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6. Process or Product Monitoring and Control

6.1. Introduction

Contents of
Section 

This section discusses the basic concepts of statistical process control,
quality control and process capability.
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.1.How did Statistical Quality Control
Begin?

Historical
perspective

Quality Control has been with us for a long time. How long? It is safe
to say that when manufacturing began and competition accompanied
manufacturing, consumers would compare and choose the most
attractive product (barring a monopoly of course). If manufacturer A
discovered that manufacturer B's profits soared, the former tried to
improve his/her offerings, probably by improving the quality of the
output, and/or lowering the price. Improvement of quality did not
necessarily stop with the product - but also included the process used
for making the product.

The process was held in high esteem, as manifested by the medieval
guilds of the Middle Ages. These guilds mandated long periods of
training for apprentices, and those who were aiming to become master
craftsmen had to demonstrate evidence of their ability. Such
procedures were, in general, aimed at the maintenance and
improvement of the quality of the process.

In modern times we have professional societies, governmental
regulatory bodies such as the Food and Drug Administration, factory
inspection, etc., aimed at assuring the quality of products sold to
consumers. Quality Control has thus had a long history. 

Science of
statistics is
fairly recent

On the other hand, statistical quality control is comparatively new.
The science of statistics itself goes back only two to three centuries.
And its greatest developments have taken place during the 20th
century. The earlier applications were made in astronomy and physics
and in the biological and social sciences. It was not until the 1920s
that statistical theory began to be applied effectively to quality control
as a result of the development of sampling theory.

6.1.1. How did Statistical Quality Control Begin?

http://www.itl.nist.gov/div898/handbook/pmc/section1/pmc11.htm (1 of 2) [7/1/2003 5:25:06 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


The concept of
quality control
in
manufacturing
was first
advanced by
Walter
Shewhart

The first to apply the newly discovered statistical methods to the
problem of quality control was Walter A. Shewhart of the Bell
Telephone Laboratories. He issued a memorandum on May 16, 1924
that featured a sketch of a modern control chart. 

Shewhart kept improving and working on this scheme, and in 1931 he
published a book on statistical quality control, "Economic Control of
Quality of Manufactured Product", published by Van Nostrand in
New York. This book set the tone for subsequent applications of
statistical methods to process control.

Contributions
of Dodge and
Romig to
sampling
inspection

Two other Bell Labs statisticians, H.F. Dodge and H.G. Romig
spearheaded efforts in applying statistical theory to sampling
inspection. The work of these three pioneers constitutes much of what
nowadays comprises the theory of statistical quality and control.
There is much more to say about the history of statistical quality
control and the interested reader is invited to peruse one or more of
the references. A very good summary of the historical background of
SQC is found in chapter 1 of "Quality Control and Industrial
Statistics", by Acheson J. Duncan. See also Juran (1997).
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.2.What are Process Control
Techniques?

Statistical Process Control (SPC)

Typical
process
control
techniques

There are many ways to implement process control. Key monitoring and
investigating tools include:

Histograms●   

Check Sheets●   

Pareto Charts●   

Cause and Effect Diagrams●   

Defect Concentration Diagrams●   

Scatter Diagrams●   

Control Charts●   

All these are described in Montgomery (2000). This chapter will focus
(Section 3) on control chart methods, specifically:

Classical Shewhart Control charts,●   

Cumulative Sum (CUSUM) charts●   

Exponentially Weighted Moving Average (EWMA) charts●   

Multivariate control charts●   

6.1.2. What are Process Control Techniques?
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Underlying
concepts

The underlying concept of statistical process control is based on a
comparison of what is happening today with what happened previously.
We take a snapshot of how the process typically performs or build a
model of how we think the process will perform and calculate control
limits for the expected measurements of the output of the process. Then
we collect data from the process and compare the data to the control
limits. The majority of measurements should fall within the control
limits. Measurements that fall outside the control limits are examined to
see if they belong to the same population as our initial snapshot or
model. Stated differently, we use historical data to compute the initial
control limits. Then the data are compared against these initial limits.
Points that fall outside of the limits are investigated and, perhaps, some
will later be discarded. If so, the limits would be recomputed and the
process repeated. This is referred to as Phase I. Real-time process
monitoring, using the limits from the end of Phase I, is Phase II.

Statistical Quality Control (SQC)

Tools of
statistical
quality
control

Several techniques can be used to investigate the product for defects or
defective pieces after all processing is complete. Typical tools of SQC
(described in section 2) are:

Lot Acceptance sampling plans●   

Skip lot sampling plans●   

Military (MIL) Standard sampling plans●   

Underlying
concepts of
statistical
quality
control

The purpose of statistical quality control is to ensure, in a cost efficient
manner, that the product shipped to customers meets their specifications.
Inspecting every product is costly and inefficient, but the consequences
of shipping non conforming product can be significant in terms of
customer dissatisfaction. Statistical Quality Control is the process of
inspecting enough product from given lots to probabilistically ensure a
specified quality level.
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.3.What is Process Control?

Two types of
intervention
are possible
-- one is
based on
engineering
judgment
and the
other is
automated

Process Control is the active changing of the process based on the
results of process monitoring. Once the process monitoring tools have
detected an out-of-control situation, the person responsible for the
process makes a change to bring the process back into control.

Out-of-control Action Plans (OCAPS) detail the action to be
taken once an out-of-control situation is detected. A specific
flowchart, that leads the process engineer through the corrective
procedure, may be provided for each unique process.

1.  

Advanced Process Control Loops are automated changes to the
process that are programmed to correct for the size of the
out-of-control measurement.

2.  

6.1.3. What is Process Control?
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.4.What to do if the process is "Out of
Control"?

Reactions to
out-of-control
conditions

If the process is out-of-control, the process engineer looks for an
assignable cause by following the out-of-control action plan (OCAP)
associated with the control chart. Out-of-control refers to rejecting the
assumption that the current data are from the same population as the
data used to create the initial control chart limits. 

For classical Shewhart charts, a set of rules called the Western Electric
Rules (WECO Rules) and a set of trend rules often are used to
determine out-of-control.

6.1.4. What to do if the process is "Out of Control"?
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.5.What to do if "In Control" but
Unacceptable?

In control
means process
is predictable

"In Control" only means that the process is predictable in a statistical
sense. What do you do if the process is “in control” but the average
level is too high or too low or the variability is unacceptable?

Process
improvement
techniques

Process improvement techniques such as

experiments●   

calibration●   

re-analysis of historical database●   

can be initiated to put the process on target or reduce the variability.

Process must
be stable

Note that the process must be stable before it can be centered at a
target value or its overall variation can be reduced.
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6. Process or Product Monitoring and Control
6.1. Introduction

6.1.6.What is Process Capability?

Process capability compares the output of an in-control process to the specification
limits by using capability indices. The comparison is made by forming the ratio of the
spread between the process specifications (the specification "width") to the spread of
the process values, as measured by 6 process standard deviation units (the process
"width").

Process Capability Indices

A process
capability
index uses
both the
process
variability
and the
process
specifications
to determine
whether the
process is
"capable"

We are often required to compare the output of a stable process with the process
specifications and make a statement about how well the process meets specification.  To
do this we compare the natural variability of a stable process with the process
specification limits. 

A capable process is one where almost all the measurements fall inside the specification
limits. This can be represented pictorially by the plot below:

There are several statistics that can be used to measure the capability of a process:  Cp,
Cpk, Cpm.

6.1.6. What is Process Capability?
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Most capability indices estimates are valid only if the sample size used is 'large enough'.
Large enough is generally thought to be about 50 independent data values. 

The Cp, Cpk, and Cpm statistics assume that the population of data values is normally
distributed. Assuming a two-sided specification, if  and  are the mean and standard
deviation, respectively, of the normal data and USL, LSL, and T are the upper and
lower specification limits and the target value, respectively, then the population
capability indices are defined as follows:

Definitions of
various
process
capability
indices

Sample
estimates of
capability
indices

Sample estimators for these indices are given below. (Estimators are indicated with a
"hat" over them).

The estimator for Cpk can also be expressed as Cpk = Cp(1-k), where k is a scaled
distance between the midpoint of the specification range, m, and the process mean, .

Denote the midpoint of the specification range by m = (USL+LSL)/2. The distance
between the process mean, , and the optimum, which is m, is  - m, where

. The scaled distance is

(the absolute sign takes care of the case when ). To determine the
estimated value, , we estimate  by . Note that .

The estimator for the Cp index, adjusted by the k factor, is

6.1.6. What is Process Capability?
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Since , it follows that .

Plot showing
Cp for varying
process
widths

To get an idea of the value of the Cp statistic for varying process widths, consider the
following plot

This can be expressed numerically by the table below:

Translating
capability into
"rejects"

USL - LSL 6 8 10 12

Cp 1.00 1.33 1.66 2.00

Rejects .27% 64 ppm .6 ppm 2 ppb

% of spec used 100 75 60 50

where ppm = parts per million and ppb = parts per billion. Note that the reject figures
are based on the assumption that the distribution is centered at .

We have discussed the situation with two spec. limits, the USL and LSL. This is known
as the bilateral or two-sided case. There are many cases where only the lower or upper
specifications are used. Using one spec limit is called unilateral or one-sided. The
corresponding capability indices are

6.1.6. What is Process Capability?
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One-sided
specifications
and the
corresponding
capability
indices

and

where  and  are the process mean and standard deviation, respectively.

Estimators of Cpu and Cpl are obtained by replacing  and  by  and s, respectively.
The following relationship holds

Cp = (Cpu + Cpl) /2.

This can be represented pictorially by

Note that we also can write:

Cpk = min {Cpl, Cpu}.

Confidence Limits For Capability Indices

6.1.6. What is Process Capability?
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Confidence
intervals for
indices

Assuming normally distributed process data, the distribution of the sample  follows

from a Chi-square distribution and  and  have distributions related to the
non-central t distribution. Fortunately, approximate confidence limits related to the
normal distribution have been derived. Various approximations to the distribution of

 have been proposed, including those given by Bissell (1990), and we will use a
normal approximation.

The resulting formulas for confidence limits are given below:

100(1- )% Confidence Limits for Cp

where

             

 = degrees of freedom

Confidence
Intervals for
Cpu and Cpl

Approximate 100(1- )% confidence limits for Cpu with sample size n are:

with z denoting the percent point function of the standard normal distribution. If  is
not known, set it to .

Limits for Cpl are obtained by replacing  by .

6.1.6. What is Process Capability?
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Confidence
Interval for
Cpk

Zhang et al. (1990) derived the exact variance for the estimator of Cpk as well as an
approximation for large n. The reference paper is Zhang, Stenback and Wardrop (1990),
"Interval Estimation of the process capability index", Communications in Statistics:
Theory and Methods, 19(21), 4455-4470.

The variance is obtained as follows:

Let

Then

Their approximation is given by:

where

The following approximation is commonly used in practice

It is important to note that the sample size should be at least 25 before these
approximations are valid. In general, however, we need n  100 for capability studies.
Another point to observe is that variations are not negligible due to the randomness of
capability indices.

Capability Index Example

6.1.6. What is Process Capability?
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An example For a certain process the USL = 20 and the LSL = 8. The observed process average, 
= 16, and the standard deviation, s = 2. From this we obtain

This means that the process is capable as long as it is located at the midpoint, m = (USL
+ LSL)/2 = 14.

But it doesn't, since  = 16. The  factor is found by

and

We would like to have  at least 1.0, so this is not a good process. If possible,

reduce the variability or/and center the process. We can compute the  and 

From this we see that the , which is the smallest of the above indices, is 0.6667.

Note that the formula  is the algebraic equivalent of the min{

, } definition.

What happens if the process is not approximately normally distributed?

What you can
do with
non-normal
data

The indices that we considered thus far are based on normality of the process
distribution. This poses a problem when the process distribution is not normal. Without
going into the specifics, we can list some remedies.

Transform the data so that they become approximately normal. A popular
transformation is the Box-Cox transformation

1.  

Use or develop another set of indices, that apply to nonnormal distributions. One
statistic is called Cnpk (for non-parametric Cpk). Its estimator is calculated by

2.  

6.1.6. What is Process Capability?
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where p(0.995) is the 99.5th percentile of the data and p(.005) is the 0.5th
percentile of the data.

For additional information on nonnormal distributions, see Johnson and Kotz
(1993).

There is, of course, much more that can be said about the case of nonnormal data.
However, if a Box-Cox transformation can be successfully performed, one is
encouraged to use it.

6.1.6. What is Process Capability?
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6. Process or Product Monitoring and Control

6.2.Test Product for Acceptability: Lot
Acceptance Sampling

This section describes how to make decisions on a lot-by-lot basis
whether to accept a lot as likely to meet requirements or reject the lot as
likely to have too many defective units.

Contents of
section 2

This section consists of the following topics.

What is Acceptance Sampling?1.  

What kinds of Lot Acceptance Sampling Plans (LASPs) are
there?

2.  

How do you Choose a Single Sampling Plan?

Choosing a Sampling Plan: MIL Standard 105D1.  

Choosing a Sampling Plan with a given OC Curve2.  

3.  

What is Double Sampling? 4.  

What is Multiple Sampling?5.  

What is a Sequential Sampling Plan?6.  

What is Skip Lot Sampling?7.  

6.2. Test Product for Acceptability: Lot Acceptance Sampling
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.1.What is Acceptance Sampling?

Contributions
of Dodge and
Romig to
acceptance
sampling

Acceptance sampling is an important field of statistical quality control
that was popularized by Dodge and Romig and originally applied by
the U.S. military to the testing of bullets during World War II. If every
bullet was tested in advance, no bullets would be left to ship. If, on the
other hand, none were tested, malfunctions might occur in the field of
battle, with potentially disastrous results.

Definintion of
Lot
Acceptance
Sampling

Dodge reasoned that a sample should be picked at random from the
lot, and on the basis of information that was yielded by the sample, a
decision should be made regarding the disposition of the lot. In
general, the decision is either to accept or reject the lot. This process is
called Lot Acceptance Sampling or just Acceptance Sampling.

"Attributes"
(i.e., defect
counting) will
be assumed

Acceptance sampling is "the middle of the road" approach between no
inspection and 100% inspection. There are two major classifications of
acceptance plans: by attributes ("go, no-go") and by variables. The
attribute case is the most common for acceptance sampling, and will
be assumed for the rest of this section.

Important
point

A point to remember is that the main purpose of acceptance sampling
is to decide whether or not the lot is likely to be acceptable, not to
estimate the quality of the lot.

Scenarios
leading to
acceptance
sampling

Acceptance sampling is employed when one or several of the
following hold: 

Testing is destructive●   

The cost of 100% inspection is very high●   

100% inspection takes too long●   

6.2.1. What is Acceptance Sampling?
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Acceptance
Quality
Control and
Acceptance
Sampling

It was pointed out by Harold Dodge in 1969 that Acceptance Quality
Control is not the same as Acceptance Sampling. The latter depends
on specific sampling plans, which when implemented indicate the
conditions for acceptance or rejection of the immediate lot that is
being inspected. The former may be implemented in the form of an
Acceptance Control Chart. The control limits for the Acceptance
Control Chart are computed using the specification limits and the
standard deviation of what is being monitored (see Ryan, 2000 for
details).

An
observation
by Harold
Dodge

In 1942, Dodge stated:

"....basically the "acceptance quality control" system that was
developed encompasses the concept of protecting the consumer from
getting unacceptable defective product, and encouraging the producer
in the use of process quality control by: varying the quantity and
severity of acceptance inspections in direct relation to the importance
of the characteristics inspected, and in the inverse relation to the
goodness of the quality level as indication by those inspections."

To reiterate the difference in these two approaches: acceptance
sampling plans are one-shot deals, which essentially test short-run
effects. Quality control is of the long-run variety, and is part of a
well-designed system for lot acceptance.

An
observation
by Ed
Schilling

Schilling (1989) said:

"An individual sampling plan has much the effect of a lone sniper,
while the sampling plan scheme can provide a fusillade in the battle
for quality improvement."

Control of
product
quality using
acceptance
control charts

According to the ISO standard on acceptance control charts (ISO
7966, 1993), an acceptance control chart combines consideration of
control implications with elements of acceptance sampling. It is an
appropriate tool for helping to make decisions with respect to process
acceptance. The difference between acceptance sampling approaches
and acceptance control charts is the emphasis on process acceptability
rather than on product disposition decisions.

6.2.1. What is Acceptance Sampling?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.2.What kinds of Lot Acceptance
Sampling Plans (LASPs) are there?

LASP is a
sampling
scheme and
a set of rules

A lot acceptance sampling plan (LASP) is a sampling scheme and a set
of rules for making decisions. The decision, based on counting the
number of defectives in a sample, can be to accept the lot, reject the lot,
or even, for multiple or sequential sampling schemes, to take another
sample and then repeat the decision process.

Types of
acceptance
plans to
choose from

LASPs fall into the following categories:

Single sampling plans:. One sample of items is selected at
random from a lot and the disposition of the lot is determined
from the resulting information. These plans are usually denoted as
(n,c) plans for a sample size n, where the lot is rejected if there
are more than c defectives. These are the most common (and
easiest) plans to use although not the most efficient in terms of
average number of samples needed.

●   

Double sampling plans: After the first sample is tested, there are
three possibilities:

Accept the lot1.  

Reject the lot2.  

No decision3.  

If the outcome is (3), and a second sample is taken, the procedure
is to combine the results of both samples and make a final
decision based on that information.

●   

Multiple sampling plans: This is an extension of the double
sampling plans where more than two samples are needed to reach
a conclusion. The advantage of multiple sampling is smaller
sample sizes.

●   

Sequential sampling plans: . This is the ultimate extension of
multiple sampling where items are selected from a lot one at a
time and after inspection of each item a decision is made to accept
or reject the lot or select another unit.

●   

Skip lot sampling plans:. Skip lot sampling means that only a●   

6.2.2. What kinds of Lot Acceptance Sampling Plans (LASPs) are there?
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fraction of the submitted lots are inspected.

Definitions
of basic
Acceptance
Sampling
terms

Deriving a plan, within one of the categories listed above, is discussed
in the pages that follow. All derivations depend on the properties you
want the plan to have. These are described using the following terms:

Acceptable Quality Level (AQL): The AQL is a percent defective
that is the base line requirement for the quality of the producer's
product. The producer would like to design a sampling plan such
that there is a high probability of accepting a lot that has a defect
level less than or equal to the AQL.

●   

Lot Tolerance Percent Defective (LTPD): The LTPD is a
designated high defect level that would be unacceptable to the
consumer. The consumer would like the sampling plan to have a
low probability of accepting a lot with a defect level as high as
the LTPD.

●   

Type I Error (Producer's Risk): This is the probability, for a
given (n,c) sampling plan, of rejecting a lot that has a defect level
equal to the AQL. The producer suffers when this occurs, because
a lot with acceptable quality was rejected. The symbol  is
commonly used for the Type I error and typical values for 
range from 0.2 to 0.01.

●   

Type II Error (Consumer's Risk): This is the probability, for a
given (n,c) sampling plan, of accepting a lot with a defect level
equal to the LTPD. The consumer suffers when this occurs,
because a lot with unacceptable quality was accepted. The symbol

 is commonly used for the Type II error and typical values range

from 0.2 to 0.01.

●   

Operating Characteristic (OC) Curve: This curve plots the
probability of accepting the lot (Y-axis) versus the lot fraction or
percent defectives (X-axis). The OC curve is the primary tool for
displaying and investigating the properties of a LASP.

●   

Average Outgoing Quality (AOQ): A common procedure, when
sampling and testing is non-destructive, is to 100% inspect
rejected lots and replace all defectives with good units. In this
case, all rejected lots are made perfect and the only defects left
are those in lots that were accepted. AOQ's refer to the long term
defect level for this combined LASP and 100% inspection of
rejected lots process. If all lots come in with a defect level of
exactly p, and the OC curve for the chosen (n,c) LASP indicates a
probability pa of accepting such a lot, over the long run the AOQ
can easily be shown to be:

●   

6.2.2. What kinds of Lot Acceptance Sampling Plans (LASPs) are there?
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where N is the lot size.

Average Outgoing Quality Level (AOQL): A plot of the AOQ
(Y-axis) versus the incoming lot p (X-axis) will start at 0 for p =
0, and return to 0 for p = 1 (where every lot is 100% inspected
and rectified). In between, it will rise to a maximum. This
maximum, which is the worst possible long term AOQ, is called
the AOQL.

●   

Average Total Inspection (ATI): When rejected lots are 100%
inspected, it is easy to calculate the ATI if lots come consistently
with a defect level of p. For a LASP (n,c) with a probability pa of
accepting a lot with defect level p, we have

ATI = n + (1 - pa) (N - n)

where N is the lot size.

●   

Average Sample Number (ASN): For a single sampling LASP
(n,c) we know each and every lot has a sample of size n taken and
inspected or tested. For double, multiple and sequential LASP's,
the amount of sampling varies depending on the the number of
defects observed. For any given double, multiple or sequential
plan, a long term ASN can be calculated assuming all lots come in
with a defect level of p. A plot of the ASN, versus the incoming
defect level p, describes the sampling efficiency of a given LASP
scheme.

●   

The final
choice is a
tradeoff
decision

Making a final choice between single or multiple sampling plans that
have acceptable properties is a matter of deciding whether the average
sampling savings gained by the various multiple sampling plans justifies
the additional complexity of these plans and the uncertainty of not
knowing how much sampling and inspection will be done on a
day-by-day basis.

6.2.2. What kinds of Lot Acceptance Sampling Plans (LASPs) are there?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.3.How do you Choose a Single
Sampling Plan?

Two
methods for
choosing a
single
sample
acceptance
plan

A single sampling plan, as previously defined, is specified by the pair of
numbers (n,c). The sample size is n, and the lot is rejected if there are
more than c defectives in the sample; otherwise the lot is accepted.

There are two widely used ways of picking (n,c):

Use tables (such as MIL STD 105D) that focus on either the AQL
or the LTPD desired.

1.  

Specify 2 desired points on the OC curve and solve for the (n,c)
that uniquely determines an OC curve going through these points.

2.  

The next two pages describe these methods in detail.

6.2.3. How do you Choose a Single Sampling Plan?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling
6.2.3. How do you Choose a Single Sampling Plan?

6.2.3.1. Choosing a Sampling Plan: MIL
Standard 105D

The AQL or
Acceptable
Quality
Level is the
baseline
requirement

Sampling plans are typically set up with reference to an acceptable
quality level, or AQL . The AQL is the base line requirement for the
quality of the producer's product. The producer would like to design a
sampling plan such that the OC curve yields a high probability of
acceptance at the AQL. On the other side of the OC curve, the consumer
wishes to be protected from accepting poor quality from the producer.
So the consumer establishes a criterion, the lot tolerance percent
defective or LTPD . Here the idea is to only accept poor quality product
with a very low probability. Mil. Std. plans have been used for over 50
years to achieve these goals.

The U.S. Department of Defense Military Standard 105E

Military
Standard
105E
sampling
plan

Standard military sampling procedures for inspection by attributes were
developed during World War II. Army Ordnance tables and procedures
were generated in the early 1940's and these grew into the Army Service
Forces tables. At the end of the war, the Navy also worked on a set of
tables. In the meanwhile, the Statistical Research Group at Columbia
University performed research and outputted many outstanding results
on attribute sampling plans.

These three streams combined in 1950 into a standard called Mil. Std.
105A. It has since been modified from time to time and issued as 105B,
195C and 105D. Mil. Std. 105D was issued by the U.S. government in
1963. It was adopted in 1971 by the American National Standards
Institute as ANSI Standard Z1.4 and in 1974 it was adopted (with minor
changes) by the International Organization for Standardization as ISO
Std. 2859. The latest revision is Mil. Std 105E and was issued in 1989.

These three similar standards are continuously being updated and
revised, but the basic tables remain the same. Thus the discussion that
follows of the germane aspects of Mil. Std. 105E also applies to the

6.2.3.1. Choosing a Sampling Plan: MIL Standard 105D
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other two standards.

