +
[((nym + 1)a; + v;b; + 1] ; —

nz-ai — O

where

and
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An ML Iteration

1. Begin with estimates {72-(8)}.

2. Calculate the following:

¢(3+1) — Zle (fi-k—f@'..)/v'f(s)
k

- P 1/77
p(s+1) — Zﬁ’:ni('s%@-..
25:1%:(8)
S [(@-..—é)%r 1?"5%23)]
0(28—|—1) — S g0

3. Note that if the ¢, are constrained to sat-
isfy the above ML equation, then

2 _ Yik(@ije — %)% — Y o5 /m

(

n;V;m

4. Solve the cubics for new estimates 72-(8+1),

and iterate.
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Some Theoretical Results for Two-Way
Mixed Model

The one-way results discussed earlier general-
ize:

e Monotone convergence

e All stationary values of likelihood in box in
(0, Sk #2) space.

e Exactly one weight ~; € [0,1], unless ith
lab an outlier and n; small

e Variances cannot be negative at solution
to likelihood equation.
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Summary

e A reparametrization of the likelihood in the
one-way heteroscedastic model leads to new
insights in likelihood and Bayesian
analyses.

e Allowing “within” (repeatability) variances
to differ can reduce the estimated ‘“be-
tween"” (repeatability) variance.

e Many of these results carry over to two-way
models; this work is ongoing.
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