Description of Mil. Std. 105D

Military
Standard
105D
sampling
plan

This document is essentially a set of individual plans, organized in a
system of sampling schemes. A sampling scheme consists of a
combination of a normal sampling plan, a tightened sampling plan, and
a reduced sampling plan plus rules for switching from one to the other.

AQL is
foundation
of standard

The foundation of the Standard is the acceptable quality level or AQL. In
the following scenario, a certain military agency, called the Consumer
from here on, wants to purchase a particular product from a supplier,
called the Producer from here on.

In applying the Mil. Std. 105D it is expected that there is perfect
agreement between Producer and Consumer regarding what the AQL is
for a given product characteristic. It is understood by both parties that
the Producer will be submitting for inspection a number of lots whose
quality level is typically as good as specified by the Consumer.
Continued quality is assured by the acceptance or rejection of lots
following a particular sampling plan and also by providing for a shift to
another, tighter sampling plan, when there is evidence that the
Producer's product does not meet the agreed-upon AQL.

Standard
offers 3
types of
sampling
plans

Mil. Std. 105E offers three types of sampling plans: single, double and
multiple plans. The choice is, in general, up to the inspectors.

Because of the three possible selections, the standard does not give a
sample size, but rather a sample code letter. This, together with the
decision of the type of plan yields the specific sampling plan to be used.

Inspection
level

In addition to an initial decision on an AQL it is also necessary to decide
on an "inspection level". This determines the relationship between the
lot size and the sample size. The standard offers three general and four
special levels.

6.2.3.1. Choosing a Sampling Plan: MIL Standard 105D
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Steps in the
standard

The steps in the use of the standard can be summarized as follows:

Decide on the AQL.1.  

Decide on the inspection level.2.  

Determine the lot size.3.  

Enter the table to find sample size code letter.4.  

Decide on type of sampling to be used.5.  

Enter proper table to find the plan to be used.6.  

Begin with normal inspection, follow the switching rules and the
rule for stopping the inspection (if needed).

7.  

Additional
information

There is much more that can be said about Mil. Std. 105E, (and 105D).
The interested reader is referred to references such as (Montgomery
(2000), Schilling, tables 11-2 to 11-17, and Duncan, pages 214 - 248).

There is also (currently) a web site developed by Galit Shmueli that will
develop sampling plans interactively with the user, according to Military
Standard 105E (ANSI/ASQC Z1.4, ISO 2859) Tables.

6.2.3.1. Choosing a Sampling Plan: MIL Standard 105D
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling
6.2.3. How do you Choose a Single Sampling Plan?

6.2.3.2.Choosing a Sampling Plan with a
given OC Curve

Sample
OC
curve

We start by looking at a typical OC curve. The OC curve for a (52 ,3) sampling
plan is shown below.

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Number of
defectives is
approximately
binomial

It is instructive to show how the points on this curve are obtained, once
we have a sampling plan (n,c) - later we will demonstrate how a
sampling plan (n,c) is obtained.

We assume that the lot size N is very large, as compared to the sample
size n, so that removing the sample doesn't significantly change the
remainder of the lot, no matter how many defects are in the sample.
Then the distribution of the number of defectives, d, in a random
sample of n items is approximately binomial with parameters n and p,
where p is the fraction of defectives per lot.

The probability of observing exactly d defectives is given by

The binomial
distribution

The probability of acceptance is the probability that d, the number of
defectives, is less than or equal to c, the accept number. This means
that

Sample table
for Pa, Pd
using the
binomial
distribution

Using this formula with n = 52 and c=3 and p = .01, .02, ...,.12 we find

Pa Pd

.998 .01

.980 .02

.930 .03

.845 .04

.739 .05

.620 .06

.502 .07

.394 .08

.300 .09

.223 .10

.162 .11

.115 .12

Solving for (n,c)

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Equations for
calculating a
sampling plan
with a given
OC curve

In order to design a sampling plan with a specified OC curve one
needs two designated points. Let us design a sampling plan such that
the probability of acceptance is 1-  for lots with fraction defective p1

and the probability of acceptance is  for lots with fraction defective
p2. Typical choices for these points are: p1 is the AQL, p2 is the LTPD

and ,  are the Producer's Risk (Type I error) and Consumer's Risk
(Type II error), respectively.

If we are willing to assume that binomial sampling is valid, then the
sample size n, and the acceptance number c are the solution to

These two simultaneous equations are nonlinear so there is no simple,
direct solution. There are however a number of iterative techniques
available that give approximate solutions so that composition of a
computer program poses few problems.

Average Outgoing Quality (AOQ)

Calculating
AOQ's

We can also calculate the AOQ for a (n,c) sampling plan, provided
rejected lots are 100% inspected and defectives are replaced with good
parts.

Assume all lots come in with exactly a p0 proportion of defectives.
After screening a rejected lot, the final fraction defectives will be zero
for that lot. However, accepted lots have fraction defectivep0.
Therefore, the outgoing lots from the inspection stations are a mixture
of lots with fractions defective p0 and 0. Assuming the lot size is N, we
have.

For example, let N = 10000, n = 52, c = 3, and p, the quality of
incoming lots, = 0.03. Now at p = 0.03, we glean from the OC curve
table that pa = 0.930 and

AOQ = (.930)(.03)(10000-52) / 10000 = 0.02775.

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Sample table
of AOQ
versus p

Setting p = .01, .02, ..., .12, we can generate the following table

AOQ p
.0010 .01
.0196 .02
.0278 .03
.0338 .04
.0369 .05
.0372 .06
.0351 .07
.0315 .08
.0270 .09
.0223 .10
.0178 .11
.0138 .12

Sample plot
of AOQ
versus p

A plot of the AOQ versus p is given below.

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Interpretation
of AOQ plot

From examining this curve we observe that when the incoming quality
is very good (very small fraction of defectives coming in), then the
outgoing quality is also very good (very small fraction of defectives
going out). When the incoming lot quality is very bad, most of the lots
are rejected and then inspected. The "duds" are eliminated or replaced
by good ones, so that the quality of the outgoing lots, the AOQ,
becomes very good. In between these extremes, the AOQ rises, reaches
a maximum, and then drops.

The maximum ordinate on the AOQ curve represents the worst
possible quality that results from the rectifying inspection program. It
is called the average outgoing quality limit, (AOQL ).

From the table we see that the AOQL = 0.0372 at p = .06 for the above
example.

One final remark: if N >> n, then the AOQ ~ pa p .

The Average Total Inspection (ATI)

Calculating
the Average
Total
Inspection

What is the total amount of inspection when rejected lots are screened?

If all lots contain zero defectives, no lot will be rejected.

If all items are defective, all  lots will be inspected, and the amount to
be inspected is N.

Finally, if the lot quality is 0 < p < 1, the average amount of inspection
per lot will vary between the sample size n, and the lot size N.

Let the quality of the lot be p and the probability of lot acceptance be
pa, then the ATI per lot is

ATI = n + (1 - pa) (N - n)

For example, let N = 10000, n = 52, c = 3, and p = .03  We know from
the OC table that pa = 0.930. Then ATI = 52 + (1-.930) (10000 - 52) =
753. (Note that while 0.930 was rounded to three decimal places, 753
was obtained using more decimal places.)

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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Sample table
of ATI versus
p

Setting p= .01, .02, ....14 generates the following table

ATI P
70 .01
253 .02
753 .03
1584 .04
2655 .05
3836 .06
5007 .07
6083 .08
7012 .09
7779 .10
8388 .11
8854 .12
9201 .13
9453 .14

Plot of ATI
versus p

A plot of ATI versus p, the Incoming Lot Quality (ILQ) is given below.

6.2.3.2. Choosing a Sampling Plan with a given OC Curve
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.4.What is Double Sampling?

Double Sampling Plans

How double
sampling
plans work

Double and multiple sampling plans were invented to give a questionable lot
another chance. For example, if in double sampling the results of the first
sample are not conclusive with regard to accepting or rejecting, a second
sample is taken. Application of double sampling requires that a first sample of
size n1 is taken at random from the (large) lot. The number of defectives is then
counted and compared to the first sample's acceptance number a1 and rejection
number r1. Denote the number of defectives in sample 1 by d1 and in sample 2
by d2, then:

If d1  a1, the lot is accepted.
If d1  r1, the lot is rejected.
If a1 < d1 < r1, a second sample is taken.

If a second sample of size n2 is taken, the number of defectives, d2, is counted.
The total number of defectives is D2 = d1 + d2. Now this is compared to the
acceptance number a2 and the rejection number r2 of sample 2. In double
sampling, r2 = a2 + 1 to ensure a decision on the sample.

If D2  a2, the lot is accepted.
If D2  r2, the lot is rejected.

Design of a Double Sampling Plan

6.2.4. What is Double Sampling?
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Design of a
double
sampling
plan

The parameters required to construct the OC curve are similar to the single
sample case. The two points of interest are (p1, 1- ) and (p2, , where p1 is the
lot fraction defective for plan 1 and p2 is the lot fraction defective for plan 2. As
far as the respective sample sizes are concerned, the second sample size must
be equal to, or an even multiple of, the first sample size.

There exist a variety of tables that assist the user in constructing double and
multiple sampling plans. The index to these tables is the p2/p1 ratio, where p2 >
p1. One set of tables, taken from the Army Chemical Corps Engineering

Agency for  = .05 and  = .10, is given below:

Tables for n1 = n2

 accept  approximation values
R = numbers  of pn1 for

p2/p1 c1 c2 P = .95 P = .10

11.90 0 1 0.21 2.50
7.54 1 2 0.52 3.92
6.79 0 2 0.43 2.96
5.39 1 3 0.76 4.11
4.65 2 4 1.16 5.39
4.25 1 4 1.04 4.42
3.88 2 5 1.43 5.55
3.63 3 6 1.87 6.78
3.38 2 6 1.72 5.82
3.21 3 7 2.15 6.91
3.09 4 8 2.62 8.10
2.85 4 9 2.90 8.26
2.60 5 11 3.68 9.56
2.44 5 12 4.00 9.77
2.32 5 13 4.35 10.08
2.22 5 14 4.70 10.45
2.12 5 16 5.39 11.41

Tables for n2 = 2n1

 accept  approximation values
R = numbers  of pn1 for

p2/p1 c1 c2 P = .95 P = .10

14.50 0 1 0.16 2.32
8.07 0 2 0.30 2.42
6.48 1 3 0.60 3.89

6.2.4. What is Double Sampling?
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5.39 0 3 0.49 2.64
5.09 0 4 0.77 3.92
4.31 1 4 0.68 2.93
4.19 0 5 0.96 4.02
3.60 1 6 1.16 4.17
3.26 1 8 1.68 5.47
2.96 2 10 2.27 6.72
2.77 3 11 2.46 6.82
2.62 4 13 3.07 8.05
2.46 4 14 3.29 8.11
2.21 3 15 3.41 7.55
1.97 4 20 4.75 9.35
1.74 6 30 7.45 12.96

Example

Example of
a double
sampling
plan

We wish to construct a double sampling plan according to

p1 = 0.01      = 0.05     p2 = 0.05      = 0.10     and n1 = n2

The plans in the corresponding table are indexed on the ratio

R = p2/p1 = 5

We find the row whose R is closet to 5. This is the 5th row (R = 4.65). This
gives c1 = 2 and c2 = 4. The value of n1 is determined from either of the two
columns labeled pn1.

The left holds  constant at 0.05 (P = 0.95 = 1 - ) and the right holds 
constant at 0.10. (P = 0.10). Then holding  constant we find pn1 = 1.16 so n1

= 1.16/p1 = 116. And, holding  constant we find pn1 = 5.39, so n1 = 5.39/p2 =
108. Thus the desired sampling plan is

n1 = 108     c1 = 2     n2 = 108     c2 = 4

If we opt for n2 = 2n1, and follow the same procedure using the appropriate
table, the plan is:

n1 = 77     c1 = 1     n2 = 154     c2 = 4

The first plan needs less samples if the number of defectives in sample 1 is
greater than 2, while the second plan needs less samples if the number of
defectives in sample 1 is less than 2.

ASN Curve for a Double Sampling Plan

6.2.4. What is Double Sampling?
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Construction
of the ASN
curve

Since when using a double sampling plan the sample size depends on whether
or not a second sample is required, an important consideration for this kind of
sampling is the Average Sample Number (ASN) curve. This curve plots the
ASN versus p', the true fraction defective in an incoming lot.

We will illustrate how to calculate the ASN curve with an example. Consider a
double-sampling plan n1 = 50, c1= 2, n2 = 100, c2 = 6, where n1 is the sample
size for plan 1, with accept number c1, and n2, c2, are the sample size and
accept number, respectively, for plan 2.

Let p' = .06. Then the probability of acceptance on the first sample, which is the
chance of getting two or less defectives, is .416 (using binomial tables). The
probability of rejection on the second sample, which is the chance of getting
more than six defectives, is (1-.971) = .029. The probability of making a
decision on the first sample is .445, equal to the sum of .416 and .029. With
complete inspection of the second sample, the average size sample is equal to
the size of the first sample times the probability that there will be only one
sample plus the size of the combined samples times the probability that a
second sample will be necessary. For the sampling plan under consideration,
the ASN with complete inspection of the second sample for a p' of .06 is

50(.445) + 150(.555) = 106

The general formula for an average sample number curve of a double-sampling
plan with complete inspection of the second sample is

ASN = n1P1 + (n1 + n2)(1 - P1) = n1 + n2(1 - P1)

where P1 is the probability of a decision on the first sample. The graph below
shows a plot of the ASN versus p'.

The ASN
curve for a
double
sampling
plan

6.2.4. What is Double Sampling?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.5.What is Multiple Sampling?

Multiple
Sampling is
an extension
of the
double
sampling
concept

Multiple sampling is an extension of double sampling. It involves
inspection of 1 to k successive samples as required to reach an ultimate
decision.

Mil-Std 105D suggests k = 7 is a good number. Multiple sampling plans
are usually presented in tabular form:

Procedure
for multiple
sampling

The procedure commences with taking a random sample of size n1from
a large lot of size N and counting the number of defectives, d1.

if d1  a1 the lot is accepted.
if d1  r1 the lot is rejected.
if a1 < d1 < r1, another sample is taken.

If subsequent samples are required, the first sample procedure is
repeated sample by sample. For each sample, the total number of
defectives found at any stage, say stage i, is

This is compared with the acceptance number ai and the rejection
number ri for that stage until a decision is made. Sometimes acceptance
is not allowed at the early stages of multiple sampling; however,
rejection can occur at any stage.

Efficiency
measured by
the ASN

Efficiency for a multiple sampling scheme is measured by the average
sample number (ASN) required for a given Type I and Type II set of
errors. The number of samples needed when following a multiple
sampling scheme may vary from trial to trial, and the ASN represents the
average of what might happen over many trials with a fixed incoming
defect level.

6.2.5. What is Multiple Sampling?
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.6.What is a Sequential Sampling Plan?

Sequential
Sampling

Sequential sampling is different from single, double or multiple
sampling. Here one takes a sequence of samples from a lot. How many
total samples looked at is a function of the results of the sampling
process.

Item-by-item
and group
sequential
sampling

The sequence can be one sample at a time, and then the sampling
process is usually called item-by-item sequential sampling. One can also
select sample sizes greater than one, in which case the process is
referred to as group sequential sampling. Item-by-item is more popular
so we concentrate on it. The operation of such a plan is illustrated
below:

Diagram of
item-by-item
sampling

6.2.6. What is a Sequential Sampling Plan?
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Description
of
sequentail
sampling
graph

The cumulative observed number of defectives is plotted on the graph.
For each point, the x-axis is the total number of items thus far selected,
and the y-axis is the total number of observed defectives. If the plotted
point falls within the parallel lines the process continues by drawing
another sample. As soon as a point falls on or above the upper line, the
lot is rejected. And when a point falls on or below the lower line, the lot
is accepted. The process can theoretically last until the lot is 100%
inspected. However, as a rule of thumb, sequential-sampling plans are
truncated after the number inspected reaches three times the number that
would have been inspected using a corresponding single sampling plan.

Equations
for the limit
lines

The equations for the two limit lines are functions of the parameters p1,
, p2, and .

where

Instead of using the graph to determine the fate of the lot, one can resort
to generating tables (with the help of a computer program).

Example of
a sequential
sampling
plan

As an example, let p1 = .01, p2 = .10,  = .05,  = .10. The resulting
equations are

Both acceptance numbers and rejection numbers must be integers. The
acceptance number is the next integer less than or equal to xa and the
rejection number is the next integer greater than or equal to xr. Thus for
n = 1, the acceptance number = -1, which is impossible, and the
rejection number = 2, which is also impossible. For n = 24, the
acceptance number is 0 and the rejection number = 3.

The results for n =1, 2, 3... 26 are tabulated below.

6.2.6. What is a Sequential Sampling Plan?
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n
inspect

n
accept

n
reject

n
inspect

n
accept

n
reject

1 x x 14 x 2
2 x 2 15 x 2
3 x 2 16 x 3
4 x 2 17 x 3
5 x 2 18 x 3
6 x 2 19 x 3
7 x 2 20 x 3
8 x 2 21 x 3
9 x 2 22 x 3

10 x 2 23 x 3
11 x 2 24 0 3
12 x 2 25 0 3
13 x 2 26 0 3

So, for n = 24 the acceptance number is 0 and the rejection number is 3.
The "x" means that acceptance or rejection is not possible.

Other sequential plans are given below.

n
inspect

n
accept

n
reject

49 1 3
58 1 4
74 2 4
83 2 5
100 3 5
109 3 6

The corresponding single sampling plan is (52,2) and double sampling
plan is (21,0), (21,1).

Efficiency
measured by
ASN

Efficiency for a sequential sampling scheme is measured by the average
sample number (ASN) required for a given Type I and Type II set of
errors. The number of samples needed when following a sequential
sampling scheme may vary from trial to trial, and the ASN represents the
average of what might happen over many trials with a fixed incoming
defect level. Good software for designing sequential sampling schemes
will calculate the ASN curve as a function of the incoming defect level.
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6. Process or Product Monitoring and Control
6.2. Test Product for Acceptability: Lot Acceptance Sampling

6.2.7.What is Skip Lot Sampling?

Skip Lot
Sampling

Skip Lot sampling means that only a fraction of the submitted lots are
inspected. This mode of sampling is of the cost-saving variety in terms of time
and effort. However skip-lot sampling should only be used when it has been
demonstrated that the quality of the submitted product is very good.

Implementation
of skip-lot
sampling plan

A skip-lot sampling plan is implemented as follows:

Design a single sampling plan by specifying the alpha and beta risks and
the consumer/producer's risks. This plan is called "the reference sampling
plan".

1.  

Start with normal lot-by-lot inspection, using the reference plan.2.  

When a pre-specified number, i, of consecutive lots are accepted, switch
to inspecting only a fraction f of the lots. The selection of the members of
that fraction is done at random.

3.  

When a lot is rejected return to normal inspection.4.  

The f and i
parameters

The parameters f and i are essential to calculating the probability of acceptance
for a skip-lot sampling plan. In this scheme, i, called the clearance number, is a
positive integer and the sampling fraction f is such that 0 < f < 1. Hence, when f
= 1 there is no longer skip-lot sampling. The calculation of the acceptance
probability for the skip-lot sampling plan is performed via the following
formula

where P is the probability of accepting a lot with a given proportion of
incoming defectives p, from the OC curve of the single sampling plan.

The following relationships hold:

for a given i, the smaller is f, the greater is Pa
for a given f, the smaller is i, the greater is Pa

6.2.7. What is Skip Lot Sampling?
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Illustration of
a skip lot
sampling plan

An illustration of a a skip-lot sampling plan is given below.

ASN of skip-lot
sampling plan

An important property of skip-lot sampling plans is the average sample number
(ASN ). The ASN of a skip-lot sampling plan is

ASNskip-lot = (F)(ASNreference)

where F is defined by

Therefore, since 0 < F < 1, it follows that the ASN of skip-lot sampling is
smaller than the ASN of the reference sampling plan.

In summary, skip-lot sampling is preferred when the quality of the submitted
lots is excellent and the supplier can demonstrate a proven track record.

6.2.7. What is Skip Lot Sampling?

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc27.htm (2 of 2) [7/1/2003 5:25:11 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control

6.3.Univariate and Multivariate Control
Charts

Contents of
section 3

Control charts in this section are classified and described according to
three general types: variables, attributes and multivariate. 

What are Control Charts? 1.  

What are Variables Control Charts? 

Shewhart X bar and R and S Control Charts 1.  

Individuals Control Charts 2.  

Cusum Control Charts 

Cusum Average Run Length 1.  

3.  

EWMA Control Charts 4.  

2.  

What are Attributes Control Charts? 

Counts Control Charts 1.  

Proportions Control Charts 2.  

3.  

What are Multivariate Control Charts? 

Hotelling Control Charts 1.  

Principal Components Control Charts2.  

Multivariate EWMA Charts
  

3.  

4.  

6.3. Univariate and Multivariate Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.1.What are Control Charts?

Comparison of
univariate and
multivariate
control data

Control charts are used to routinely monitor quality. Depending on the
number of process characteristics to be monitored, there are two basic
types of control charts. The first, referred to as a univariate control
chart, is a graphical display (chart) of one quality characteristic. The
second, referred to as a multivariate control chart, is a graphical
display of a statistic that summarizes or represents more than one
quality characteristic.

Characteristics
of control
charts

If a single quality characteristic has been measured or computed from
a sample, the control chart shows the value of the quality characteristic
versus the sample number or versus time. In general, the chart contains
a center line that represents the mean value for the in-control process.
Two other horizontal lines, called the upper control limit (UCL) and
the lower control limit (LCL), are also shown on the chart. These
control limits are chosen so that almost all of the data points will fall
within these limits as long as the process remains in-control. The
figure below illustrates this.

Chart
demonstrating
basis of
control chart

6.3.1. What are Control Charts?
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Why control
charts "work"

The control limits as pictured in the graph might be .001 probability
limits. If so, and if chance causes alone were present, the probability of
a point falling above the upper limit would be one out of a thousand,
and similarly, a point falling below the lower limit would be one out of
a thousand. We would be searching for an assignable cause if a point
would fall outside these limits. Where we put these limits will
determine the risk of undertaking such a search when in reality there is
no assignable cause for variation.

Since two out of a thousand is a very small risk, the 0.001 limits may
be said to give practical assurances that, if a point falls outside these
limits, the variation was caused be an assignable cause. It must be
noted that two out of one thousand is a purely arbitrary number. There
is no reason why it could have been set to one out a hundred or even
larger. The decision would depend on the amount of risk the
management of the quality control program is willing to take. In
general (in the world of quality control) it is customary to use limits
that approximate the 0.002 standard.

Letting X denote the value of a process characteristic, if the system of
chance causes generates a variation in X that follows the normal
distribution, the 0.001 probability limits will be very close to the 3
limits. From normal tables we glean that the 3  in one direction is
0.00135, or in both directions 0.0027. For normal distributions,
therefore, the 3  limits are the practical equivalent of 0.001
probability limits.

6.3.1. What are Control Charts?
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Plus or minus
"3 sigma"
limits are
typical

In the U.S., whether X is normally distributed or not, it is an acceptable
practice to base the control limits upon a multiple of the standard
deviation. Usually this multiple is 3 and thus the limits are called
3-sigma limits. This term is used whether the standard deviation is the
universe or population parameter, or some estimate thereof, or simply
a "standard value" for control chart purposes. It should be inferred
from the context what standard deviation is involved. (Note that in the
U.K., statisticians generally prefer to adhere to probability limits.)

If the underlying distribution is skewed, say in the positive direction,
the 3-sigma limit will fall short of the upper 0.001 limit, while the
lower 3-sigma limit will fall below the 0.001 limit. This situation
means that the risk of looking for assignable causes of positive
variation when none exists will be greater than one out of a thousand.
But the risk of searching for an assignable cause of negative variation,
when none exists, will be reduced. The net result, however, will be an
increase in the risk of a chance variation beyond the control limits.
How much this risk will be increased will depend on the degree of
skewness.

If variation in quality follows a Poisson distribution, for example, for
which np = .8, the risk of exceeding the upper limit by chance would
be raised by the use of 3-sigma limits from 0.001 to 0.009 and the
lower limit reduces from 0.001 to 0. For a Poisson distribution the
mean and variance both equal np. Hence the upper 3-sigma limit is 0.8
+ 3 sqrt(.8) = 3.48 and the lower limit = 0 (here sqrt denotes "square
root"). For np = .8 the probability of getting more than 3 successes =
0.009.

Strategies for
dealing with
out-of-control
findings

If a data point falls outside the control limits, we assume that the
process is probably out of control and that an investigation is
warranted to find and eliminate the cause or causes.

Does this mean that when all points fall within the limits, the process is
in control? Not necessarily. If the plot looks non-random, that is, if the
points exhibit some form of systematic behavior, there is still
something wrong. For example, if the first 25 of 30 points fall above
the center line and the last 5 fall below the center line, we would wish
to know why this is so. Statistical methods to detect sequences or
nonrandom patterns can be applied to the interpretation of control
charts. To be sure, "in control" implies that all points are between the
control limits and they form a random pattern.

6.3.1. What are Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.2.What are Variables Control Charts?

During the 1920's, Dr. Walter A. Shewhart proposed a general model
for control charts as follows:

Shewhart
Control
Charts for
variables

Let w be a sample statistic that measures some continuously varying
quality characteristic of interest (e.g., thickness), and suppose that the
mean of w is w, with a standard deviation of w. Then the center line,
the UCL and the LCL are

UCL = w   + k w
Center Line = w
LCL = w   - k w

where k is the distance of the control limits from the center line,
expressed in terms of standard deviation units. When k is set to 3, we
speak of 3-sigma control charts.

Historically, k = 3 has become an accepted standard in industry.

The centerline is the process mean, which in general is unknown. We
replace it with a target or the average of all the data. The quantity that

we plot is the sample average, . The chart is called the  chart.

We also have to deal with the fact that  is, in general, unknown. Here
we replace w with a given standard value, or we estimate it by a
function of the average standard deviation. This is obtained by
averaging the individual standard deviations that we calculated from
each of m preliminary (or present) samples, each of size n. This
function will be discussed shortly.

It is equally important to examine the standard deviations in
ascertaining whether the process is in control. There is, unfortunately, a
slight problem involved when we work with the usual estimator of .
The following discussion will illustrate this.

6.3.2. What are Variables Control Charts?
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Sample
Variance

If 2 is the unknown variance of a probability distribution, then an
unbiased estimator of 2 is the sample variance

However, s, the sample standard deviation is not an unbiased estimator
of . If the underlying distribution is normal, then s actually estimates
c4 , where c4 is a constant that depends on the sample size n. This
constant is tabulated in most text books on statistical quality control
and may be calculated using

C4 factor

To compute this we need a non-integer factorial, which is defined for
n/2 as follows:

Fractional
Factorials

With this definition the reader should have no problem verifying that
the c4 factor for n = 10 is .9727.

6.3.2. What are Variables Control Charts?

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc32.htm (2 of 5) [7/1/2003 5:25:12 PM]



Mean and
standard
deviation of
the
estimators

So the mean or expected value of the sample standard deviation is c4 .

The standard deviation of the sample standard deviation is

What are the differences between control limits and specification
limits ?

Control
limits vs.
specifications

Control Limits are used to determine if the process is in a state of
statistical control (i.e., is producing consistent output).

Specification Limits are used to determine if the product will function
in the intended fashion.

How many data points are needed to set up a control chart?

How many
samples are
needed?

Shewhart gave the following rule of thumb:

"It has also been observed that a person would seldom if
ever be justified in concluding that a state of statistical
control of a given repetitive operation or production
process has been reached until he had obtained, under
presumably the same essential conditions, a sequence of
not less than twenty five samples of size four that are in
control."

It is important to note that control chart properties, such as false alarm
probabilities, are generally given under the assumption that the
parameters, such as  and , are known. When the control limits are
not computed from a large amount of data, the actual properties might
be quite different from what is assumed (see, e.g., Quesenberry, 1993).

When do we recalculate control limits?

6.3.2. What are Variables Control Charts?
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When do we
recalculate
control
limits?

Since a control chart "compares" the current performance of the
process characteristic to the past performance of this characteristic,
changing the control limits frequently would negate any usefulness.

So, only change your control limits if you have a valid, compelling
reason for doing so. Some examples of reasons:

When you have at least 30 more data points to add to the chart
and there have been no known changes to the process

- you get a better estimate of the variability

●   

If a major process change occurs and affects the way your
process runs.

●   

If a known, preventable act changes the way the tool or process
would behave (power goes out, consumable is corrupted or bad
quality, etc.)

●   

What are the WECO rules for signaling "Out of Control"?

General
rules for
detecting out
of control or
non-random
situaltions

WECO stands for Western Electric Company Rules
 

       Any Point Above +3 Sigma 
 ---------------------------------------------    +3  LIMIT
       2 Out of the Last 3 Points Above +2 Sigma 
 ---------------------------------------------    +2  LIMIT
       4 Out of the Last 5 Points Above +1 Sigma 
 ---------------------------------------------    +1  LIMIT
       8 Consecutive Points on This Side of Control Line 
===================================   CENTER LINE 
       8 Consecutive Points on This Side of Control Line 
 ---------------------------------------------    -1  LIMIT
       4 Out of the Last 5 Points Below - 1 Sigma 
----------------------------------------------   -2  LIMIT
       2 Out of the Last 3 Points Below -2 Sigma 
 ---------------------------------------------    -3  LIMIT
       Any Point Below -3 Sigma 

Trend Rules: 6 in a row trending up or down. 14 in a row alternating
up and down

6.3.2. What are Variables Control Charts?
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WECO rules
based on
probabilities

The WECO rules are based on probability. We know that, for a normal
distribution, the probability of encountering a point outside ± 3  is
0.3%. This is a rare event. Therefore, if we observe a point outside the
control limits, we conclude the process has shifted and is unstable.
Similarly, we can identify other events that are equally rare and use
them as flags for instability. The probability of observing two points
out of three in a row between 2  and 3  and the probability of
observing four points out of five in a row between 1  and 2  are also
about 0.3%.

WECO rules
increase
false alarms

Note: While the WECO rules increase a Shewhart chart's sensitivity to
trends or drifts in the mean, there is a severe downside to adding the
WECO rules to an ordinary Shewhart control chart that the user should
understand. When following the standard Shewhart "out of control"
rule (i.e., signal if and only if you see a point beyond the plus or minus
3 sigma control limits) you will have "false alarms" every 371 points
on the average (see the description of Average Run Length or ARL on
the next page). Adding the WECO rules increases the frequency of
false alarms to about once in every 91.75 points, on the average (see
Champ and Woodall, 1987). The user has to decide whether this price
is worth paying (some users add the WECO rules, but take them "less
seriously" in terms of the effort put into troubleshooting activities when
out of control signals occur).

With this background, the next page will describe how to construct
Shewhart variables control charts.

6.3.2. What are Variables Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.1.Shewhart X-bar and R and S
Control Charts

 and S Charts

 and S
Shewhart
Control
Charts

We begin with  and s charts. We should use the s chart first to
determine if the distribution for the process characteristic is stable.

Let us consider the case where we have to estimate  by analyzing past
data. Suppose we have m preliminary samples at our disposition, each of
size n, and let si be the standard deviation of the ith sample. Then the
average of the m standard deviations is

Control
Limits for

 and S
Control
Charts

We make use of the factor c4 described on the previous page.

The statistic  is an unbiased estimator of . Therefore, the
parameters of the S chart would be

Similarly, the parameters of the  chart would be

6.3.2.1. Shewhart X-bar and R and S Control Charts
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, the "grand" mean is the average of all the observations.

It is often convenient to plot the  and s charts on one page.

 and R Control Charts

 and R
control
charts

If the sample size is relatively small (say equal to or less than 10), we
can use the range instead of the standard deviation of a sample to

construct control charts on  and the range, R. The range of a sample is
simply the difference between the largest and smallest observation.

There is a statistical relationship (Patnaik, 1946) between the mean
range for data from a normal distribution and , the standard deviation
of that distribution. This relationship depends only on the sample size, n.
The mean of R is d2 , where the value of d2 is also a function of n. An
estimator of  is therefore R /d2.

Armed with this background we can now develop the  and R control
chart.

Let R1, R2, ..., Rk, be the range of k samples. The average range is

Then an estimate of  can be computed as

6.3.2.1. Shewhart X-bar and R and S Control Charts
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 control
charts

So, if we use  (or a given target) as an estimator of  and  /d2 as an

estimator of , then the parameters of the  chart are

The simplest way to describe the limits is to define the factor
 and the construction of the  becomes

The factor A2 depends only on n, and is tabled below.

The R chart

R control
charts

This chart controls the process variability since the sample range is
related to the process standard deviation. The center line of the R chart
is the average range.

To compute the control limits we need an estimate of the true, but
unknown standard deviation W = R/ . This can be found from the
distribution of W = R/  (assuming that the items that we measure
follow a normal distribution). The standard deviation of W is d3, and is a
known function of the sample size, n. It is tabulated in many textbooks
on statistical quality control.

Therefore since R = W , the standard deviation of R is  R = d3 . But
since the true  is unknown, we may estimate  R by

As a result, the parameters of the R chart with the customary 3-sigma
control limits are

6.3.2.1. Shewhart X-bar and R and S Control Charts
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As was the case with the control chart parameters for the subgroup
averages, defining another set of factors will ease the computations,
namely:

D3 = 1 - 3 d3 / d2 and D4 = 1 + 3 d3 / d2. These yield

The factors D3 and D4 depend only on n, and are tabled below.

Factors for Calculating Limits for  and R Charts

n A2 D3 D4

2 1.880 0 3.267
3 1.023 0 2.575
4 0.729 0 2.282
5 0.577 0 2.115
6 0.483 0 2.004
7 0.419 0.076 1.924
8 0.373 0.136 1.864
9 0.337 0.184 1.816
10 0.308 0.223 1.777

In general, the range approach is quite satisfactory for sample sizes up to
around 10. For larger sample sizes, using subgroup standard deviations
is preferable. For small sample sizes, the relative efficiency of using the
range approach as opposed to using standard deviations is shown in the
following table.

6.3.2.1. Shewhart X-bar and R and S Control Charts
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Efficiency of
R versus S

n Relative
Efficiency

2 1.000
3 0.992
4 0.975
5 0.955
6 0.930
10 0.850

A typical sample size is 4 or 5, so not much is lost by using the range for
such sample sizes.

Time To Detection or Average Run Length (ARL)

Waiting time
to signal
"out of
control"

Two important questions when dealing with control charts are:

How often will there be false alarms where we look for an
assignable cause but nothing has changed?

1.  

How quickly will we detect certain kinds of systematic changes,
such as mean shifts?

2.  

The ARL tells us, for a given situation, how long on the average we will
plot successive control charts points before we detect a point beyond the
control limits.

For an  chart, with no change in the process, we wait on the average
1/p points before a false alarm takes place, with p denoting the
probability of an observation plotting outside the control limits. For a
normal distribution, p = .0027 and the ARL is approximately 371.

A table comparing Shewhart  chart ARL's to Cumulative Sum
(CUSUM) ARL's for various mean shifts is given later in this section.

There is also (currently) a web site developed by Galit Shmueli that will
do ARL calculations interactively with the user, for Shewhart charts
with or without additional (Western Electric) rules added.

6.3.2.1. Shewhart X-bar and R and S Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.2. Individuals Control Charts

Samples are Individual Measurements

Moving
range used
to derive
upper and
lower limits

Control charts for individual measurements, e.g., the sample size = 1, use the
moving range of two successive observations to measure the process
variability.

The moving range is defined as

which is the absolute value of the first difference (e.g., the difference between
two consecutive data points) of the data. Analogous to the Shewhart control
chart, one can plot both the data (which are the individuals) and the moving
range.

Individuals
control
limits for an
observation

For the control chart for individual measurements, the lines plotted are:

where  is the average of all the individuals and  is the average of all
the moving ranges of two observations. Keep in mind that either or both
averages may be replaced by a standard or target, if available. (Note that
1.128 is the value of d2 for n = 2).

6.3.2.2. Individuals Control Charts
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Example of
moving
range

The following example illustrates the control chart for individual
observations. A new process was studied in order to monitor flow rate. The
first 10 batches resulted in

Batch
Number

Flowrate
x

Moving Range
MR

1 49.6  
2 47.6 2.0
3 49.9 2.3
4 51.3 14
5 47.8 3.5
6 51.2 3.4
7 52.6 1.4
8 52.4 0.2
9 53.6 1.2
10 52.1 1.5
  = 50.81  = 1.8778

Limits for
the moving
range chart

This yields the parameters below.

Example of
individuals
chart

The control chart is given below

6.3.2.2. Individuals Control Charts
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The process is in control, since none of the plotted points fall outside either
the UCL or LCL.

Alternative
for
constructing
individuals
control
chart

Note: Another way to construct the individuals chart is by using the standard
deviation. Then we can obtain the chart from

It is preferable to have the limits computed this way for the start of Phase 2.

6.3.2.2. Individuals Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.3.Cusum Control Charts

CUSUM is
an efficient
alternative
to Shewhart
procedures

CUSUM charts, while not as intuitive and simple to operate as Shewhart
charts, have been shown to be more efficient in detecting small shifts in
the mean of a process. In particular, analyzing ARL's for CUSUM
control charts shows that they are better than Shewhart control charts
when it is desired to detect shifts in the mean that are 2 sigma or less.

CUSUM works as follows: Let us collect k samples, each of size n, and
compute the mean of each sample. Then the cumulative sum (CUSUM)
control chart is formed by plotting one of the following quantities:

Definition of
cumulative
sum

against the sample number m, where  is the estimate of the
in-control mean and  is the known (or estimated) standard deviation
of the sample means. The choice of which of these two quantities is
plotted is usually determined by the statistical software package. In

either case, as long as the process remains in control centered at , the
cusum plot will show variation in a random pattern centered about zero.
If the process mean shifts upward, the charted cusum points will
eventually drift upwards, and vice versa if the process mean decreases.

V-Mask
used to
determine if
process is
out of
control

A visual procedure proposed by Barnard in 1959, known as the V-Mask,
is sometimes used to determine whether a process is out of control.
More often, the tabular form of the V-Mask is preferred. The tabular
form is illustrated later in this section.

A V-Mask is an overlay shape in the form of a V on its side that is
superimposed on the graph of the cumulative sums. The origin point of
the V-Mask (see diagram below) is placed on top of the latest
cumulative sum point and past points are examined to see if any fall
above or below the sides of the V. As long as all the previous points lie
between the sides of the V, the process is in control. Otherwise (even if
one point lies outside) the process is suspected of being out of control.

6.3.2.3. Cusum Control Charts
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Sample
V-Mask
demonstrating
an out of
control
process

Interpretation
of the V-Mask
on the plot

In the diagram above, the V-Mask shows an out of control situation
because of the point that lies above the upper arm. By sliding the
V-Mask backwards so that the origin point covers other cumulative
sum data points, we can determine the first point that signaled an
out-of-control situation. This is useful for diagnosing what might have
caused the process to go out of control.

From the diagram it is clear that the behavior of the V-Mask is
determined by the distance k (which is the slope of the lower arm) and
the rise distance h. These are the design parameters of the V-Mask.
Note that we could also specify d and the vertex angle (or, as is more
common in the literature,  = 1/2 the vertex angle) as the design
parameters, and we would end up with the same V-Mask.

In practice, designing and manually constructing a V-Mask is a
complicated procedure. A cusum spreadsheet style procedure shown
below is more practical, unless you have statistical software that
automates the V-Mask methodology. Before describing the spreadsheet
approach, we will look briefly at an example of a software V-Mask.

6.3.2.3. Cusum Control Charts
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JMP example
of V-Mask

An example will be used to illustrate how to construct and apply a
V-Mask procedure using JMP. The 20 data points

324.925, 324.675, 324.725, 324.350, 325.350, 325.225, 324.125,
324.525, 325.225, 324.600, 324.625, 325.150, 328.325, 327.250,
327.825, 328.500, 326.675, 327.775, 326.875, 328.350

are each the average of samples of size 4 taken from a process that has
an estimated mean of 325. Based on process data, the process standard
deviation is 1.27 and therefore the sample means used in the cusum
procedure have a standard deviation of 1.27/41/2  = 0.635.

After inputting the 20 sample means and selecting "control charts"
from the pull down "Graph" menu, JMP displays a "Control Charts"
screen and a "CUSUM Charts" screen. Since each sample mean is a
separate "data point", we choose a constant sample size of 1. We also
choose the option for a two sided Cusum plot shown in terms of the
original data.

JMP allows us a choice of either designing via the method using h and
k or using an alpha and beta design approach. For the latter approach
we must specify

, the probability of a false alarm, i.e., concluding that a shift in
the process has occurred, while in fact it did not

●   

, the the probability of not detecting that a shift in the process

mean has, in fact, occurred

●   

 (delta), the amount of shift in the process mean that we wish to
detect, expressed as a multiple of the standard deviation of the
data points (which are the sample means).

●   

Note: Technically, alpha and beta are calculated in terms of one
sequential trial where we monitor Sm until we have either an
out-of-control signal or Sm returns to the starting point (and the
monitoring begins, in effect, all over again).

JMP menus
for inputting
options to
the cusum
procedure

In our example we choose an  of 0.0027 (equivalent to the plus or
minus 3 sigma criteria used in a standard Shewhart chart), and a  of
0.01. Finally, we decide we want to quickly detect a shift as large as 1
sigma, which sets delta = 1. The screen below shows all the inputs.

6.3.2.3. Cusum Control Charts
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JMP output
from
CUSUM
procedure

When we click on chart we see the V-Mask placed over the last data
point. The mask clearly indicates an out of control situation.

6.3.2.3. Cusum Control Charts
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We next "grab" the V-Mask and move it back to the first point that
indicated the process was out of control. This is point number 14, as
shown below.

JMP
CUSUM
chart after
moving
V-Mask to
first out of
control
point

6.3.2.3. Cusum Control Charts
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Rule of
thumb for
choosing h
and k

Note: A general rule of thumb (Montgomery) if one chooses to design
with the h and k approach, instead of the alpha and beta method
illustrated above, is to choose k to be half the delta shift (.5 in our
example) and h to be around 4 or 5.

For more information on cusum chart design, see Woodall and Adams
(1993).

Tabular or Spreadsheet Form of the V-Mask

A
spreadsheet
approach to
cusum
monitoring

Most users of cusum procedures prefer tabular charts over the V-Mask.
The V-Mask is actually a carry-over of the pre-computer era. The
tabular method can be quickly implemented by standard spreadsheet
software.

To generate the tabular form we use the h and k parameters expressed in
the original data units. It is also possible to use sigma units.

The following quantities are calculated:

Shi(i) = max(0, Shi(i-1) + xi -  - k)

Slo(i) = max(0, Slo(i-1) +  - k - xi) )

where Shi(0) and Slo(0) are 0. When either Shi(i) or Slo(i) exceeds h, the
process is out of control.

Example of
spreadsheet
calculations

We will construct a cusum tabular chart for the example described
above. For this example, the JMP parameter table gave h = 4.1959 and k
= .3175. Using these design values, the tabular form of the example is

h k

325 4.1959 0.3175
   Increase in

mean
 Decrease in

mean
  

Group x x-325 x-325-k Shi 325-k-x Slo Cusum

1 324.93 -0.07 -0.39 0.00 -0.24 0.00 -0.007
2 324.68 -0.32 -0.64 0.00 0.01 0.01 -0.40
3 324.73 -0.27 -0.59 0.00 -0.04 0.00 -0.67
4 324.35 -0.65 -0.97 0.00 0.33 0.33 -1.32
5 325.35 0.35 0.03 0.03 -0.67 0.00 -0.97
6 325.23 0.23 -0.09 0.00 -0.54 0.00 -0.75
7 324.13 -0.88 -1.19 0.00 0.56 0.56 -1.62
8 324.53 -0.48 -0.79 0.00 0.16 0.72 -2.10
9 325.23 0.23 -0.09 0.00 0.54 0.17 -1.87
10 324.60 -0.40 -0.72 0.00 0.08 0.25 -2.27
11 324.63 -0.38 -0.69 0.00 0.06 0.31 -2.65
12 325.15 0.15 -0.17 0.00 0.47 0.00 -2.50
13 328.33 3.32 3.01 3.01 -3.64 0.00 0.83
14 327.25 2.25 1.93 4.94* -0.57 0.00 3.08

6.3.2.3. Cusum Control Charts
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15 327.83 2.82 2.51 7.45* -3.14 0.00 5.90
16 328.50 3.50 3.18 10.63* -3.82 0.00 9.40
17 326.68 1.68 1.36 11.99* -1.99 0.00 11.08
18 327.78 2.77 2.46 14.44* -3.09 0.00 13.85
19 326.88 1.88 1.56 16.00* -2.19 0.00 15.73
20 328.35 3.35 3.03 19.04* -3.67 0.00 19.08

* = out of control signal

6.3.2.3. Cusum Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?
6.3.2.3. Cusum Control Charts

6.3.2.3.1.Cusum Average Run Length

The Average Run Length of Cumulative Sum Control
Charts

The ARL of
CUSUM

The operation of obtaining samples to use with a cumulative sum (CUSUM)
control chart consists of taking samples of size n and plotting the cumulative
sums

versus the sample number r, where  is the sample mean and k is a
reference value.

In practice, k might be set equal to ( + 1)/2, where  is the estimated
in-control mean, which is sometimes known as the acceptable quality level,
and 1 is referred to as the rejectable quality level.

If the distance between a plotted point and the lowest previous point is equal
to or greater than h, one concludes that the process mean has shifted
(increased).

h is decision
limit

Hence, h is referred to as the decision limit. Thus the sample size n,
reference value k, and decision limit h are the parameters required for
operating a one-sided CUSUM chart. If one has to control both positive and
negative deviations, as is usually the case, two one-sided charts are used,
with respective values k1, k2, (k1 > k2) and respective decision limits h and
-h.

6.3.2.3.1. Cusum Average Run Length
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Standardizing
shift in mean
and decision
limit

The shift in the mean can be expressed as  - k. If we are dealing with
normally distributed measurements, we can standardize this shift by

Similarly, the decision limit can be standardized by

Determination
of the ARL,
given h and k

The average run length (ARL) at a given quality level is the average number
of samples (subgroups) taken before an action signal is given. The
standardized parameters ks and hs together with the sample size n are usually
selected to yield approximate ARL's L0 and L1 at acceptable and rejectable
quality levels 0 and 1 respectively. We would like to see a high ARL, L0,
when the process is on target, (i.e. in control), and a low ARL, L1, when the
process mean shifts to an unsatisfactory level.

In order to determine the parameters of a CUSUM chart, the acceptable and
rejectable quality levels along with the desired respective ARL ' s are usually
specified. The design parameters can then be obtained by a number of ways.
Unfortunately, the calculations of the ARL for CUSUM charts are quite
involved.

There are several nomographs available from different sources that can be
utilized to find the ARL's when the standardized h and k are given. Some of
the nomographs solve the unpleasant integral equations that form the basis
of the exact solutions, using an approximation of Systems of Linear
Algebraic Equations (SLAE). This Handbook used a computer program that
furnished the required ARL's given the standardized h and k. An example is
given below:

6.3.2.3.1. Cusum Average Run Length
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Example of
finding ARL's
given the
standardized
h and k

mean shift Shewart

(k = .5) 4 5

0 336 930 371.00
.25 74.2 140 281.14
.5 26.6 30.0 155.22
.75 13.3 17.0 81.22
1.00 8.38 10.4 44.0
1.50 4.75 5.75 14.97
2.00 3.34 4.01 6.30
2.50 2.62 3.11 3.24
3.00 2.19 2.57 2.00
4.00 1.71 2.01 1.19

Using the
table

If k = .5, then the shift of the mean (in multiples of the standard deviation of
the mean) is obtained by adding .5 to the first column. For example to detect
a mean shift of 1 sigma at h = 4, the ARL = 8.38. (at first column entry of
.5).

The last column of the table contains the ARL's for a Shewhart control chart
at selected mean shifts. The ARL for Shewhart = 1/p, where p is the
probability for a point to fall outside established control limits. Thus, for
3-sigma control limits and assuming normality, the probability to exceed the
upper control limit = .00135 and to fall below the lower control limit is also
.00135 and their sum = .0027. (These numbers come from standard normal
distribution tables or computer programs, setting z = 3). Then the ARL =
1/.0027 = 370.37. This says that when a process is in control one expects an
out-of-control signal (false alarm) each 371 runs.

ARL if a 1
sigma shift
has occurred

When the means shifts up by 1 sigma, then the distance between the upper
control limit and the shifted mean is 2 sigma (instead of 3 ). Entering
normal distribution tables with z = 2 yields a probability of p = .02275 to
exceed this value. The distance between the shifted mean and the lower limit
is now 4 sigma and the probability of  < -4  is only .000032 and can be
ignored. The ARL is 1 / .02275 = 43.96 .

6.3.2.3.1. Cusum Average Run Length
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Shewhart is
better for
detecting
large shifts,
CUSUM is
faster for
small shifts

The conclusion can be drawn that the Shewhart chart is superior for
detecting large shifts and the CUSUM scheme is faster for small shifts. The
break-even point is a function of h, as the table shows.

6.3.2.3.1. Cusum Average Run Length
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.2. What are Variables Control Charts?

6.3.2.4.EWMA Control Charts

EWMA
statistic

The Exponentially Weighted Moving Average (EWMA) is a statistic for
monitoring the process that averages the data in a way that gives less
and less weight to data as they are further removed in time.

Comparison
of Shewhart
control
chart and
EWMA
control
chart
techniques

For the Shewhart chart control technique, the decision regarding the
state of control of the process at any time, t, depends solely on the most
recent measurement from the process and, of course, the degree of
'trueness' of the estimates of the control limits from historical data. For
the EWMA control technique, the decision depends on the EWMA
statistic, which is an exponentially weighted average of all prior data,
including the most recent measurement.

By the choice of weighting factor, , the EWMA control procedure can
be made sensitive to a small or gradual drift in the process, whereas the
Shewhart control procedure can only react when the last data point is
outside a control limit.

Definition of
EWMA

The statistic that is calculated is:

EWMAt =  Yt + ( 1- ) EWMAt-1    for t = 1, 2, ..., n.

where

EWMA0 is the mean of historical data (target)●   

Yt is the observation at time t●   

n is the number of observations to be monitored including
EWMA0

●   

0 <   1 is a constant that determines the depth of memory of
the EWMA.

●   

The equation is due to Roberts (1959).

6.3.2.4. EWMA Control Charts
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Choice of
weighting
factor

The parameter  determines the rate at which 'older' data enter into the
calculation of the EWMA statistic. A value of  = 1 implies that only
the most recent measurement influences the EWMA (degrades to
Shewhart chart). Thus, a large value of  = 1 gives more weight to
recent data and less weight to older data; a small value of  gives more
weight to older data. The value of  is usually set between 0.2 and 0.3
(Hunter) although this choice is somewhat arbitrary. Lucas and Saccucci
(1990) give tables that help the user select .

Variance of
EWMA
statistic

The estimated variance of the EWMA statistic is approximately

s2
ewma = ( /(2- )) s2

when t is not small, where s is the standard deviation calculated from the
historical data.

Definition of
control
limits for
EWMA

The center line for the control chart is the target value or EWMA0. The
control limits are:

UCL = EWMA0 + ksewma
LCL = EWMA0 - ksewma

where the factor k is either set equal 3 or chosen using the Lucas and
Saccucci (1990) tables. The data are assumed to be independent and
these tables also assume a normal population.

As with all control procedures, the EWMA procedure depends on a
database of measurements that are truly representative of the process.
Once the mean value and standard deviation have been calculated from
this database, the process can enter the monitoring stage, provided the
process was in control when the data were collected. If not, then the
usual Phase 1 work would have to be completed first.

Example of
calculation
of
parameters
for an
EWMA
control
chart

To illustrate the construction of an EWMA control chart, consider a
process with the following parameters calculated from historical data:

EWMA0 = 50
s = 2.0539

with  chosen to be 0.3 so that  / (2- ) = .3 / 1.7 = 0.1765 and the
square root = 0.4201. The control limits are given by

UCL = 50 + 3 (0.4201)(2.0539) = 52.5884
LCL = 50 - 3 (0.4201) (2.0539) = 47.4115

6.3.2.4. EWMA Control Charts
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Sample data Consider the following data consisting of 20 points where 1 - 10 are on
the top row from left to right and 11-20 are on the bottom row from left
to right:

  52.0 47.0 53.0 49.3 50.1 47.0
  51.0 50.1 51.2 50.5 49.6 47.6
  49.9 51.3 47.8 51.2 52.6 52.4
  53.6 52.1

EWMA
statistics for
sample data

These data represent control measurements from the process which is to
be monitored using the EWMA control chart technique. The
corresponding EWMA statistics that are computed from this data set
are:

  50.00 50.60 49.52 50.56 50.18
  50.16 49.12 49.75 49.85 50.26
  50.33 50.11 49.36 49.52 50.05
  49.34 49.92 50.73 51.23 51.94

Sample
EWMA
plot

The control chart is given below.

6.3.2.4. EWMA Control Charts
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Interpretation
of EWMA
control chart

The red dots are the raw data; the jagged line is the EWMA statistic
over time. The chart tells us that the process is in control because all
EWMAt lie between the control limits. However, there seems to be a
trend upwards for the last 5 periods.

6.3.2.4. EWMA Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.3.What are Attributes Control Charts?

Attributes
data arise
when
classifying
or counting
observations

The Shewhart control chart plots quality characteristics that can be
measured and expressed numerically. We measure weight, height,
position, thickness, etc. If we cannot represent a particular quality
characteristic numerically, or if it is impractical to do so, we then often
resort to using a quality characteristic to sort or classify an item that is
inspected into one of two "buckets".

An example of a common quality characteristic classification would be
designating units as "conforming units" or "nonconforming units".
Another quality characteristic criteria would be sorting units into "non
defective" and "defective" categories. Quality characteristics of that
type are called attributes.

Note that there is a difference between "nonconforming to an
engineering specification" and "defective" -- a nonconforming unit may
function just fine and be, in fact, not defective at all, while a part can be
"in spec" and not fucntion as desired (i.e., be defective).

Examples of quality characteristics that are attributes are the number of
failures in a production run, the proportion of malfunctioning wafers in
a lot, the number of people eating in the cafeteria on a given day, etc.

Types of
attribute
control
charts

Control charts dealing with the number of defects or nonconformities
are called c charts (for count).

Control charts dealing with the proportion or fraction of defective
product are called  p charts (for proportion).

There is another chart which handles defects per unit, called the u chart
(for unit). This applies when we wish to work with the average number
of nonconformities per unit of product.

For additional references, see Woodall (1997) which reviews papers
showing examples of attribute control charting, including examples
from semiconductor manufacturing such as those examining the spatial
depencence of defects.

6.3.3. What are Attributes Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.3. What are Attributes Control Charts?

6.3.3.1.Counts Control Charts

Defective
items vs
individual
defects

The literature differentiates between defect and defective, which is the
same as differentiating between nonconformity and nonconforming
units. This may sound like splitting hairs, but in the interest of clarity
let's try to unravel this man-made mystery.

Consider a wafer with a number of chips on it. The wafer is referred to
as an "item of a product". The chip may be referred to as "a specific
point". There exist certain specifications for the wafers. When a
particular wafer (e.g., the item of the product) does not meet at least
one of the specifications, it is classified as a nonconforming item.
Furthermore, each chip, (e.g., the specific point) at which a
specification is not met becomes a defect or nonconformity.

So, a nonconforming or defective item contains at least one defect or
nonconformity. It should be pointed out that a wafer can contain
several defects but still be classified as conforming. For example, the
defects may be located at noncritical positions on the wafer. If, on the
other hand, the number of the so-called "unimportant" defects
becomes alarmingly large, an investigation of the production of these
wafers is warranted.

Control charts involving counts can be either for the total number of
nonconformities (defects) for the sample of inspected units, or for the
average number of defects per inspection unit.

6.3.3.1. Counts Control Charts
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Poisson
approximation
for numbers
or counts of
defects

Let us consider an assembled product such as a microcomputer. The
opportunity for the occurrence of any given defect may be quite large.
However, the probability of occurrence of a defect in any one
arbitrarily chosen spot is likely to be very small. In such a case, the
incidence of defects might be modeled by a Poisson distribution.
Actually, the Poisson distribution is an approximation of the binomial
distribution and applies well in this capacity according to the
following rule of thumb:

The sample size n should be equal to or larger than 20
and the probability of a single success, p, should be
smaller than or equal to .05. If n  100, the
approximation is excellent if np is also  10.

Illustrate
Poisson
approximation
to binomial

To illustrate the use of the Poisson distribution as an approximation of
a binomial distribution, consider the following comparison: Let p, the
probability of a single success in n = 200 trials, be .025.

Find the probability of exactly 3 successes. If we assume that p
remains constant then the solution follows the binomial distribution
rules, that is:

By the Poisson approximation we have

and

6.3.3.1. Counts Control Charts
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The inspection
unit

Before the control chart parameters are defined there is one more
definition: the inspection unit. We shall count the number of defects
that occur in a so-called inspection unit. More often than not, an
inspection unit is a single unit or item of product; for example, a
wafer. However, sometimes the inspection unit could consist of five
wafers, or ten wafers and so on. The size of the inspection units may
depend on the recording facility, measuring equipment, operators, etc.

Suppose that defects occur in a given inspection unit according to the
Poisson distribution, with parameter c (often denoted by np or the
Greek letter ). In other words

Control charts
for counts,
using the
Poisson
distribution

where x is the number of defects and c > 0 is the parameter of the
Poisson distribution. It is known that both the mean and the variance
of this distribution are equal to c. Then the k-sigma control chart is

If the LCL comes out negative, then there is no lower control limit.
This control scheme assumes that a standard value for c is available. If
this is not the case then c may be estimated as the average of the
number of defects in a preliminary sample of inspection units, call it

. Usually k is set to 3 by many practioners.

Control chart
example using
counts

An example may help to illustrate the construction of control limits for
counts data. We are inspecting 25 successive wafers, each containing
100 chips. Here the wafer is the inspection unit. The observed number
of defects are

Wafer Number Wafer Number
Number of Defects Number of Defects

1 16 14 16
2 14 15 15
3 28 16 13
4 16 17 14
5 12 18 16
6 20 19 11
7 10 20 20

6.3.3.1. Counts Control Charts

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc331.htm (3 of 6) [7/1/2003 5:25:25 PM]



8 12 21 11
9 10 22 19

10 17 23 16
11 19 24 31
12 17 25 13
13 14   

From this table we have

Sample
counts
control
chart

Control Chart for Counts

Transforming Poisson Data

6.3.3.1. Counts Control Charts
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Normal
approximation
to Poisson is
adequate
when the
mean of the
Poisson is at
least 5

We have seen that the 3-sigma limits for a c chart, where c represents
the number of nonconformities, are given by

where it is assumed that the normal approximation to the Poisson
distribution holds, hence the symmetry of the control limits. It is
shown in the literature that the normal approximation to the Poisson is
adequate when the mean of the Poisson is at least 5. When applied to
the c chart this implies that the mean of the defects should be at least
5. This requirement will often be met in practice, but still, when the
mean is smaller than 9 (solving the above equation) there will be no
lower control limit.

Let the mean be 10. Then the lower control limit = 0.513. However,
P(c = 0) = .000045, using the Poisson formula. This is only 1/30 of the
assumed area of .00135. So one has to raise the lower limit so as to get
as close as possible to .00135. From Poisson tables or computer
software we find that P(1) = .0005 and P(2) = .0027, so the lower limit
should actually be 2 or 3.

Transforming
count data
into
approximately
normal data

To avoid this type of problem, we may resort to a transformation that
makes the transformed data match the normal distribution better. One
such transformation described by Ryan (2000) is

which is, for a large sample, approximately normally distributed with
mean = 2  and variace = 1, where  is the mean of the Poisson
distribution.

Similar transformations have been proposed by Anscombe (1948) and
Freeman and Tukey (1950). When applied to a c chart these are

The repspective control limits are

While using transformations may result in meaningful control limits,
one has to bear in mind that the user is now working with data on a
different scale than the original measurements. There is another way
to remedy the problem of symmetric limits applied to non symmetric
cases, and that is to use probability limits. These can be obtained from
tables given by Molina (1973). This allows the user to work with data

6.3.3.1. Counts Control Charts
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on the original scale, but they require special tables to obtain the
limits. Of course, software might be used instead.

Warning for
highly skewed
distributions

Note: In general, it is not a good idea to use 3-sigma limits for
distributions that are highly skewed (see Ryan and Schwertman (1997)
for more about the possibly extreme consequences of doing this).

6.3.3.1. Counts Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.3. What are Attributes Control Charts?

6.3.3.2.Proportions Control Charts

p is the
fraction
defective in
a lot or
population

The proportion or fraction nonconforming (defective) in a population is
defined as the ratio of the number of nonconforming items in the
population to the total number of items in that population. The item
under consideration may have one or more quality characteristics that
are inspected simultaneously. If at least one of the characteristics does
not conform to standard, the item is classified as nonconforming.

The fraction or proportion can be expressed as a decimal, or, when
multiplied by 100, as a percent. The underlying statistical principles for
a control chart for proportion nonconforming are based on the binomial
distribution.

Let us suppose that the production process operates in a stable manner,
such that the probability that a given unit will not conform to
specifications is p. Furthermore, we assume that successive units
produced are independent. Under these conditions, each unit that is
produced is a realization of a Bernoulli random variable with parameter
p. If a random sample of n units of product is selected and if D is the
number of units that are nonconforming, the D follows a binomial
distribution with parameters n and p

The
binomial
distribution
model for
number of
defectives in
a sample

The mean of D is np and the variance is np(1-p). The sample proportion
nonconforming is the ratio of the number of nonconforming units in the
sample, D, to the sample size n,

6.3.3.2. Proportions Control Charts
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The mean and variance of this estimator are

and

This background is sufficient to develop the control chart for proportion
or fraction nonconforming. The chart is called the p-chart.

p control
charts for
lot
proportion
defective

If the true fraction conforming p is known (or a standard value is given),
then the center line and control limits of the fraction nonconforming
control chart is

When the process fraction (proportion) p is not known, it must be
estimated from the available data. This is accomplished by selecting m
preliminary samples, each of size n. If there are Di defectives in sample
i, the fraction nonconforming in sample i is

and the average of these individuals sample fractions is

The  is used instead of p in the control chart setup.

6.3.3.2. Proportions Control Charts
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Example of
a p-chart

A numerical example will now be given to illustrate the above
mentioned principles. The location of chips on a wafer is measured on
30 wafers.

On each wafer 50 chips are measured and a defective is defined
whenever a misregistration, in terms of horizontal and/or vertical
distances from the center, is recorded. The results are

Sample Fraction Sample Fraction Sample Fraction
Number Defectives Number Defectives Number Defectives

1 .24 11 .10 21 .40
2 .30 12 .12 22 .36
3 .16 13 .34 23 .48
4 .20 14 .24 24 .30
5 .08 15 .44 25 .18
6 .14 16 .16 26 .24
7 .32 17 .20 27 .14
8 .18 18 .10 28 .26
9 .28 19 .26 29 .18

10 .20 20 .22 30 .12

Sample
proportions
control
chart

The corresponding control chart is given below:

6.3.3.2. Proportions Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts

6.3.4.What are Multivariate Control Charts?

Multivariate
control
charts and
Hotelling's
T 2 statistic

It is a fact of life that most data are naturally multivariate. Hotelling in
1947 introduced a statistic which uniquely lends itself to plotting
multivariate observations. This statistic, appropriately named Hotelling's
T 2, is a scalar that combines information from the dispersion and mean of
several variables. Due to the fact that computations are laborious and
fairly complex and require some knowledge of matrix algebra, acceptance
of multivariate control charts by industry was slow and hesitant.

Multivariate
control
charts now
more
accessible

Nowadays, modern computers in general and the PC in particular have
made complex calculations accessible and during the last decade,
multivariate control charts were given more attention. In fact, the
multivariate charts which display the Hotelling T 2 statistic became so
popular that they sometimes are called Shewhart charts as well (e.g.,
Crosier, 1988), although Shewhart had nothing to do with them.

Hotelling
charts for
both means
and
dispersion

As in the univariate case, when data are grouped, the T 2 chart can be
paired with a chart that displays a measure of variability within the

subgroups for all the analyzed characteristics. The combined T 2 and 

(dispersion) charts are thus a multivariate counterpart of the univariate 

and S (or  and R) charts.

6.3.4. What are Multivariate Control Charts?
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Hotelling
mean and
dispersion
control
charts

An example of a Hotelling T 2 and  pair of charts is given below:

Interpretation
of sample
Hotelling
control
charts

Each chart represents 14 consecutive measurements on the means of four
variables. The T 2 chart for means indicates an out-of-control state for
groups 1,2 and 9-11. The T 2

d chart for dispersions indicate that groups
10, 13 and 14 are also out of control. The interpretation is that the
multivariate system is suspect. To find an assignable cause, one has to
resort to the individual univariate control charts or some other univariate
procedure that should accompany this multivariate chart.

Additional
discussion

For more details and examples see the next page and also Tutorials,
section 5, subsections 4.3, 4.3.1 and 4.3.2. An introduction to Elements of
multivariate analysis is also given in the Tutorials.

6.3.4. What are Multivariate Control Charts?
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.4. What are Multivariate Control Charts?

6.3.4.1.Hotelling Control Charts

Definition of
Hotelling's
T 2

"distance"
statistic

The Hotelling T 2 distance is a measure that accounts for the covariance
structure of a multivariate normal distribution. It was proposed by
Harold Hotelling in 1947 and is called Hotelling T 2. It may be thought
of as the multivariate counterpart of the Student's-t statistic.

The T 2 distance is a constant multiplied by a quadratic form. This
quadratic form is obtained by multiplying the following three quantities:

The vector of deviations between the observations
and the mean m, which is expressed by (X-m)',

1.  

The inverse of the covariance matrix, S-1,2.  

The vector of deviations, (X-m).3.  

It should be mentioned that for independent variables, the covariance
matrix is a diagonal matrix and T 2 becomes proportional to the sum of
squared standardized variables.

In general, the higher the T 2 value, the more distant is the observation
from the mean. The formula for computing the T 2 is:

The constant c is the sample size from which the covariance matrix was
estimated.

T 2 readily
graphable

The T 2 distances lend themselves readily to graphical displays and as a
result the T 2-chart is the most popular among the multivariate control
charts.

Estimation of the Mean and Covariance Matrix

6.3.4.1. Hotelling Control Charts
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Mean and
Covariance
matrices

Let X1,...Xn be n p-dimensional vectors of observations that are sampled
independently from Np(m, ) with p < n-1, with  the covariance

matrix of X. The observed mean vector  and the sample dispersion
matrix

are the unbiased estimators of m and , respectively.

Additional
discussion

See Tutorials (section 5), subsections 4.3, 4.3.1 and 4.3.2 for more
details and examples. An introduction to Elements of multivariate
analysis is also given in the Tutorials.

6.3.4.1. Hotelling Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.4. What are Multivariate Control Charts?

6.3.4.2.Principal Components Control
Charts

Problems
with T 2

charts

Although the T 2 chart is the most popular, easiest to use and interpret
method for handling multivariate process data, and is beginning to be
widely accepted by quality engineers and operators, it is not a panacea.
First, unlike the univariate case, the scale of the values displayed on the
chart is not related to the scales of any of the monitored variables.
Secondly, when the T 2 statistic exceeds the upper control limit (UCL),
the user does not know which particular variable(s) caused the
out-of-control signal.

Run
univariate
charts along
with the
multivariate
ones

With respect to scaling, we strongly advise to run individual univariate
charts in tandem with the multivariate chart. This will also help in
honing in on the culprit(s) that might have caused the signal. However,
individual univariate charts cannot explain situations that are a result of
some problems in the covariance or correlation between the variables.
This is why a dispersion chart must also be used.

Another way
to monitor
multivariate
data:
Principal
Components
control
charts

Another way to analyze the data is to use principal components. For
each multivariate measurement (or observation), the principal
components are linear combinations of the standardized p variables (to
standardize subtract their respective targets and divide by their
standard deviations). The principal components have two important
advantages:

the new variables are uncorrelated (or almost)1.  

very often, a few (sometimes 1 or 2) principal components may
capture most of the variability in the data so that we do not have
to use all of the p principal components for control.

2.  

6.3.4.2. Principal Components Control Charts
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Eigenvalues Unfortunately, there is one big disadvantage: The identity of the
original variables is lost! However, in some cases the specific linear
combinations corresponding to the principal components with the
largest eigenvalues may yield meaningful measurement units. What is
being used in control charts are the principal factors.

A principal factor is the principal component divided by the square
root of its eigenvalue.

Additional
discussion

More details and examples are given in the Tutorials (section 5).

6.3.4.2. Principal Components Control Charts
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6. Process or Product Monitoring and Control
6.3. Univariate and Multivariate Control Charts
6.3.4. What are Multivariate Control Charts?

6.3.4.3.Multivariate EWMA Charts

Multivariate EWMA Control Chart

Univariate
EWMA model

The model for a univariate EWMA chart is given by:

where Zi is the ith EWMA, Xi is the the ith observation, Z0 is the
average from the historical data, and 0 <   1.

Multivariate
EWMA model

In the multivariate case, one can extend this formula to

where Zi is the ith EWMA vector, Xi is the the ith observation vector i
= 1, 2, ..., n, Z0 is the vector of variable values from the historical data,

 is the diag( 1, 2, ... , p) which is a diagonal matrix with 1, 2,
... , p on the main diagonal, and p is the number of variables; that is
the number of elements in each vector.

Illustration of
multivariate
EWMA

The following illustration may clarify this. There are p variables and
each variable contains n observations. The input data matrix looks like:

The quantity to be plotted on the control chart is

6.3.4.3. Multivariate EWMA Charts
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Simplification It has been shown (Lowry et al., 1992) that the (k,l)th element of the
covariance matrix of the ith EWMA, , is

where  is the (k,l)th element of , the covariance matrix of the X's.

If 1 = 2 = ... = p = , then the above expression simplifies to

where  is the covariance matrix of the input data.

Further
simplification

There is a further simplification. When i becomes large, the covariance
matrix may be expressed as:

The question is "What is large?". When we examine the formula with
the 2i in it, we observe that when 2i becomes sufficiently large such
that (1 - ) 2i becomes almost zero, then we can use the simplified
formula.

6.3.4.3. Multivariate EWMA Charts

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc343.htm (2 of 4) [7/1/2003 5:25:28 PM]



Table for
selected
values of 
and i

The following table gives the values of (1- ) 2i for selected values of 
and i.

 2i
1 - 4 6 8 10 12 20 30 40 50

.9 .656 .531 .430 .349 .282 .122 .042 .015 .005

.8 .410 .262 .168 .107 .069 .012 .001 .000 .000

.7 .240 .118 .058 .028 .014 .001 .000 .000 .000

.6 .130 .047 .017 .006 .002 .000 .000 .000 .000

.5 .063 .016 .004 .001 .000 .000 .000 .000 .000

.4 .026 .004 .001 .000 .000 .000 .000 .000 .000

.3 .008 .001 .000 .000 .000 .000 .000 .000 .000

.2 .002 .000 .000 .000 .000 .000 .000 .000 .000

.1 .000 .000 .000 .000 .000 .000 .000 .000 .000

Simplified
formuala not
required

It should be pointed out that a well-meaning computer program does
not have to adhere to the simplified formula, and potential inaccuracies
for low values for  and i can thus be avoided.

MEWMA
computer
output
for the
Lowry
data

Here is an example of the application of an MEWMA control chart. To
faciltate comparison with existing literature, we used data from Lowry et al.
The data were simulated from a bivariate normal distribution with unit
variances and a correlation coefficient of 0.5. The value for  = .10 and the
values for  were obtained by the equation given above. The covariance of
the MEWMA vectors was obtained by using the non-simplified equation. That
means that for each MEWMA control statistic, the computer computed a
covariance matrix, where i = 1, 2, ...10. The results of the computer routine
are:

*****************************************************
*      Multi-Variate EWMA Control Chart             *
*****************************************************

DATA SERIES            MEWMA Vector          MEWMA
   1          2          1         2       STATISTIC
-1.190     0.590     -0.119     0.059        2.1886
 0.120     0.900     -0.095     0.143        2.0697
-1.690     0.400     -0.255     0.169        4.8365
 0.300     0.460     -0.199     0.198        3.4158
 0.890    -0.750     -0.090     0.103        0.7089
 0.820     0.980      0.001     0.191        0.9268

6.3.4.3. Multivariate EWMA Charts
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-0.300     2.280     -0.029     0.400        4.0018
 0.630     1.750      0.037     0.535        6.1657
 1.560     1.580      0.189     0.639        7.8554
 1.460     3.050      0.316     0.880       14.4158

VEC    XBAR      MSE      Lamda
 1     .260     1.200     0.100
 2    1.124     1.774     0.100

The UCL = 5.938 for  = .05. Smaller choices of  are also used.

Sample
MEWMA
plot

The following is the plot of the above MEWMA.

6.3.4.3. Multivariate EWMA Charts
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6. Process or Product Monitoring and Control

6.4. Introduction to Time Series Analysis

Time series
methods
take into
account
possible
internal
structure in
the data

Time series data often arise when monitoring industrial processes or
tracking corporate business metrics. The essential difference between
modeling data via time series methods or using the process monitoring
methods discussed earlier in this chapter is the following:

Time series analysis accounts for the fact that data points
taken over time may have an internal structure (such as
autocorrelation, trend or seasonal variation) that should be
accounted for.

This section will give a brief overview of some of the more widely used
techniques in the rich and rapidly growing field of time series modeling
and analysis.

Contents for
this section

Areas covered are:

Definitions, Applications and Techniques1.  

What are Moving Average or Smoothing
Techniques?

Single Moving Average1.  

Centered Moving Average2.  

2.  

What is Exponential Smoothing?

Single Exponential Smoothing1.  

Forecasting with Single Exponential  
Smoothing

2.  

Double Exponential Smoothing3.  

Forecasting with Double Exponential
Smoothing

4.  

Triple Exponential Smoothing5.  

Example of Triple Exponential Smoothing6.  

Exponential Smoothing Summary7.  

3.  

Univariate Time Series Models4.  

6.4. Introduction to Time Series Analysis
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Sample Data Sets1.  

Stationarity2.  

Seasonality3.  

Common Approaches4.  

Box-Jenkins Approach5.  

Box-Jenkins Model Identification6.  

Box-Jenkins Model Estimation7.  

Box-Jenkins Model Validation8.  

SEMPLOT Sample Output for a Box-Jenkins
Model Analysis

9.  

SEMPLOT Sample Output for a Box-Jenkins
Model Analysis with Seasonality

10.  

Multivariate Time Series Models

Example of Multivariate Time Series Analysis1.  

5.  

6.4. Introduction to Time Series Analysis
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.1.Definitions, Applications and
Techniques

Definition Definition of Time Series: An ordered sequence of values of a variable
at equally spaced time intervals.

Time series
occur
frequently
when
looking at
industrial
data

Applications: The usage of time series models is twofold:

Obtain an understanding of the underlying forces and structure
that produced the observed data

●   

Fit a model and proceed to forecasting, monitoring or even
feedback and feedforward control.

●   

Time Series Analysis is used for many applications such as:

Economic Forecasting●   

Sales Forecasting●   

Budgetary Analysis●   

Stock Market Analysis●   

Yield Projections●   

Process and Quality Control●   

Inventory Studies●   

Workload Projections●   

Utility Studies●   

Census Analysis●   

and many, many more...

6.4.1. Definitions, Applications and Techniques
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There are
many
methods
used to
model and
forecast
time series

Techniques: The fitting of time series models can be an ambitious
undertaking. There are many methods of model fitting including the
following:

Box-Jenkins ARIMA models●   

Box-Jenkins Multivariate Models●   

Holt-Winters Exponential Smoothing (single, double, triple)●   

The user's application and preference will decide the selection of the
appropriate technique. It is beyond the realm and intention of the
authors of this handbook to cover all these methods. The overview
presented here will start by looking at some basic smoothing techniques:

Averaging Methods●   

Exponential Smoothing Techniques.●   

Later in this section we will discuss the Box-Jenkins modeling methods
and Multivariate Time Series.

6.4.1. Definitions, Applications and Techniques
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.2.What are Moving Average or
Smoothing Techniques?

Smoothing
data
removes
random
variation
and shows
trends and
cyclic
components

Inherent in the collection of data taken over time is some form of
random variation. There exist methods for reducing of canceling the
effect due to random variation. An often-used technique in industry is
"smoothing". This technique, when properly applied, reveals more
clearly the underlying trend, seasonal and cyclic components.

There are two distinct groups of smoothing methods 

Averaging Methods●   

Exponential Smoothing Methods●   

Taking
averages is
the simplest
way to
smooth data

We will first investigate some averaging methods, such as the "simple"
average of all past data.

A manager of a warehouse wants to know how much a typical supplier
delivers in 1000 dollar units. He/she takes a sample of 12 suppliers, at
random, obtaining the following results:

Supplier Amount Supplier Amount

1 9 7 11
2 8 8 7
3 9 9 13
4 12 10 9
5 9 11 11
6 12 12 10

The computed mean or average of the data = 10. The manager decides
to use this as the estimate for expenditure of a typical supplier.

Is this a good or bad estimate? 

6.4.2. What are Moving Average or Smoothing Techniques?
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Mean
squared
error is a
way to judge
how good a
model is

We shall compute the "mean squared error":

The "error" = true amount spent minus the estimated amount.●   

The "error squared" is the error above, squared.●   

The "SSE" is the sum of the squared errors.●   

The "MSE" is the mean of the squared errors.●   

MSE results
for example

The results are:

Error and Squared Errors

The estimate = 10

Supplier $ Error
Error

Squared

1 9 -1 1
2 8 -2 4
3 9 -1 1
4 12 2 4
5 9 -1 1
6 12 2 4
7 11 1 1
8 7 -3 9
9 13 3 9

10 9 -1 1
11 11 1 1
12 10 0 0

The SSE = 36 and the MSE = 36/12 = 3.

Table of
MSE results
for example
using
different
estimates

So how good was the estimator for the amount spent for each supplier?
Let us compare the estimate (10) with the following estimates: 7, 9, and
12. That is, we estimate that each supplier will spend $7, or $9 or $12.

Performing the same calculations we arrive at:

Estimator 7 9 10 12

SSE 144 48 36 84
MSE 12 4 3 7

The estimator with the smallest MSE is the best. It can be shown
mathematically that the estimator that minimizes the MSE for a set of
random data is the mean.

6.4.2. What are Moving Average or Smoothing Techniques?
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Table
showing
squared
error for the
mean for
sample data

Next we will examine the mean to see how well it predicts net income
over time.

The next table gives the income before taxes of a PC manufacturer
between 1985 and 1994.

Year $ (millions) Mean Error
Squared

Error

1985 46.163 48.776 -2.613 6.828
1986 46.998 48.776 -1.778 3.161
1987 47.816 48.776 -0.960 0.922
1988 48.311 48.776 -0.465 0.216
1989 48.758 48.776 -0.018 0.000
1990 49.164 48.776 0.388 0.151
1991 49.548 48.776 0.772 0.596
1992 48.915 48.776 1.139 1.297
1993 50.315 48.776 1.539 2.369
1994 50.768 48.776 1.992 3.968

The MSE = 1.9508.

The mean is
not a good
estimator
when there
are trends

The question arises: can we use the mean to forecast income if we
suspect a trend? A look at the graph below shows clearly that we should
not do this.

6.4.2. What are Moving Average or Smoothing Techniques?
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Average
weighs all
past
observations
equally

In summary, we state that

The "simple" average or mean of all past observations is only a
useful estimate for forecasting when there are no trends. If there
are trends, use different estimates that take the trend into account.

1.  

The average "weighs" all past observations equally. For example,
the average of the values 3, 4, 5 is 4. We know, of course, that an
average is computed by adding all the values and dividing the
sum by the number of values. Another way of computing the
average is by adding each value divided by the number of values,
or

3/3 + 4/3 + 5/3 = 1 + 1.3333 + 1.6667 = 4.

The multiplier 1/3 is called the weight. In general:

The  are the weights and of course they sum to 1.

2.  

6.4.2. What are Moving Average or Smoothing Techniques?
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.2. What are Moving Average or Smoothing Techniques?

6.4.2.1.Single Moving Average

Taking a
moving
average is a
smoothing
process

An alternative way to summarize the past data is to compute the mean of
successive smaller sets of numbers of past data as follows:

Recall the set of numbers 9, 8, 9, 12, 9, 12, 11, 7, 13, 9, 11,
10 which were the dollar amount of 12 suppliers selected at
random. Let us set M, the size of the "smaller set" equal to
3. Then the average of the first 3 numbers is:  (9 + 8 + 9) /
3 = 8.667.

This is called "smoothing" (i.e., some form of averaging). This
smoothing process is continued by advancing one period and calculating
the next average of three numbers, dropping the first number.

Moving
average
example

The next table summarizes the process, which is referred to as Moving
Averaging. The general expression for the moving average is

Mt = [ Xt + Xt-1 + ... + Xt-N+1] / N

Results of Moving Average
Supplier $ MA Error Error squared

1 9    
2 8    
3 9 8.667 0.333 0.111
4 12 9.667 2.333 5.444
5 9 10.000 -1.000 1.000
6 12 11.000 1.000 1.000
7 11 10.667 0.333 0.111
8 7 10.000 -3.000 9.000
9 13 10.333 2.667 7.111
10 9 9.667 -0.667 0.444
11 11 11.000 0 0
12 10 10.000 0 0

The MSE = 2.018 as compared to 3 in the previous case.

6.4.2.1. Single Moving Average
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6.4.2.1. Single Moving Average
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.2. What are Moving Average or Smoothing Techniques?

6.4.2.2.Centered Moving Average

When
computing a
running
moving
average,
placing the
average in
the middle
time period
makes sense

In the previous example we computed the average of the first 3 time
periods and placed it next to period 3. We could have placed the average
in the middle of the time interval of three periods, that is, next to period
2. This works well with odd time periods, but not so good for even time
periods. So where would we place the first moving average when M =
4?

Technically, the Moving Average would fall at t = 2.5, 3.5, ...

To avoid this problem we smooth the MA's using M = 2. Thus we
smooth the smoothed values!

If we
average an
even number
of terms, we
need to
smooth the
smoothed
values

The following table shows the results using M = 4.

Interim Steps
Period Value MA Centered

1 9   
1.5    
2 8   

2.5  9.5  
3 9  9.5

3.5  9.5  
4 12  10.0

4.5  10.5  
5 9  10.750

5.5  11.0  
6 12   

6.5    
7 9   

6.4.2.2. Centered Moving Average
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Final table This is the final table:

Period Value Centered MA

1 9  
2 8  
3 9 9.5
4 12 10.0
5 9 10.75
6 12  
7 11  

Double Moving Averages for a Linear Trend Process

Moving
averages
are still not
able to
handle
significant
trends when
forecasting

Unfortunately, neither the mean of all data nor the moving average of
the most recent M values, when used as forecasts for the next period, are
able to cope with a significant trend.

There exists a variation on the MA procedure that often does a better job
of handling trend. It is called Double Moving Averages for a  Linear
Trend Process. It calculates a second moving average from the original
moving average, using the same value for M. As soon as both single and
double moving averages are available, a computer routine uses these
averages to compute a slope and intercept, and then forecasts one or
more periods ahead.

6.4.2.2. Centered Moving Average

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc422.htm (2 of 2) [7/1/2003 5:25:29 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.3.What is Exponential Smoothing?

Exponential
smoothing
schemes weight
past
observations
using
exponentially
decreasing
weights

This is a very popular scheme to produce a smoothed Time Series.
Whereas in Single Moving Averages the past observations are
weighted equally, Exponential Smoothing assigns exponentially
decreasing weights as the observation get older.

In other words, recent observations are given relatively more weight
in forecasting than the older observations.

In the case of moving averages, the weights assigned to the
observations are the same and are equal to 1/N. In exponential
smoothing, however, there are one or more smoothing parameters to
be determined (or estimated) and these choices determine the weights
assigned to the observations.

Single, double and triple Exponential Smoothing will be described in
this section.

6.4.3. What is Exponential Smoothing?
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.1.Single Exponential Smoothing

Exponential
smoothing
weights past
observations
with
exponentially
decreasing
weights to
forecast
future values

This smoothing scheme begins by setting S2 to y1, where Si stands for
smoothed observation or EWMA, and y stands for the original
observation. The subscripts refer to the time periods, 1, 2, ..., n. For the
third period, S3 =  y2 + (1- ) S2; and so on. There is no S1; the
smoothed series starts with the smoothed version of the second
observation.

For any time period t, the smoothed value St is found by computing

This is the basic equation of exponential smoothing and the constant or
parameter  is called the smoothing constant.

Note: There is an alternative approach to exponential smoothing that
replaces yt-1 in the basic equation with yt, the current observation. That
formulation, due to Roberts (1959), is described in the section on
EWMA control charts. The formulation here follows Hunter (1986).

Setting the first EWMA

6.4.3.1. Single Exponential Smoothing
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The first
forecast is
very
important

The initial EWMA plays an important role in computing all the
subsequent EWMA's. Setting S2 to y1 is one method of initialization.
Another way is to set it to the target of the process.

Still another possibility would be to average the first four or five
observations.

It can also be shown that the smaller the value of , the more important
is the selection of the initial EWMA. The user would be wise to try a
few methods, (assuming that the software has them available) before
finalizing the settings.

Why is it called "Exponential"?

Expand
basic
equation

Let us expand the basic equation by first substituting for St-1 in the
basic equation to obtain

St =  yt-1 + (1- ) [  yt-2 + (1- ) St-2 ]

   =  yt-1 +  (1- ) yt-2 + (1- )2 St-2

Summation
formula for
basic
equation

By substituting for St-2, then for St-3, and so forth, until we reach S2
(which is just y1), it can be shown that the expanding equation can be
written as:

Expanded
equation for
S5

For example, the expanded equation for the smoothed value S5 is:

6.4.3.1. Single Exponential Smoothing
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Illustrates
exponential
behavior

This illustrates the exponential behavior. The weights,  (1- ) t
decrease geometrically, and their sum is unity as shown below, using a
property of geometric series:

From the last formula we can see that the summation term shows that
the contribution to the smoothed value St becomes less at each
consecutive time period.

Example for
 = .3

Let  = .3. Observe that the weights  (1- ) t  decrease exponentially
(geometrically) with time.

 Value weight

last y1 .2100

 y2 .1470

 y3 .1029

 y4 .0720

What is the "best" value for ?

How do you
choose the
weight
parameter?

The speed at which the older responses are dampened (smoothed) is a
function of the value of . When  is close to 1, dampening is quick
and when  is close to 0, dampening is slow. This is illustrated in the
table below:

---------------> towards past observations

(1- ) (1- ) 2 (1- ) 3 (1- ) 4

.9 .1 .01 .001 .0001

.5 .5 .25 .125 .0625

.1 .9 .81 .729 .6561

We choose the best value for  so the value which results in the
smallest MSE.

6.4.3.1. Single Exponential Smoothing
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Example Let us illustrate this principle with an example. Consider the following
data set consisting of 12 observations taken over time:

Time yt S ( =.1) Error
Error

squared

1 71    
2 70 71 -1.00 1.00
3 69 70.9 -1.90 3.61
4 68 70.71 -2.71 7.34
5 64 70.44 -6.44 41.47
6 65 69.80 -4.80 23.04
7 72 69.32 2.68 7.18
8 78 69.58 8.42 70.90
9 75 70.43 4.57 20.88
10 75 70.88 4.12 16.97
11 75 71.29 3.71 13.76
12 70 71.67 -1.67 2.79

The sum of the squared errors (SSE) = 208.94. The mean of the squared
errors (MSE) is the SSE /11 = 19.0.

Calculate
for different
values of 

The MSE was again calculated for  = .5 and turned out to be 16.29, so
in this case we would prefer an  of .5. Can we do better? We could
apply the proven trial-and-error method. This is an iterative procedure
beginning with a range of  between .1 and .9. We determine the best
initial choice for  and then search between  -  and  + . We
could repeat this perhaps one more time to find the best  to 3 decimal
places.

Nonlinear
optimizers
can be used

But there are better search methods, such as the Marquardt procedure.
This is a nonlinear optimizer that minimizes the sum of squares of
residuals. In general, most well designed statistical software programs
should be able to find the value of  that minimizes the MSE.

6.4.3.1. Single Exponential Smoothing
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Sample plot
showing
smoothed
data for 2
values of 

6.4.3.1. Single Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.2.Forecasting with Single Exponential
Smoothing

Forecasting Formula

Forecasting
the next point

The forecasting formula is the basic equation

New forecast
is previous
forecast plus
an error
adjustment

This can be written as:

where  t is the forecast error (actual - forecast) for period t.

In other words, the new forecast is the old one plus an adjustment for
the error that occurred in the last forecast.

Bootstrapping of Forecasts

Bootstrapping
forecasts

What happens if you wish to forecast from some origin, usually the
last data point, and no actual observations are available? In this
situation we have to modify the formula to become:

where yorigin remains constant. This technique is known as
bootstrapping.

6.4.3.2. Forecasting with Single Exponential Smoothing
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Example of Bootstrapping

Example The last data point in the previous example was 70 and its forecast
(smoothed value S) was 71.7. Since we do have the data point and the
forecast available, we can calculate the next forecast using the regular
formula

= .1(70) + .9(71.7) = 71.5      (  = .1)

But for the next forecast we have no data point (observation). So now
we compute:

St+2 =. 1(70) + .9(71.5 )= 71.35

Comparison between bootstrap and regular forecasting

Table
comparing
two methods

The following table displays the comparison between the two methods:

Period Bootstrap
forecast

Data Single Smoothing
Forecast

13 71.50 75 71.5
14 71.35 75 71.9
15 71.21 74 72.2
16 71.09 78 72.4
17 70.98 86 73.0

Single Exponential Smoothing with Trend

Single Smoothing (short for single exponential smoothing) is not very
good when there is a trend. The single coefficient  is not enough.

6.4.3.2. Forecasting with Single Exponential Smoothing
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Sample data
set with trend

Let us demonstrate this with the following data set smoothed with an
 of 0.3:

Data Fit

6.4  
5.6 6.4
7.8 6.2
8.8 6.7
11.0 7.3
11.6 8.4
16.7 9.4
15.3 11.6
21.6 12.7
22.4 15.4

Plot
demonstrating
inadequacy of
single
exponential
smoothing
when there is
trend

The resulting graph looks like:

6.4.3.2. Forecasting with Single Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.3.Double Exponential Smoothing

Double
exponential
smoothing
uses two
constants
and is better
at handling
trends

As was previously observed, Single Smoothing does not excel in
following the data when there is a trend. This situation can be improved
by the introduction of a second equation with a second constant, ,
which must be chosen in conjunction with .

Here are the two equations associated with Double Exponential
Smoothing:

Note that the current value of the series is used to calculate its smoothed
value replacement in double exponential smoothing.

Initial Values

Several
methods to
choose the
initial
values

As in the case for single smoothing, there are a variety of schemes to set
initial values for St and bt in double smoothing.

S1 is in general set to y1. Here are three suggestions for b1:

b1 = y2 - y1

b1 = [(y2 - y1) + (y3 - y2) + (y4 - y3)]/3

b1 = (yn - y1)/(n - 1)

Comments

6.4.3.3. Double Exponential Smoothing
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Meaning of
the
smoothing
equations

The first smoothing equation adjusts St directly for the trend of the
previous period, bt-1, by adding it to the last smoothed value, St-1. This
helps to eliminate the lag and brings St to the appropriate base of the
current value.

The second smoothing equation then updates the trend, which is
expressed as the difference between the last two values. The equation is
similar to the basic form of single smoothing, but here applied to the
updating of the trend.

Non-linear
optimization
techniques
can be used

The values for  and  can be obtained via non-linear optimization
techniques, such as the Marquardt Algorithm.

6.4.3.3. Double Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.4.Forecasting with Double
Exponential Smoothing(LASP)

Forecasting
formula

The one-period-ahead forecast is given by:

Ft+1 = St + bt

The m-periods-ahead forecast is given by:

Ft+m = St + mbt

Example

Example Consider once more the data set:

6.4,  5.6,  7.8,  8.8,  11,  11.6,  16.7,  15.3,  21.6,  22.4.

Now we will fit a double smoothing model with  = .3623 and  = 1.0.
These are the estimates that result in the lowest possible MSE when
comparing the orignal series to one step ahead at a time forecasts (since
this version of double exponential smoothing uses the current series
value to calculate a smoothed value, the smoothed series cannot be used
to determine an  with minimum MSE). The chosen starting values are
S1 = y1 = 6.4 and b1 = ((y2 - y1) + (y3 - y2) + (y4 - y3))/3 = 0.8.

For comparison's sake we also fit a single smoothing model with  =
0.977 (this results in the lowest MSE for single exponential smoothing).

The MSE for double smoothing is 3.7024.
The MSE for single smoothing is 8.8867.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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Forecasting
results for
the example

The smoothed results for the example are:

Data Double Single

6.4 6.4  
5.6 6.6 (Forecast = 7.2) 6.4
7.8 7.2 (Forecast = 6.8) 5.6
8.8 8.1 (Forecast = 7.8) 7.8
11.0 9.8 (Forecast = 9.1) 8.8
11.6 11.5 (Forecast = 11.4) 10.9
16.7 14.5 (Forecast = 13.2) 11.6
15.3 16.7 (Forecast = 17.4) 16.6
21.6 19.9 (Forecast = 18.9) 15.3
22.4 22.8 (Forecast = 23.1) 21.5

Comparison of Forecasts

Table
showing
single and
double
exponential
smoothing
forecasts

To see how each method predicts the future, we computed the first five
forecasts from the last observation as follows:

Period Single Double

11 22.4 25.8
12 22.4 28.7
13 22.4 31.7
14 22.4 34.6
15 22.4 37.6

Plot
comparing
single and
double
exponential
smoothing
forecasts

A plot of these results (using the forecasted double smoothing values) is
very enlightening.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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This graph indicates that double smoothing follows the data much closer
than single smoothing. Furthermore, for forecasting single smoothing
cannot do better than projecting a straight horizontal line, which is not
very likely to occur in reality. So in this case double smoothing is
preferred.

Plot
comparing
double
exponential
smoothing
and
regression
forecasts

Finally, let us compare double smoothing with linear regression:

This is an interesting picture. Both techniques follow the data in similar
fashion, but the regression line is more conservative. That is, there is a
slower increase with the regression line than with double smoothing.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
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Selection of
technique
depends on
the
forecaster

The selection of the technique depends on the forecaster. If it is desired
to portray the growth process in a more aggressive manner, then one
selects double smoothing. Otherwise, regression may be preferable. It
should be noted that in linear regression "time" functions as the
independent variable. Chapter 4 discusses the basics of linear regression,
and the details of regression estimation.

6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc434.htm (4 of 4) [7/1/2003 5:25:31 PM]

http://www.itl.nist.gov/div898/handbook/pmd/pmd.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.5.Triple Exponential Smoothing

What happens if the data show trend and seasonality?

To handle
seasonality,
we have to
add a third
parameter

In this case double smoothing will not work. We now introduce a third
equation to take care of seasonality (sometimes called periodicity). The
resulting set of equations is called the "Holt-Winters" (HW) method after
the names of the inventors.

The basic equations for their method are given by:

where

y is the observation●   

S is the smoothed observation●   

b is the trend factor●   

I is the seasonal index●   

F is the forecast at m periods ahead●   

t is an index denoting a time period●   

and , , and  are constants that must be estimated in such a way that the
MSE of the error is minimized. This is best left to a good software package.

6.4.3.5. Triple Exponential Smoothing
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Complete
season
needed

To initialize the HW method we need at least one complete season's data to
determine initial estimates of the seasonal indices I t-L.

L periods
in a season

A complete season's data consists of L periods. And we need to estimate the
trend factor from one period to the next. To accomplish this, it is advisable
to use two complete seasons; that is, 2L periods.

Initial values for the trend factor

How to get
initial
estimates
for trend
and
seasonality
parameters

The general formula to estimate the initial trend is given by

Initial values for the Seasonal Indices

As we will see in the example, we work with data that consist of 6 years
with 4 periods (that is, 4 quarters) per year. Then

Step 1:
compute
yearly
averages

Step 1: Compute the averages of each of the 6 years

Step 2:
divide by
yearly
averages

Step 2: Divide the observations by the appropriate yearly mean

1 2 3 4 5 6

y1/A1 y5/A2 y9/A3 y13/A4 y17/A5 y21/A6

y2/A1 y6/A2 y10/A3 y14/A4 y18/A5 y22/A6

y3/A1 y7/A2 y11/A3 y15/A4 y19/A5 y23/A6

y4/A1 y8/A2 y12/A3 y16/A4 y20/A5 y24/A6

6.4.3.5. Triple Exponential Smoothing
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Step 3:
form
seasonal
indices

Step 3: Now the seasonal indices are formed by computing the average of
each row. Thus the initial seasonal indices (symbolically) are:

I1 = ( y1/A1 + y5/A2 + y9/A3 + y13/A4 + y17/A5 + y21/A6)/6
I2 = ( y2/A1 + y6/A2 + y10/A3 + y14/A4 + y18/A5 + y22/A6)/6
I3 = ( y3/A1 + y7/A2 + y11/A3 + y15/A4 + y19/A5 + y22/A6)/6
I4 = ( y4/A1 + y8/A2 + y12/A3 + y16/A4 + y20/A5 + y24/A6)/6

We now know the algebra behind the computation of the initial estimates.

The next page contains an example of triple exponential smoothing.

The case of the Zero Coefficients

Zero
coefficients
for trend
and
seasonality
parameters

Sometimes it happens that a computer program for triple exponential
smoothing outputs a final coefficient for trend ( ) or for seasonality ( ) of
zero. Or worse, both are outputted as zero!

Does this indicate that there is no trend and/or no seasonality?

Of course not! It only means that the initial values for trend and/or
seasonality were right on the money. No updating was necessary in order to
arrive at the lowest possible MSE. We should inspect the updating formulas
to verify this.

6.4.3.5. Triple Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.6.Example of Triple Exponential
Smoothing

Example
comparing
single,
double,
triple
exponential
smoothing

This example shows comparison of single, double and triple exponential
smoothing for a data set.

The following data set represents 24 observations. These are six years of
quarterly data (each year = 4 quarters).

Table
showing the
data for the
example

 Quarter Period Sales   Quarter Period Sales

90 1 1 362  93 1 13 544
 2 2 385   2 14 582
 3 3 432   3 15 681
 4 4 341   4 16 557

91 1 5 382  94 1 17 628
 2 6 409   2 18 707
 3 7 498   3 19 773
 4 8 387   4 20 592

92 1 9 473  95 1 21 627
 2 10 513   2 22 725
 3 11 582   3 23 854
 4 12 474   4 24 661

6.4.3.6. Example of Triple Exponential Smoothing
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Plot of raw
data with
single,
double, and
triple
exponential
forecasts

Plot of raw
data with
triple
exponential
forecasts

Actual Time Series with forecasts

6.4.3.6. Example of Triple Exponential Smoothing
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Comparison
of MSE's

Comparison of MSE's

MSE demand trend seasonality

6906 .4694   
5054 .1086 1.000  
936 1.000  1.000
520 .7556 0.000 .9837

The updating coefficients were chosen by a computer program such that
the MSE for each of the methods was minimized.

Example of the computation of the Initial Trend

Computation
of initial
trend

The data set consists of quarterly sales data. The season is 1 year and
since there are 4 quarters per year, L = 4. Using the formula we obtain:

Example of the computation of the Initial Seasonal Indices

Table of
initial
seasonal
indices

 1 2 3 4 5 6

1 362 382 473 544 628 627
2 385 409 513 582 707 725
3 432 498 582 681 773 854
4 341 387 474 557 592 661

380 419 510.5 591 675 716.75

In this example we used the full 6 years of data. Other schemes may use
only 3, or some other number of years. There are also a number of ways
to compute initial estimates.

6.4.3.6. Example of Triple Exponential Smoothing
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.3. What is Exponential Smoothing?

6.4.3.7.Exponential Smoothing Summary

Summary

Exponential
smoothing has
proven to be a
useful
technique

Exponential smoothing has proven through the years to be very useful
in many forecasting situations. It was first suggested by C.C. Holt in
1957 and was meant to be used for non-seasonal time series showing
no trend. He later offered a procedure (1958) that does handle trends.
Winters(1965) generalized the method to include seasonality, hence
the name "Holt-Winters Method".

Holt-Winters
has 3 updating
equations

The Holt-Winters Method has 3 updating equations, each with a
constant that ranges from 0 to 1. The equations are intended to give
more weight to recent observations and less weights to observations
further in the past.

These weights are geometrically decreasing by a constant ratio.

The HW procedure can be made fully automatic by user-friendly
software.

6.4.3.7. Exponential Smoothing Summary
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.4.Univariate Time Series Models

Univariate
Time Series

The term "univariate time series" refers to a time series that consists of
single (scalar) observations recorded sequentially over equal time
increments. Some examples are monthly CO2 concentrations and

southern oscillations to predict el nino effects.

Although a univariate time series data set is usually given as a single
column of numbers, time is in fact an implicit variable in the time series.
If the data are equi-spaced, the time variable, or index, does not need to
be explicitly given. The time variable may sometimes be explicitly used
for plotting the series. However, it is not used in the time series model
itself.

The analysis of time series where the data are not collected in equal time
increments is beyond the scope of this handbook. 

Contents Sample Data Sets 1.  

Stationarity 2.  

Seasonality 3.  

Common Approaches 4.  

Box-Jenkins Approach 5.  

Box-Jenkins Model Identification 6.  

Box-Jenkins Model Estimation 7.  

Box-Jenkins Model Validation 8.  

SEMPLOT Sample Output for a Box-Jenkins Analysis 9.  

SEMPLOT Sample Output for a Box-Jenkins Analysis with
Seasonality

10.  

6.4.4. Univariate Time Series Models
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.1.Sample Data Sets

Sample
Data Sets

The following two data sets are used as examples in the text for this
section.

Monthly mean CO2 concentrations.1.  

Southern oscillations.2.  

6.4.4.1. Sample Data Sets
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.1. Sample Data Sets

6.4.4.1.1.Data Set of Monthly CO2
Concentrations

Source and
Background

This data set contains selected monthly mean CO2 concentrations at the
Mauna Loa Observatory from 1974 to 1987. The CO2 concentrations were
measured by the continuous infrared analyser of the Geophysical
Monitoring for Climatic Change division of NOAA's Air Resources
Laboratory. The selection has been for an approximation of 'background
conditions'. See Thoning et al., "Atmospheric Carbon Dioxide at Mauna
Loa Observatory: II Analysis of the NOAA/GMCC Data 1974-1985",
Journal of Geophysical Research (submitted) for details.

This dataset was received from Jim Elkins of NOAA in 1988.

Data Each line contains the CO2 concentration (mixing ratio in dry air,
expressed in the WMO X85 mole fraction scale, maintained by the Scripps
Institution of Oceanography). In addition, it contains the year, month, and
a numeric value for the combined month and year. This combined date is
useful for plotting purposes.

    CO2        Year&Month      Year        Month
--------------------------------------------------
  333.13        1974.38        1974          5
  332.09        1974.46        1974          6
  331.10        1974.54        1974          7
  329.14        1974.63        1974          8
  327.36        1974.71        1974          9
  327.29        1974.79        1974         10
  328.23        1974.88        1974         11
  329.55        1974.96        1974         12
 
  330.62        1975.04        1975          1
  331.40        1975.13        1975          2
  331.87        1975.21        1975          3

6.4.4.1.1. Data Set of Monthly CO2 Concentrations

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4411.htm (1 of 5) [7/1/2003 5:25:33 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


  333.18        1975.29        1975          4
  333.92        1975.38        1975          5
  333.43        1975.46        1975          6
  331.85        1975.54        1975          7
  330.01        1975.63        1975          8
  328.51        1975.71        1975          9
  328.41        1975.79        1975         10
  329.25        1975.88        1975         11
  330.97        1975.96        1975         12
 
  331.60        1976.04        1976          1
  332.60        1976.13        1976          2
  333.57        1976.21        1976          3
  334.72        1976.29        1976          4
  334.68        1976.38        1976          5
  334.17        1976.46        1976          6
  332.96        1976.54        1976          7
  330.80        1976.63        1976          8
  328.98        1976.71        1976          9
  328.57        1976.79        1976         10
  330.20        1976.88        1976         11
  331.58        1976.96        1976         12
 
  332.67        1977.04        1977          1
  333.17        1977.13        1977          2
  334.86        1977.21        1977          3
  336.07        1977.29        1977          4
  336.82        1977.38        1977          5
  336.12        1977.46        1977          6
  334.81        1977.54        1977          7
  332.56        1977.63        1977          8
  331.30        1977.71        1977          9
  331.22        1977.79        1977         10
  332.37        1977.88        1977         11
  333.49        1977.96        1977         12
 
  334.71        1978.04        1978          1
  335.23        1978.13        1978          2
  336.54        1978.21        1978          3
  337.79        1978.29        1978          4
  337.95        1978.38        1978          5
  338.00        1978.46        1978          6
  336.37        1978.54        1978          7
  334.47        1978.63        1978          8
  332.46        1978.71        1978          9
  332.29        1978.79        1978         10

6.4.4.1.1. Data Set of Monthly CO2 Concentrations
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  333.76        1978.88        1978         11
  334.80        1978.96        1978         12
 
  336.00        1979.04        1979          1
  336.63        1979.13        1979          2
  337.93        1979.21        1979          3
  338.95        1979.29        1979          4
  339.05        1979.38        1979          5
  339.27        1979.46        1979          6
  337.64        1979.54        1979          7
  335.68        1979.63        1979          8
  333.77        1979.71        1979          9
  334.09        1979.79        1979         10
  335.29        1979.88        1979         11
  336.76        1979.96        1979         12
 
  337.77        1980.04        1980          1
  338.26        1980.13        1980          2
  340.10        1980.21        1980          3
  340.88        1980.29        1980          4
  341.47        1980.38        1980          5
  341.31        1980.46        1980          6
  339.41        1980.54        1980          7
  337.74        1980.63        1980          8
  336.07        1980.71        1980          9
  336.07        1980.79        1980         10
  337.22        1980.88        1980         11
  338.38        1980.96        1980         12
 
  339.32        1981.04        1981          1
  340.41        1981.13        1981          2
  341.69        1981.21        1981          3
  342.51        1981.29        1981          4
  343.02        1981.38        1981          5
  342.54        1981.46        1981          6
  340.88        1981.54        1981          7
  338.75        1981.63        1981          8
  337.05        1981.71        1981          9
  337.13        1981.79        1981         10
  338.45        1981.88        1981         11
  339.85        1981.96        1981         12
 
  340.90        1982.04        1982          1
  341.70        1982.13        1982          2
  342.70        1982.21        1982          3
  343.65        1982.29        1982          4

6.4.4.1.1. Data Set of Monthly CO2 Concentrations
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  344.28        1982.38        1982          5
  343.42        1982.46        1982          6
  342.02        1982.54        1982          7
  339.97        1982.63        1982          8
  337.84        1982.71        1982          9
  338.00        1982.79        1982         10
  339.20        1982.88        1982         11
  340.63        1982.96        1982         12
 
  341.41        1983.04        1983          1
  342.68        1983.13        1983          2
  343.04        1983.21        1983          3
  345.27        1983.29        1983          4
  345.92        1983.38        1983          5
  345.40        1983.46        1983          6
  344.16        1983.54        1983          7
  342.11        1983.63        1983          8
  340.11        1983.71        1983          9
  340.15        1983.79        1983         10
  341.38        1983.88        1983         11
  343.02        1983.96        1983         12
 
  343.87        1984.04        1984          1
  344.59        1984.13        1984          2
  345.11        1984.21        1984          3
  347.07        1984.29        1984          4
  347.38        1984.38        1984          5
  346.78        1984.46        1984          6
  344.96        1984.54        1984          7
  342.71        1984.63        1984          8
  340.86        1984.71        1984          9
  341.13        1984.79        1984         10
  342.84        1984.88        1984         11
  344.32        1984.96        1984         12
 
  344.88        1985.04        1985          1
  345.62        1985.13        1985          2
  347.23        1985.21        1985          3
  347.62        1985.29        1985          4
  348.53        1985.38        1985          5
  347.87        1985.46        1985          6
  346.00        1985.54        1985          7
  343.86        1985.63        1985          8
  342.55        1985.71        1985          9
  342.57        1985.79        1985         10
  344.11        1985.88        1985         11

6.4.4.1.1. Data Set of Monthly CO2 Concentrations
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  345.49        1985.96        1985         12
 
  346.04        1986.04        1986          1
  346.70        1986.13        1986          2
  347.38        1986.21        1986          3
  349.38        1986.29        1986          4
  349.93        1986.38        1986          5
  349.26        1986.46        1986          6
  347.44        1986.54        1986          7
  345.55        1986.63        1986          8
  344.21        1986.71        1986          9
  343.67        1986.79        1986         10
  345.09        1986.88        1986         11
  346.27        1986.96        1986         12
 
  347.33        1987.04        1987          1
  347.82        1987.13        1987          2
  349.29        1987.21        1987          3
  350.91        1987.29        1987          4
  351.71        1987.38        1987          5
  350.94        1987.46        1987          6
  349.10        1987.54        1987          7
  346.77        1987.63        1987          8
  345.73        1987.71        1987          9

6.4.4.1.1. Data Set of Monthly CO2 Concentrations
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.1. Sample Data Sets

6.4.4.1.2.Data Set of Southern Oscillations

Source and
Background

The southern oscillation is defined as the barametric pressure difference
between Tahiti and the Darwin Islands at sea level. The southern
oscillation is a predictor of el nino which in turn is thought to be a driver
of world-wide weather. Specifically, repeated southern oscillation
values less than -1 typically defines an el nino. Note: the decimal values
in the second column of the data given below are obtained as (month
number - 0.5)/12.

Data
 Southern

Oscillation  Year + fraction  Year       Month
----------------------------------------------

  -0.7         1955.04        1955         1
   1.3         1955.13        1955         2
   0.1         1955.21        1955         3
  -0.9         1955.29        1955         4
   0.8         1955.38        1955         5
   1.6         1955.46        1955         6
   1.7         1955.54        1955         7
   1.4         1955.63        1955         8
   1.4         1955.71        1955         9
   1.5         1955.79        1955        10
   1.4         1955.88        1955        11
   0.9         1955.96        1955        12
 
   1.2         1956.04        1956         1
   1.1         1956.13        1956         2
   0.9         1956.21        1956         3
   1.1         1956.29        1956         4
   1.4         1956.38        1956         5
   1.2         1956.46        1956         6

6.4.4.1.2. Data Set of Southern Oscillations
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   1.1         1956.54        1956         7
   1.0         1956.63        1956         8
   0.0         1956.71        1956         9
   1.9         1956.79        1956        10
   0.1         1956.88        1956        11
   0.9         1956.96        1956        12
 
   0.4         1957.04        1957         1
  -0.4         1957.13        1957         2
  -0.4         1957.21        1957         3
   0.0         1957.29        1957         4
  -1.1         1957.38        1957         5
  -0.4         1957.46        1957         6
   0.1         1957.54        1957         7
  -1.1         1957.63        1957         8
  -1.0         1957.71        1957         9
  -0.1         1957.79        1957        10
  -1.2         1957.88        1957        11
  -0.5         1957.96        1957        12
 
  -1.9         1958.04        1958         1
  -0.7         1958.13        1958         2
  -0.3         1958.21        1958         3
   0.1         1958.29        1958         4
  -1.3         1958.38        1958         5
  -0.3         1958.46        1958         6
   0.3         1958.54        1958         7
   0.7         1958.63        1958         8
  -0.4         1958.71        1958         9
  -0.4         1958.79        1958        10
  -0.6         1958.88        1958        11
  -0.8         1958.96        1958        12
 
  -0.9         1959.04        1959         1
  -1.5         1959.13        1959         2
   0.8         1959.21        1959         3
   0.2         1959.29        1959         4
   0.2         1959.38        1959         5
  -0.9         1959.46        1959         6
  -0.5         1959.54        1959         7
  -0.6         1959.63        1959         8
   0.0         1959.71        1959         9
   0.3         1959.79        1959        10
   0.9         1959.88        1959        11
   0.8         1959.96        1959        12
 

6.4.4.1.2. Data Set of Southern Oscillations
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   0.0         1960.04        1960         1
  -0.2         1960.13        1960         2
   0.5         1960.21        1960         3
   0.9         1960.29        1960         4
   0.2         1960.38        1960         5
  -0.5         1960.46        1960         6
   0.4         1960.54        1960         7
   0.5         1960.63        1960         8
   0.7         1960.71        1960         9
  -0.1         1960.79        1960        10
   0.6         1960.88        1960        11
   0.7         1960.96        1960        12
 
  -0.4         1961.04        1961         1
   0.5         1961.13        1961         2
  -2.6         1961.21        1961         3
   1.1         1961.29        1961         4
   0.2         1961.38        1961         5
  -0.4         1961.46        1961         6
   0.1         1961.54        1961         7
  -0.3         1961.63        1961         8
   0.0         1961.71        1961         9
  -0.8         1961.79        1961        10
   0.7         1961.88        1961        11
   1.4         1961.96        1961        12
 
   1.7         1962.04        1962         1
  -0.5         1962.13        1962         2
  -0.4         1962.21        1962         3
   0.0         1962.29        1962         4
   1.2         1962.38        1962         5
   0.5         1962.46        1962         6
  -0.1         1962.54        1962         7
   0.3         1962.63        1962         8
   0.5         1962.71        1962         9
   0.9         1962.79        1962        10
   0.2         1962.88        1962        11
   0.0         1962.96        1962        12
 
   0.8         1963.04        1963         1
   0.3         1963.13        1963         2
   0.6         1963.21        1963         3
   0.9         1963.29        1963         4
   0.0         1963.38        1963         5
  -1.5         1963.46        1963         6
  -0.3         1963.54        1963         7

6.4.4.1.2. Data Set of Southern Oscillations

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm (3 of 12) [7/1/2003 5:25:33 PM]



  -0.4         1963.63        1963         8
  -0.7         1963.71        1963         9
  -1.6         1963.79        1963        10
  -1.0         1963.88        1963        11
  -1.4         1963.96        1963        12
 
  -0.5         1964.04        1964         1
  -0.2         1964.13        1964         2
   0.6         1964.21        1964         3
   1.7         1964.29        1964         4
  -0.2         1964.38        1964         5
   0.7         1964.46        1964         6
   0.5         1964.54        1964         7
   1.4         1964.63        1964         8
   1.3         1964.71        1964         9
   1.3         1964.79        1964        10
   0.0         1964.88        1964        11
  -0.5         1964.96        1964        12
 
  -0.5         1965.04        1965         1
   0.0         1965.13        1965         2
   0.2         1965.21        1965         3
  -1.1         1965.29        1965         4
   0.0         1965.38        1965         5
  -1.5         1965.46        1965         6
  -2.3         1965.54        1965         7
  -1.3         1965.63        1965         8
  -1.4         1965.71        1965         9
  -1.2         1965.79        1965        10
  -1.8         1965.88        1965        11
   0.0         1965.96        1965        12
 
  -1.4         1966.04        1966         1
  -0.5         1966.13        1966         2
  -1.6         1966.21        1966         3
  -0.7         1966.29        1966         4
  -0.6         1966.38        1966         5
   0.0         1966.46        1966         6
  -0.1         1966.54        1966         7
   0.3         1966.63        1966         8
  -0.3         1966.71        1966         9
  -0.3         1966.79        1966        10
  -0.1         1966.88        1966        11
  -0.5         1966.96        1966        12
 
   1.5         1967.04        1967         1

6.4.4.1.2. Data Set of Southern Oscillations
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   1.2         1967.13        1967         2
   0.8         1967.21        1967         3
  -0.2         1967.29        1967         4
  -0.4         1967.38        1967         5
   0.6         1967.46        1967         6
   0.0         1967.54        1967         7
   0.4         1967.63        1967         8
   0.5         1967.71        1967         9
  -0.2         1967.79        1967        10
  -0.7         1967.88        1967        11
  -0.7         1967.96        1967        12
 
   0.5         1968.04        1968         1
   0.8         1968.13        1968         2
  -0.5         1968.21        1968         3
  -0.3         1968.29        1968         4
   1.2         1968.38        1968         5
   1.4         1968.46        1968         6
   0.6         1968.54        1968         7
  -0.1         1968.63        1968         8
  -0.3         1968.71        1968         9
  -0.3         1968.79        1968        10
  -0.4         1968.88        1968        11
   0.0         1968.96        1968        12
 
  -1.4         1969.04        1969         1
   0.8         1969.13        1969         2
  -0.1         1969.21        1969         3
  -0.8         1969.29        1969         4
  -0.8         1969.38        1969         5
  -0.2         1969.46        1969         6
  -0.7         1969.54        1969         7
  -0.6         1969.63        1969         8
  -1.0         1969.71        1969         9
  -1.4         1969.79        1969        10
  -0.1         1969.88        1969        11
   0.3         1969.96        1969        12
 
  -1.2         1970.04        1970         1
  -1.2         1970.13        1970         2
   0.0         1970.21        1970         3
  -0.5         1970.29        1970         4
   0.1         1970.38        1970         5
   1.1         1970.46        1970         6
  -0.6         1970.54        1970         7
   0.3         1970.63        1970         8
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   1.2         1970.71        1970         9
   0.8         1970.79        1970        10
   1.8         1970.88        1970        11
   1.8         1970.96        1970        12
 
   0.2         1971.04        1971         1
   1.4         1971.13        1971         2
   2.0         1971.21        1971         3
   2.6         1971.29        1971         4
   0.9         1971.38        1971         5
   0.2         1971.46        1971         6
   0.1         1971.54        1971         7
   1.4         1971.63        1971         8
   1.5         1971.71        1971         9
   1.8         1971.79        1971        10
   0.5         1971.88        1971        11
   0.1         1971.96        1971        12
 
   0.3         1972.04        1972         1
   0.6         1972.13        1972         2
   0.1         1972.21        1972         3
  -0.5         1972.29        1972         4
  -2.1         1972.38        1972         5
  -1.7         1972.46        1972         6
  -1.9         1972.54        1972         7
  -1.1         1972.63        1972         8
  -1.5         1972.71        1972         9
  -1.1         1972.79        1972        10
  -0.4         1972.88        1972        11
  -1.5         1972.96        1972        12
 
  -0.4         1973.04        1973         1
  -1.5         1973.13        1973         2
   0.2         1973.21        1973         3
  -0.4         1973.29        1973         4
   0.3         1973.38        1973         5
   1.2         1973.46        1973         6
   0.5         1973.54        1973         7
   1.2         1973.63        1973         8
   1.3         1973.71        1973         9
   0.6         1973.79        1973        10
   2.9         1973.88        1973        11
   1.7         1973.96        1973        12
 
   2.2         1974.04        1974         1
   1.5         1974.13        1974         2
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   2.1         1974.21        1974         3
   1.3         1974.29        1974         4
   1.3         1974.38        1974         5
   0.1         1974.46        1974         6
   1.2         1974.54        1974         7
   0.5         1974.63        1974         8
   1.1         1974.71        1974         9
   0.8         1974.79        1974        10
  -0.4         1974.88        1974        11
   0.0         1974.96        1974        12
 
  -0.6         1975.04        1975         1
   0.4         1975.13        1975         2
   1.1         1975.21        1975         3
   1.5         1975.29        1975         4
   0.5         1975.38        1975         5
   1.7         1975.46        1975         6
   2.1         1975.54        1975         7
   2.0         1975.63        1975         8
   2.2         1975.71        1975         9
   1.7         1975.79        1975        10
   1.3         1975.88        1975        11
   2.0         1975.96        1975        12
 
   1.2         1976.04        1976         1
   1.2         1976.13        1976         2
   1.3         1976.21        1976         3
   0.2         1976.29        1976         4
   0.6         1976.38        1976         5
  -0.1         1976.46        1976         6
  -1.2         1976.54        1976         7
  -1.5         1976.63        1976         8
  -1.2         1976.71        1976         9
   0.2         1976.79        1976        10
   0.7         1976.88        1976        11
  -0.5         1976.96        1976        12
 
  -0.5         1977.04        1977         1
   0.8         1977.13        1977         2
  -1.2         1977.21        1977         3
  -1.3         1977.29        1977         4
  -1.1         1977.38        1977         5
  -2.3         1977.46        1977         6
  -1.5         1977.54        1977         7
  -1.4         1977.63        1977         8
  -0.9         1977.71        1977         9
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  -1.4         1977.79        1977        10
  -1.6         1977.88        1977        11
  -1.3         1977.96        1977        12
 
  -0.5         1978.04        1978         1
  -2.6         1978.13        1978         2
  -0.8         1978.21        1978         3
  -0.9         1978.29        1978         4
   1.3         1978.38        1978         5
   0.4         1978.46        1978         6
   0.4         1978.54        1978         7
   0.1         1978.63        1978         8
   0.0         1978.71        1978         9
  -0.8         1978.79        1978        10
  -0.1         1978.88        1978        11
  -0.2         1978.96        1978        12
 
  -0.5         1979.04        1979         1
   0.6         1979.13        1979         2
  -0.5         1979.21        1979         3
  -0.7         1979.29        1979         4
   0.5         1979.38        1979         5
   0.6         1979.46        1979         6
   1.3         1979.54        1979         7
  -0.7         1979.63        1979         8
   0.1         1979.71        1979         9
  -0.4         1979.79        1979        10
  -0.6         1979.88        1979        11
  -0.9         1979.96        1979        12
 
   0.3         1980.04        1980         1
   0.0         1980.13        1980         2
  -1.1         1980.21        1980         3
  -1.7         1980.29        1980         4
  -0.3         1980.38        1980         5
  -0.7         1980.46        1980         6
  -0.2         1980.54        1980         7
  -0.1         1980.63        1980         8
  -0.5         1980.71        1980         9
  -0.3         1980.79        1980        10
  -0.5         1980.88        1980        11
  -0.2         1980.96        1980        12
 
   0.3         1981.04        1981         1
  -0.5         1981.13        1981         2
  -2.0         1981.21        1981         3

6.4.4.1.2. Data Set of Southern Oscillations
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  -0.6         1981.29        1981         4
   0.8         1981.38        1981         5
   1.6         1981.46        1981         6
   0.8         1981.54        1981         7
   0.4         1981.63        1981         8
   0.3         1981.71        1981         9
  -0.7         1981.79        1981        10
   0.1         1981.88        1981        11
   0.4         1981.96        1981        12
 
   1.0         1982.04        1982         1
   0.0         1982.13        1982         2
   0.0         1982.21        1982         3
  -0.1         1982.29        1982         4
  -0.6         1982.38        1982         5
  -2.5         1982.46        1982         6
  -2.0         1982.54        1982         7
  -2.7         1982.63        1982         8
  -1.9         1982.71        1982         9
  -2.2         1982.79        1982        10
  -3.2         1982.88        1982        11
  -2.5         1982.96        1982        12
 
  -3.4         1983.04        1983         1
  -3.5         1983.13        1983         2
  -3.2         1983.21        1983         3
  -2.1         1983.29        1983         4
   0.9         1983.38        1983         5
  -0.5         1983.46        1983         6
  -0.9         1983.54        1983         7
  -0.4         1983.63        1983         8
   0.9         1983.71        1983         9
   0.3         1983.79        1983        10
  -0.1         1983.88        1983        11
  -0.1         1983.96        1983        12
 
   0.0         1984.04        1984         1
   0.4         1984.13        1984         2
  -0.8         1984.21        1984         3
   0.4         1984.29        1984         4
   0.0         1984.38        1984         5
  -1.2         1984.46        1984         6
   0.0         1984.54        1984         7
   0.1         1984.63        1984         8
   0.1         1984.71        1984         9
  -0.6         1984.79        1984        10

6.4.4.1.2. Data Set of Southern Oscillations
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   0.3         1984.88        1984        11
  -0.3         1984.96        1984        12
 
  -0.5         1985.04        1985         1
   0.8         1985.13        1985         2
   0.2         1985.21        1985         3
   1.4         1985.29        1985         4
  -0.2         1985.38        1985         5
  -1.4         1985.46        1985         6
  -0.3         1985.54        1985         7
   0.7         1985.63        1985         8
   0.0         1985.71        1985         9
  -0.8         1985.79        1985        10
  -0.4         1985.88        1985        11
   0.1         1985.96        1985        12
 
   0.8         1986.04        1986         1
  -1.2         1986.13        1986         2
  -0.1         1986.21        1986         3
   0.1         1986.29        1986         4
  -0.6         1986.38        1986         5
   1.0         1986.46        1986         6
   0.1         1986.54        1986         7
  -0.9         1986.63        1986         8
  -0.5         1986.71        1986         9
   0.6         1986.79        1986        10
  -1.6         1986.88        1986        11
  -1.6         1986.96        1986        12
 
  -0.7         1987.04        1987         1
  -1.4         1987.13        1987         2
  -2.0         1987.21        1987         3
  -2.7         1987.29        1987         4
  -2.0         1987.38        1987         5
  -2.7         1987.46        1987         6
  -1.8         1987.54        1987         7
  -1.7         1987.63        1987         8
  -1.1         1987.71        1987         9
  -0.7         1987.79        1987        10
  -0.1         1987.88        1987        11
  -0.6         1987.96        1987        12
 
  -0.3         1988.04        1988         1
  -0.6         1988.13        1988         2
   0.1         1988.21        1988         3
   0.0         1988.29        1988         4

6.4.4.1.2. Data Set of Southern Oscillations
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   1.1         1988.38        1988         5
  -0.3         1988.46        1988         6
   1.1         1988.54        1988         7
   1.4         1988.63        1988         8
   1.9         1988.71        1988         9
   1.5         1988.79        1988        10
   1.9         1988.88        1988        11
   1.1         1988.96        1988        12
 
   1.5         1989.04        1989         1
   1.1         1989.13        1989         2
   0.6         1989.21        1989         3
   1.6         1989.29        1989         4
   1.2         1989.38        1989         5
   0.5         1989.46        1989         6
   0.8         1989.54        1989         7
  -0.8         1989.63        1989         8
   0.6         1989.71        1989         9
   0.6         1989.79        1989        10
  -0.4         1989.88        1989        11
  -0.7         1989.96        1989        12
 
  -0.2         1990.04        1990         1
  -2.4         1990.13        1990         2
  -1.2         1990.21        1990         3
   0.0         1990.29        1990         4
   1.1         1990.38        1990         5
   0.0         1990.46        1990         6
   0.5         1990.54        1990         7
  -0.5         1990.63        1990         8
  -0.8         1990.71        1990         9
   0.1         1990.79        1990        10
  -0.7         1990.88        1990        11
  -0.4         1990.96        1990        12
 
   0.6         1991.04        1991         1
  -0.1         1991.13        1991         2
  -1.4         1991.21        1991         3
  -1.0         1991.29        1991         4
  -1.5         1991.38        1991         5
  -0.5         1991.46        1991         6
  -0.2         1991.54        1991         7
  -0.9         1991.63        1991         8
  -1.8         1991.71        1991         9
  -1.5         1991.79        1991        10
  -0.8         1991.88        1991        11

6.4.4.1.2. Data Set of Southern Oscillations
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  -2.3         1991.96        1991        12
 
  -3.4         1992.04        1992         1
  -1.4         1992.13        1992         2
  -3.0         1992.21        1992         3
  -1.4         1992.29        1992         4
   0.0         1992.38        1992         5
  -1.2         1992.46        1992         6
  -0.8         1992.54        1992         7
   0.0         1992.63        1992         8
   0.0         1992.71        1992         9
  -1.9         1992.79        1992        10
  -0.9         1992.88        1992        11
  -1.1         1992.96        1992        12

6.4.4.1.2. Data Set of Southern Oscillations
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.2.Stationarity

Stationarity A common assumption in many time series techniques is that the
data are stationary.

A stationary process has the property that the mean, variance and
autocorrelation structure do not change over time. Stationarity can
be defined in precise mathematical terms, but for our purpose we
mean a flat looking series, without trend, constant variance over
time, a constant autocorrelation structure over time and no periodic
fluctuations (seasonality).

For practical purposes, stationarity can usually be determined from a
run sequence plot.

Transformations
to Achieve
Stationarity

If the time series is not stationary, we can often transform it to
stationarity with one of the following techniques.

We can difference the data. That is, given the series Zt, we
create the new series

The differenced data will contain one less point than the
original data. Although you can difference the data more than
once, one differene is usually sufficient.

1.  

If the data contain a trend, we can fit some type of curve to
the data and then model the residuals from that fit. Since the
purpose of the fit is to simply remove long term trend, a
simple fit, such as a straight line, is typically used.

2.  

For non-constant variance, taking the logarithm or square root
of the series may stabilize the variance. For negative data, you
can add a suitable constant to make all the data positive before
applying the transformation. This constant can then be
subtracted from the model to obtain predicted (i.e., the fitted)
values and forecasts for future points.

3.  

The above techniques are intended to generate series with constant

6.4.4.2. Stationarity
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location and scale. Although seasonality also violates stationarity,
this is usually explicitly incorporated into the time series model.

Example The following plots are from a data set of monthly CO2
concentrations.

Run Sequence
Plot

The initial run sequence plot of the data indicates a rising trend. A
visual inspection of this plot indicates that a simple linear fit should
be sufficient to remove this upward trend.

This plot also shows periodical behavior. This is discussed in the
next section.

Linear Trend
Removed

6.4.4.2. Stationarity
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This plot contains the residuals from a linear fit to the original data.
After removing the linear trend, the run sequence plot indicates that
the data have a constant location and variance, although the pattern
of the residuals shows that the data depart from the model in a
systematic way.

6.4.4.2. Stationarity

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc442.htm (3 of 3) [7/1/2003 5:25:34 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.3.Seasonality

Seasonality Many time series display seasonality. By seasonality, we mean periodic
fluctuations. For example, retail sales tend to peak for the Christmas
season and then decline after the holidays. So time series of retail sales
will typically show increasing sales from September through December
and declining sales in January and February.

Seasonality is quite common in economic time series. It is less common
in engineering and scientific data.

If seasonality is present, it must be incorporated into the time series
model. In this section, we discuss techniques for detecting seasonality.
We defer modeling of seasonality until later sections.

Detecting
Seasonality

he following graphical techniques can be used to detect seasonality.

A run sequence plot will often show seasonality.1.  

A seasonal subseries plot is a specialized technique for showing
seasonality.

2.  

Multiple box plots can be used as an alternative to the seasonal
subseries plot to detect seasonality.

3.  

The autocorrelation plot can help identify seasonality.4.  

Examples of each of these plots will be shown below.

The run sequence plot is a recommended first step for analyzing any
time series. Although seasonality can sometimes be indicated with this
plot, seasonality is shown more clearly by the seasonal subseries plot or
the box plot. The seasonal subseries plot does an excellent job of
showing both the seasonal differences (between group patterns) and also
the within-group patterns. The box plot shows the seasonal difference
(between group patterns) quite well, but it does not show within group
patterns. However, for large data sets, the box plot is usually easier to
read than the seasonal subseries plot.

Both the seasonal subseries plot and the box plot assume that the

6.4.4.3. Seasonality
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seasonal periods are known. In most cases, the analyst will in fact know
this. For example, for monthly data, the period is 12 since there are 12
months in a year. However, if the period is not known, the
autocorrelation plot can help. If there is significant seasonality, the
autocorrelation plot should show spikes at lags equal to the period. For
example, for monthly data, if there is a seasonality effect, we would
expect to see significant peaks at lag 12, 24, 36, and so on (although the
intensity may decrease the further out we go).

Example
without
Seasonality

The following plots are from a data set of southern oscillations for
predicting el nino.

Run
Sequence
Plot

No obvious periodic patterns are apparent in the run sequence plot.

6.4.4.3. Seasonality
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Seasonal
Subseries
Plot

The means for each month are relatively close and show no obvious
pattern.

Box Plot

As with the seasonal subseries plot, no obvious seasonal pattern is
apparent.

Due to the rather large number of observations, the box plot shows the
difference between months better than the seasonal subseries plot.

6.4.4.3. Seasonality
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Example
with
Seasonality

The following plots are from a data set of monthly CO2 concentrations.
A linear trend has been removed from these data.

Run
Sequence
Plot

This plot shows periodic behavior. However, it is difficult to determine
the nature of the seasonality from this plot.

Seasonal
Subseries
Plot

The seasonal subseries plot shows the seasonal pattern more clearly. In

6.4.4.3. Seasonality
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this case, the CO2 concentrations are at a minimun in September and
October. From there, steadily the concentrations increase until June and
then begin declining until September.

Box Plot

As with the seasonal subseries plot, the seasonal pattern is quite evident
in the box plot.

6.4.4.3. Seasonality
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.3. Seasonality

6.4.4.3.1.Seasonal Subseries Plot

Purpose Seasonal subseries plots (Cleveland 1993) are a tool for detecting
seasonality in a time series.

This plot is only useful if the period of the seasonality is already known.
In many cases, this will in fact be known. For example, monthly data
typically has a period of 12.

If the period is not known, an autocorrelation plot or spectral plot can be
used to determine it.

Sample Plot

This seasonal subseries plot containing monthly data of CO2
concentrations reveals a strong seasonality pattern. The CO2
concentrations peak in May, steadily decrease through September, and
then begin rising again until the May peak.

6.4.4.3.1. Seasonal Subseries Plot
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This plot allows you to detect both between group and within group
patterns.

If there is a large number of observations, then a box plot may be
preferable.

Definition Seasonal subseries plots are formed by

Vertical axis: Response variable
Horizontal axis: Time ordered by season. For example, with

monthly data, all the January values are plotted
(in chronological order), then all the February
values, and so on.

In addition, a reference line is drawn at the group means.

The user must specify the length of the seasonal pattern before
generating this plot. In most cases, the analyst will know this from the
context of the problem and data collection.

Questions The seasonal subseries plot can provide answers to the following
questions:

Do the data exhibit a seasonal pattern?1.  

What is the nature of the seasonality?2.  

Is there a within-group pattern (e.g., do January and July exhibit
similar patterns)?

3.  

Are there any outliers once seasonality has been accounted for?4.  

Importance It is important to know when analyzing a time series if there is a
significant seasonality effect. The seasonal subseries plot is an excellent
tool for determining if there is a seasonal pattern.

Related
Techniques

Box Plot
Run Sequence Plot
Autocorrelation Plot

Software Seasonal subseries plots are available in a few general purpose statistical
software programs. They are available in Dataplot. It may possible to
write macros to generate this plot in most statistical software programs
that do not provide it directly.

6.4.4.3.1. Seasonal Subseries Plot
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.4.Common Approaches to Univariate
Time Series

There are a number of approaches to modeling time series. We outline
a few of the most common approaches below.

Trend,
Seasonal,
Residual
Decompositions

One approach is to decompose the time series into a trend, seasonal,
and residual component.

Triple exponential smoothing is an example of this approach. Another
example, called seasonal loess, is based on locally weighted least
squares and is discussed by Cleveland (1993). We do not discuss
seasonal loess in this handbook.

Frequency
Based Methods

Another approach, commonly used in scientific and engineering
applications, is to analyze the series in the frequency domain. An
example of this approach in modeling a sinusoidal type data set is
shown in the beam deflection case study. The spectral plot is the
primary tool for the frequency analysis of time series.

Detailed discussions of frequency-based methods are included in
Bloomfield (1976), Jenkins and Watts (1968), and Chatfield (1996).

6.4.4.4. Common Approaches to Univariate Time Series
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Autoregressive
(AR) Models

A common approach for modeling univariate time series is the
autoregressive (AR) model:

where Xt is the time series, At is white noise, and

with  denoting the process mean.

An autoregressive model is simply a linear regression of the current
value of the series against one or more prior values of the series. The
value of p is called the order of the AR model.

AR models can be analyzed with one of various methods, including
standard linear least squares techniques. They also have a
straightforward interpretation.

Moving
Average (MA)
Models

Another common approach for modeling univariate time series
models is the moving average (MA) model:

where Xt is the time series,  is the mean of the series, At-i are white
noise, and 1, ... , q are the parameters of the model. The value of q
is called the order of the MA model.

That is, a moving average model is conceptually a linear regression of
the current value of the series against the white noise or random
shocks of one or more prior values of the series. The random shocks
at each point are assumed to come from the same distribution,
typically a normal distribution, with location at zero and constant
scale. The distinction in this model is that these random shocks are
propogated to future values of the time series. Fitting the MA
estimates is more complicated than with AR models because the error
terms are not observable. This means that iterative non-linear fitting
procedures need to be used in place of linear least squares. MA
models also have a less obvious interpretation than AR models.

Sometimes the ACF and PACF will suggest that a MA model would
be a better model choice and sometimes both AR and MA terms
should be used in the same model (see Section 6.4.4.5).

Note, however, that the error terms after the model is fit should be
independent and follow the standard assumptions for a univariate
process.

6.4.4.4. Common Approaches to Univariate Time Series
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Box-Jenkins
Approach

Box and Jenkins popularized an approach that combines the moving
average and the autoregressive approaches in the book "Time Series
Analysis: Forecasting and Control" (Box, Jenkins, and Reinsel,
1994).

Although both autoregressive and moving average approaches were
already known (and were originally investigated by Yule), the
contribution of Box and Jenkins was in developing a systematic
methodology for identifying and estimating models that could
incorporate both approaches. This makes Box-Jenkins models a
powerful class of models. The next several sections will discuss these
models in detail.

6.4.4.4. Common Approaches to Univariate Time Series
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.5.Box-Jenkins Models

Box-Jenkins
Approach

The Box-Jenkins ARMA model is a combination of the AR and MA
models (described on the previous page):

where the terms in the equation have the same meaning as given for the
AR and MA model.

Comments
on
Box-Jenkins
Model

A couple of notes on this model.

The Box-Jenkins model assumes that the time series is stationary.
Box and Jenkins recommend differencing non-stationary series
one or more times to achieve stationarity. Doing so produces an
ARIMA model, with the "I" standing for "Integrated".

1.  

Some formulations transform the series by subtracting the mean
of the series from each data point. This yields a series with a
mean of zero. Whether you need to do this or not is dependent on
the software you use to estimate the model.

2.  

Box-Jenkins models can be extended to include seasonal
autoregressive and seasonal moving average terms. Although this
complicates the notation and mathematics of the model, the
underlying concepts for seasonal autoregressive and seasonal
moving average terms are similar to the non-seasonal
autoregressive and moving average terms.

3.  

The most general Box-Jenkins model includes difference
operators, autoregressive terms, moving average terms, seasonal
difference operators, seasonal autoregressive terms, and seasonal
moving average terms. As with modeling in general, however,
only necessary terms should be included in the model. Those
interested in the mathematical details can consult Box, Jenkins
and Reisel (1994), Chatfield (1996), or Brockwell and Davis
(2002).

4.  

6.4.4.5. Box-Jenkins Models
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Stages in
Box-Jenkins
Modeling

There are three primary stages in building a Box-Jenkins time series
model.

Model Identification1.  

Model Estimation2.  

Model Validation3.  

Remarks The following remarks regarding Box-Jenkins models should be noted.

Box-Jenkins models are quite flexible due to the inclusion of both
autoregressive and moving average terms.

1.  

Based on the Wold decomposition thereom (not discussed in the
Handbook), a stationary process can be approximated by an
ARMA model. In practice, finding that approximation may not be
easy.

2.  

Chatfield (1996) recommends decomposition methods for series
in which the trend and seasonal components are dominant.

3.  

Building good ARIMA models generally requires more
experience than commonly used statistical methods such as
regression.

4.  

Sufficiently
Long Series
Required

Typically, effective fitting of Box-Jenkins models requires at least a
moderately long series. Chatfield (1996) recommends at least 50
observations. Many others would recommend at least 100 observations.

6.4.4.5. Box-Jenkins Models
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.6.Box-Jenkins Model Identification

Stationarity
and Seasonality

The first step in developing a Box-Jenkins model is to determine if
the series is stationary and if there is any significant seasonality that
needs to be modeled.

Detecting
stationarity

Stationarity can be assessed from a run sequence plot. The run
sequence plot should show constant location and scale. It can also be
detected from an autocorrelation plot. Specifically, non-stationarity is
often indicated by an autocorrelation plot with very slow decay.

Detecting
seasonality

Seasonality (or periodicity) can usually be assessed from an
autocorrelation plot, a seasonal subseries plot, or a spectral plot.

Differencing to
achieve
stationarity

Box and Jenkins recommend the differencing approach to achieve
stationarity. However, fitting a curve and subtracting the fitted values
from the original data can also be used in the context of Box-Jenkins
models.

Seasonal
differencing

At the model identification stage, our goal is to detect seasonality, if
it exists, and to identify the order for the seasonal autoregressive and
seasonal moving average terms. For many series, the period is known
and a single seasonality term is sufficient. For example, for monthly
data we would typically include either a seasonal AR 12 term or a
seasonal MA 12 term. For Box-Jenkins models, we do not explicitly
remove seasonality before fitting the model. Instead, we include the
order of the seasonal terms in the model specification to the ARIMA
estimation software. However, it may be helpful to apply a seasonal
difference to the data and regenerate the autocorrelation and partial
autocorrelation plots. This may help in the model idenfitication of the
non-seasonal component of the model. In some cases, the seasonal
differencing may remove most or all of the seasonality effect.

6.4.4.6. Box-Jenkins Model Identification
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Identify p and q Once stationarity and seasonality have been addressed, the next step
is to identify the order (i.e., the p and q) of the autoregressive and
moving average terms.

Autocorrelation
and Partial
Autocorrelation
Plots

The primary tools for doing this are the autocorrelation plot and the
partial autocorrelation plot. The sample autocorrelation plot and the
sample partial autocorrelation plot are compared to the theoretical
behavior of these plots when the order is known.

Order of
Autoregressive
Process (p)

Specifically, for an AR(1) process, the sample autocorrelation
function should have an exponentially decreasing appearance.
However, higher-order AR processes are often a mixture of
exponentially decreasing and damped sinusoidal components.

For higher-order autoregressive processes, the sample autocorrelation
needs to be supplemented with a partial autocorrelation plot. The
partial autocorrelation of an AR(p) process becomes zero at lag p+1
and greater, so we examine the sample partial autocorrelation
function to see if there is evidence of a departure from zero. This is
usually determined by placing a 95% confidence interval on the
sample partial autocorrelation plot (most software programs that
generate sample autocorrelation plots will also plot this confidence
interval). If the software program does not generate the confidence

band, it is approximately , with N denoting the sample
size.

Order of
Moving
Average
Process (q)

The autocorrelation function of a MA(q) process becomes zero at lag
q+1 and greater, so we examine the sample autocorrelation function
to see where it essentially becomes zero. We do this by placing the
95% confidence interval for the sample autocorrelation function on
the sample autocorrelation plot. Most software that can generate the
autocorrelation plot can also generate this confidence interval.

The sample partial autocorrelation function is generally not helpful
for identifying the order of the moving average process.

6.4.4.6. Box-Jenkins Model Identification
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Shape of
Autocorrelation
Function

The following table summarizes how we use the sample
autocorrelation function for model identification.

SHAPE INDICATED MODEL

Exponential, decaying to
zero

Autoregressive model. Use the
partial autocorrelation plot to
identify the order of the
autoregressive model.

Alternating positive and
negative, decaying to
zero

Autoregressive model. Use the
partial autocorrelation plot to
help identify the order.

One or more spikes, rest
are essentially zero

Moving average model, order
identified by where plot
becomes zero.

Decay, starting after a
few lags

Mixed autoregressive and
moving average model.

All zero or close to zero Data is essentially random.

High values at fixed
intervals

Include seasonal
autoregressive term.

No decay to zero Series is not stationary.

Mixed Models
Difficult to
Identify

In practice, the sample autocorrelation and partial autocorrelation
functions are random variables and will not give the same picture as
the theoretical functions. This makes the model identification more
difficult. In particular, mixed models can be particularly difficult to
identify.

Although experience is helpful, developing good models using these
sample plots can involve much trial and error. For this reason, in
recent years information-based criteria such as FPE (Final Prediction
Error) and AIC (Aikake Information Criterion) and others have been
preferred and used. These techniques can help automate the model
identification process. These techniques require computer software to
use. Fortunately, these techniques are available in many commerical
statistical software programs that provide ARIMA modeling
capabilities.

For additional information on these techniques, see Brockwell and
Davis (1987, 2002).

6.4.4.6. Box-Jenkins Model Identification
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Examples We show a typical series of plots for performing the initial model
identification for

the southern oscillations data and1.  

the CO2 monthly concentrations data.2.  

6.4.4.6. Box-Jenkins Model Identification
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.6. Box-Jenkins Model Identification

6.4.4.6.1.Model Identification for Southern
Oscillations Data

Example for
Southern
Oscillations

We show typical series of plots for the initial model identification
stages of Box-Jenkins modeling for two different examples.

The first example is for the southern oscillations data set. We start
with the run sequence plot and seasonal subseries plot to determine if
we need to address stationarity and seasonality.

Run Sequence
Plot

The run sequence plot indicates stationarity.

6.4.4.6.1. Model Identification for Southern Oscillations Data
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Seasonal
Subseries Plot

The seasonal subseries plot indicates that there is no significant
seasonality.

Since the above plots show that this series does not exhibit any
significant non-stationarity or seasonality, we generate the
autocorrelation and partial autocorrelation plots of the raw data.

Autocorrelation
Plot

The autocorrelation plot shows a mixture of exponentially decaying

6.4.4.6.1. Model Identification for Southern Oscillations Data
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and damped sinusoidal components. This indicates that an
autoregressive model, with order greater than one, may be
appropriate for these data. The partial autocorrelation plot should be
examined to determine the order.

Partial
Autocorrelation
Plot

The partial autocorrelation plot suggests that an AR(2) model might
be appropriate.

In summary, our intial attempt would be to fit an AR(2) model with
no seasonal terms and no differencing or trend removal. Model
validation should be performed before accepting this as a final
model.

6.4.4.6.1. Model Identification for Southern Oscillations Data
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.6. Box-Jenkins Model Identification

6.4.4.6.2.Model Identification for the
CO<sub>2</sub> Concentrations
Data

Example for
Monthly CO2
Concentrations

The second example is for the monthly CO2 concentrations data set.

As before, we start with the run sequence plot to check for
stationarity.

Run Sequence
Plot

The initial run sequence plot of the data indicates a rising trend. A
visual inspection of this plot indicates that a simple linear fit should
be sufficient to remove this upward trend.

6.4.4.6.2. Model Identification for the CO<sub>2</sub> Concentrations Data
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Linear Trend
Removed

This plot contains the residuals from a linear fit to the original data.
After removing the linear trend, the run sequence plot indicates that
the data have a constant location and variance, which implies
stationarity.

However, the plot does show seasonality. We generate an
autocorrelation plot to help determine the period followed by a
seasonal subseries plot.

Autocorrelation
Plot

6.4.4.6.2. Model Identification for the CO<sub>2</sub> Concentrations Data
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The autocorrelation plot shows an alternating pattern of positive and
negative spikes. It also shows a repeating pattern every 12 lags,
which indicates a seasonality effect.

The two connected lines on the autocorrelation plot are 95% and
99% confidence intervals for statistical significance of the
autocorrelations.

Seasonal
Subseries Plot

A significant seasonal pattern is obvious in this plot, so we need to
include seasonal terms in fitting a Box-Jenkins model. Since this is
monthly data, we would typically include either a lag 12 seasonal
autoregressive and/or moving average term.

To help identify the non-seasonal components, we will take a
seasonal difference of 12 and generate the autocorrelation plot on the
seasonally differenced data.

6.4.4.6.2. Model Identification for the CO<sub>2</sub> Concentrations Data
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Autocorrelation
Plot for
Seasonally
Differenced
Data

This autocorrelation plot shows a mixture of exponential decay and a
damped sinusoidal pattern. This indicates that an AR model, with
order greater than one, may be appropriate. We generate a partial
autocorrelation plot to help identify the order.

Partial
Autocorrelation
Plot of
Seasonally
Differenced
Data

The partial autocorrelation plot suggests that an AR(2) model might
be appropriate since the partial autocorrelation becomes zero after
the second lag. The lag 12 is also significant, indicating some

6.4.4.6.2. Model Identification for the CO<sub>2</sub> Concentrations Data

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4462.htm (4 of 5) [7/1/2003 5:25:42 PM]



remaining seasonality.

In summary, our intial attempt would be to fit an AR(2) model with a
seasonal AR(12) term on the data with a linear trend line removed.
We could try the model both with and without seasonal differencing
applied. Model validation should be performed before accepting this
as a final model.

6.4.4.6.2. Model Identification for the CO<sub>2</sub> Concentrations Data
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models
6.4.4.6. Box-Jenkins Model Identification

6.4.4.6.3.Partial Autocorrelation Plot

Purpose:
Model
Identification
for
Box-Jenkins
Models

Partial autocorrelation plots (Box and Jenkins, pp. 64-65, 1970) are a
commonly used tool for model identification in Box-Jenkins models.

The partial autocorrelation at lag k is the autocorrelation between Xt
and Xt-k that is not accounted for by lags 1 through k-1.

There are algorithms, not discussed here, for computing the partial
autocorrelation based on the sample autocorrelations. See (Box,
Jenkins, and Reinsel 1970) or (Brockwell, 1991) for the mathematical
details.

Specifically, partial autocorrelations are useful in identifying the order
of an autoregressive model. The partial autocorrelation of an AR(p)
process is zero at lag p+1 and greater. If the sample autocorrelation plot
indicates that an AR model may be appropriate, then the sample partial
autocorrelation plot is examined to help identify the order. We look for
the point on the plot where the partial autocorrelations essentially
become zero. Placing a 95% confidence interval for statistical
significance is helpful for this purpose.

The approximate 95% confidence interval for the partial

autocorrelations are at .

6.4.4.6.3. Partial Autocorrelation Plot
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Sample Plot

This partial autocorrelation plot shows clear statistical significance for
lags 1 and 2 (lag 0 is always 1). The next few lags are at the borderline
of statistical significance. If the autocorrelation plot indicates that an
AR model is appropriate, we could start our modeling with an AR(2)
model. We might compare this with an AR(3) model.

Definition Partial autocorrelation plots are formed by

Vertical axis: Partial autocorrelation coefficient at lag h.
Horizontal axis: Time lag h (h = 0, 1, 2, 3, ...).

In addition, 95% confidence interval bands are typically included on the
plot.

Questions The partial autocorrelation plot can help provide answers to the
following questions:

Is an AR model appropriate for the data?1.  

If an AR model is appropriate, what order should we use?2.  

Related
Techniques

Autocorrelation Plot
Run Sequence Plot
Spectral Plot

Case Study The partial autocorrelation plot is demonstrated in the Negiz data case
study.

6.4.4.6.3. Partial Autocorrelation Plot
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Software Partial autocorrelation plots are available in many general purpose
statistical software programs including Dataplot.

6.4.4.6.3. Partial Autocorrelation Plot
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.7.Box-Jenkins Model Estimation

Use Software Estimating the parameters for the Box-Jenkins models is a quite
complicated non-linear estimation problem. For this reason, the
parameter estimation should be left to a high quality software program
that fits Box-Jenkins models. Fortunately, many commerical statistical
software programs now fit Box-Jenkins models.

Approaches The main approaches to fitting Box-Jenkins models are non-linear
least squares and maximum likelihood estimation.

Maximum likelihood estimation is generally the preferred technique.
The likelihood equations for the full Box-Jenkins model are
complicated and are not included here. See (Brockwell and Davis,
1991) for the mathematical details.

Sample
Output for
Model
Estimation

The Negiz case study shows an example of the Box-Jenkins
model-fitting output using the Dataplot software. The two examples
later in this section show sample output from the SEMPLOT software.

6.4.4.7. Box-Jenkins Model Estimation
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.8.Box-Jenkins Model Diagnostics

Assumptions
for a Stable
Univariate
Process

Model diagnostics for Box-Jenkins models is similar to model
validation for non-linear least squares fitting.

That is, the error term At is assumed to follow the assumptions for a
stationary univariate process. The residuals should be white noise (or
independent when their distributions are normal) drawings from a
fixed distribution with a constant mean and variance. If the
Box-Jenkins model is a good model for the data, the residuals should
satisfy these assumptions.

If these assumptions are not satisfied, we need to fit a more
appropriate model. That is, we go back to the model identification step
and try to develop a better model. Hopefully the analysis of the
residuals can provide some clues as to a more appropriate model.

4-Plot of
Residuals

As discussed in the EDA chapter, one way to assess if the residuals
from the Box-Jenkins model follow the assumptions is to generate a
4-plot of the residuals and an autocorrelation plot of the residuals. One
could also look at the value of the Box-Ljung (1978) statistic.

An example of analyzing the residuals from a Box-Jenkins model is
given in the Negiz data case study.

6.4.4.8. Box-Jenkins Model Diagnostics
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.9.Example of Univariate Box-Jenkins Analysis

Example
with the
SEMPLOT
Software

A computer software package is needed to do a Box-Jenkins time series analysis. The computer
output on this page will illustrate sample output from a Box-Jenkins analysis using the SEMSTAT
statistical software program. It analyzes the series F data set in the Box, Jenkins and Reinsel text.

The graph of the data and the resulting forecasts after fitting a model are portrayed below.

Output from other software programs will be similar, but not identical.

Model
Identification
Section

With the SEMSTAT program, you start by entering a valid file name or you can select a file
extension to search for files of particular interest. In this program, if you press the enter key, ALL
file names in the directory are displayed.

Enter FILESPEC or EXTENSION (1-3 letters): To quit, press F10.

? bookf.bj 

MAX MIN MEAN VARIANCE NO. DATA 
80.0000 23.0000 51.7086 141.8238 70 
Do you wish to make transformations? y/n n 
Input order of difference or 0: 0 
Input period of seasonality (2-12) or 0: 0 

Time Series: bookf.bj. Regular difference: 0 Seasonal Difference: 0 

Autocorrelation Function for the first 35 lags 

    0   1.0000       12   -0.0688       24  -0.0731
    1  -0.3899       13    0.1480       25  -0.0195
    2   0.3044       14    0.0358       26   0.0415
    3  -0.1656       15   -0.0067       27  -0.0221
    4   0.0707       16    0.1730       28   0.0889
    5  -0.0970       17   -0.7013       29   0.0162
    6  -0.0471       18    0.0200       30   0.0039
    7   0.0354       19   -0.0473       31   0.0046
    8  -0.0435       20    0.0161       32  -0.0248
    9  -0.0048       21    0.0223       33  -0.0259
   10   0.0144       22   -0.0787       34  -0.0629
   11   0.1099       23   -0.0096       35   0.0261
   

6.4.4.9. Example of Univariate Box-Jenkins Analysis

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc449.htm (1 of 4) [7/1/2003 5:25:43 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org/public/resources/stats/Handbook/semstat.htm


Model
Fitting
Section

Enter FILESPEC or EXTENSION (1-3 letters): To quit, press F10.

? bookf.bj 

MAX MIN MEAN VARIANCE NO. DATA 
80.0000 23.0000 51.7086 141.8238 70 
Do you wish to make transformations? y/n n 
Input order of difference or 0: 0 
Input NUMBER of AR terms: 2 
Input NUMBER of MA terms: 0 
Input period of seasonality (2-12) or 0: 0 

*********** OUTPUT SECTION ***********

    AR estimates with Standard Errors
    Phi 1   :   -0.3397    0.1224
    Phi 2   :    0.1904    0.1223

    Original Variance           :    141.8238
    Residual Variance           :    110.8236
    Coefficient of Determination:     21.8582

    ***** Test on randomness of Residuals *****
    The Chi-Square value       =  11.7034
    with degrees of freedom    =  23
    The 95th percentile        =  35.16596

    Hypothesis of randomness accepted.
    Press any key to proceed to the forecasting section.
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Forecasting
Section

   ---------------------------------------------------
             FORECASTING SECTION
   ---------------------------------------------------

   Defaults are obtained by pressing the enter key, without input.
   Default for number of periods ahead from last period = 6.
   Default for the confidence band around the forecast  = 90%.

   How many periods ahead to forecast? (9999 to quit...):
   Enter confidence level for the forecast limits      :

   90 Percent Confidence limits
   Next        Lower     Forecast         Upper
     71      43.8734      61.1930       78.5706
     72      24.0239      42.3156       60.6074
     73      36.9575      56.0006       75.0438
     74      28.4916      47.7573       67.0229
     75      33.7942      53.1634       72.5326
     76      30.3487      49.7573       69.1658
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.4. Univariate Time Series Models

6.4.4.10.Box-Jenkins Analysis on Seasonal
Data

Example with
the SEMPLOT
Software for a
Seasonal Time
Series

A computer software package is needed to do a Box-Jenkins time series
analysis for seasonal data. The computer output on this page will illustrate
sample output from a Box-Jenkins analysis using the SEMSTAT statisical
software program. It analyzes the series G data set in the Box, Jenkins and
Reinsel text.

The graph of the data and the resulting forecasts after fitting a model are
portrayed below.

Model
Identification
Section

Enter FILESPEC or EXTENSION (1-3 letters):
To quit, press F10.

? bookg.bj 

MAX MIN MEAN VARIANCE NO. DATA 
622.0000 104.0000 280.2986 14391.9170 144 
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http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc44a.htm (1 of 6) [7/1/2003 5:25:44 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org/public/resources/stats/Handbook/semstat.htm


Do you wish to make transformations? y/n y 
The following transformations are available:

 

1 Square root 2 Cube root 
3 Natural log 4 Natural log log 
5 Common log 6 Exponentiation 
7 Reciprocal 8 Square root of Reciprocal 
9 Normalizing (X-Xbar)/Standard deviation 
10 Coding (X-Constant 1)/Constant 2 

Enter your selection, by number: 3 
Statistics of Transformed series: 
Mean:     5.542 Variance     0.195 
Input order of difference or 0: 1 
Input period of seasonality (2-12) or 0: 12 
Input order of seasonal difference or 0: 0 
Statistics of Differenced series: 
Mean:     0.009 Variance     0.011 
Time Series: bookg.bj. 
Regular difference: 1 Seasonal Difference: 0 

Autocorrelation Function for the first 36 lags 

 1   0.19975     13   0.21509      25   0.19726
 2  -0.12010     14  -0.13955      26  -0.12388
 3  -0.15077     15  -0.11600      27  -0.10270
 4  -0.32207     16  -0.27894      28  -0.21099
 5  -0.08397     17  -0.05171      29  -0.06536
 6   0.02578     18   0.01246      30   0.01573
 7  -0.11096     19  -0.11436      31  -0.11537
 8  -0.33672     20  -0.33717      32  -0.28926
 9  -0.11559     21  -0.10739      33  -0.12688
10  -0.10927     22  -0.07521      34  -0.04071
11   0.20585     23   0.19948      35   0.14741
12   0.84143     24   0.73692      36   0.65744
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Analyzing
Autocorrelation
Plot for
Seasonality

If you observe very large autocorrelations at lags spaced n periods apart, for
example at lags 12 and 24, then there is evidence of periodicity. That effect
should be removed, since the objective of the identification stage is to reduce
the autocorrelations throughout. So if simple differencing was not enough,
try seasonal differencing at a selected period. In the above case, the period is
12. It could, of course, be any value, such as 4 or 6.

The number of seasonal terms is rarely more than 1. If you know the shape of
your forecast function, or you wish to assign a particular shape to the forecast
function, you can select the appropriate number of terms for seasonal AR or
seasonal MA models.

The book by Box and Jenkins, Time Series Analysis Forecasting and Control
(the later edition is Box, Jenkins and Reinsel, 1994) has a discussion on these
forecast functions on pages 326 - 328. Again, if you have only a faint notion,
but you do know that there was a trend upwards before differencing, pick a
seasonal MA term and see what comes out in the diagnostics.

The results after taking a seasonal difference look good!
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Model Fitting
Section

Now we can proceed to the estimation, diagnostics and forecasting routines.
The following program is again executed from a menu and issues the
following flow of output:

Enter FILESPEC or EXTENSION (1-3 letters):
To quit press F10. 

? bookg.bj 

MAX MIN MEAN VARIANCE NO. DATA 
622.0000 104.0000 280.2986 14391.9170 144 

Do you wish to make
transformations? y/n 

y (we selected a square root
transformation because a closer
inspection of the plot revealed
increasing variances over time) 

Statistics of Transformed series: 
Mean:     5.542 Variance     0.195 
Input order of difference or 0: 1 
Input NUMBER of AR terms:    Blank defaults to 0 
Input NUMBER of MA terms: 1 
Input period of seasonality (2-12) or
0: 

12 

Input order of seasonal difference or
0: 

1 

Input NUMBER of seasonal AR
terms: 

   Blank defaults to 0 

Input NUMBER of seasonal MA
terms: 

1 

Statistics of Differenced series: 
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Mean:     0.000 Variance     0.002 
Pass 1 SS: 0.1894 
Pass 2 SS: 0.1821 
Pass 3 SS: 0.1819 

Estimation is finished after 3 Marquardt iterations. 

Output Section MA estimates with Standard Errors
Theta 1 :    0.3765    0.0811 

Seasonal MA estimates with Standard Errors
Theta 1 :    0.5677    0.0775 

Original Variance            :             0.0021
Residual Variance   (MSE)    :      0.0014 
Coefficient of Determination :     33.9383 

AIC criteria ln(SSE)+2k/n    :      -1.4959 
BIC criteria ln(SSE)+ln(n)k/n:     -1.1865 

k = p + q + P + Q + d + sD = number of estimates + order of regular
difference + product of period of seasonality and seasonal difference. 

n is the total number of observations.
In this problem k and n are:  15   144

***** Test on randomness of Residuals *****
The Box-Ljung  value      =   28.4219
The Box-Pierce value      =   24.0967
with degrees of freedom  =   30 
The 95th percentile           =   43.76809 

Hypothesis of randomness accepted. 

Forecasting
Section

Defaults are obtained by pressing the enter key, without input.
Default for number of periods ahead from last period = 6.
Default for the confidence band around the forecast = 90%.

Next Period Lower Forecast Upper 
145 423.4257 450.1975 478.6620 
146 382.9274 411.6180 442.4583 
147 407.2839 441.9742 479.6191 
148 437.8781 479.2293 524.4855 
149 444.3902 490.1471 540.6153 
150 491.0981 545.5740 606.0927 
151 583.6627 652.7856 730.0948 
152 553.5620 623.0632 701.2905 
153 458.0291 518.6510 587.2965 
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154 417.4242 475.3956 541.4181 
155 350.7556 401.6725 459.9805 
156 382.3264 440.1473 506.7128 
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis

6.4.5. Multivariate Time Series Models

If each time
series
observation
is a vector
of numbers,
you can
model them
using a
multivariate
form of the
Box-Jenkins
model

The multivariate form of the Box-Jenkins univariate models is
sometimes called the ARMAV model, for AutoRegressive Moving
Average Vector or simply vector ARMA process.

The ARMAV model for a stationary multivariate time series, with a
zero mean vector, represented by

is of the form

where

xt and at are n x 1 column vectors with at representing
multivariate white noise

●   

are n x n matrices for autoregressive and moving average
parameters

●   

E[at] = 0●   

where a is the dispersion or covariance matrix of at

●   

As an example, for a bivariate series with n = 2, p = 2, and q = 1, the
ARMAV(2,1) model is:

6.4.5. Multivariate Time Series Models

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc45.htm (1 of 3) [7/1/2003 5:25:44 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/main.htm
http://www.itl.nist.gov/div898/handbook/


with

Estimation
of
parameters
and
covariance
matrix
difficult

The estimation of the matrix parameters and covariance matrix is
complicated and very difficult without computer software. The
estimation of the Moving Average matrices is especially an ordeal. If we
opt to ignore the MA component(s) we are left with the ARV model
given by:

where

xt is a vector of observations, x1t, x2t, ... , xnt at time t●   

at is a vector of white noise, a1t, a2t, ... , ant at time t●   

is a n x n matrix of autoregressive parameters

●   

E[at] = 0●   

where a = E[at,at-k] is the dispersion or covariance matrix

●   

A model with p autoregressive matrix parameters is an ARV(p) model
or a vector AR model.

The parameter matrices may be estimated by multivariate least squares,
but there are other methods such as maximium likelihood estimation.

Interesting
properties of
parameter
matrices

There are a few interesting properties associated with the phi or AR
parameter matrices. Consider the following example for a bivariate
series with n =2, p = 2, and q = 0. The ARMAV(2,0) model is:

Without loss of generality, assume that the X series is input and the Y series
are output and that the mean vector = (0,0).

Therefore, tranform the observation by subtracting their respective averages.

6.4.5. Multivariate Time Series Models
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Diagonal
terms of
Phi matrix

The diagonal terms of each Phi matrix are the scalar estimates for each series,
in this case:

1.11, 2.11 for the input series X,

1.22, .2.22 for the output series Y.

Transfer
mechanism

The lower off-diagonal elements represent the influence of the input on the
output.

This is called the "transfer" mechanism or transfer-function model as
discussed by Box and Jenkins in Chapter 11. The  terms here correspond to

their  terms.

The upper off-diagonal terms represent the influence of the output on the
input.

Feedback This is called "feedback". The presence of feedback can also be seen as a high
value for a coefficient in the correlation matrix of the residuals. A "true"
transfer model exists when there is no feedback.

This can be seen by expressing the matrix form into scalar form:

Delay Finally, delay or "dead' time can be measured by studying the lower
off-diagonal elements again.

If, for example, 1.21 is non-significant, the delay is 1 time period.

6.4.5. Multivariate Time Series Models
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6. Process or Product Monitoring and Control
6.4. Introduction to Time Series Analysis
6.4.5. Multivariate Time Series Models

6.4.5.1.Example of Multivariate Time Series
Analysis

A
multivariate
Box-Jenkins
example

As an example, we will analyze the gas furnace data from the Box-Jenkins
textbook. In this gas furnace, air and methane were combined in order to
obtain a mixture of gases which contained CO2 (carbon dioxide). The
methane gas feedrate constituted the input series and followed the process

Methane Gas Input Feed = .60 - .04 X(t)

the CO2 concentration was the output, Y(t). In this experiment 296 successive
pairs of observations (Xt, Yt) were read off from the continuous records at
9-second intervals. For the example described below, the first 60 pairs were
used. It was decided to fit a bivariate model as described in the previous
section and to study the results.

Plots of
input and
output
series

The plots of the input and output series are displayed below. 
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From a suitable Box-Jenkins software package, we select the routine for
multivariate time series analysis. Typical output information and prompts for
input information will look as follows:

SEMPLOT
output

MULTIVARIATE AUTOREGRESSION

  Enter FILESPEC       GAS.BJ
                                                     Explanation of Input
  How many series? :  2      the input and the output series
  Which order?        :  2      this means that we consider times
                                          t-1 and t-2 in the model , which is 
                                          a special case of the general ARV 
                                          model
 
 

SERIES     MAX           MIN            MEAN      VARIANCE      

 1            56.8000        45.6000        50.8650         9.0375                 
 2              2.8340        -1.5200           0.7673         1.0565               

  NUMBER OF OBSERVATIONS:  60 . 
  THESE WILL BE MEAN CORRECTED.  so we don't have to 
  fit the means 

------------------------------------------------------------------------------- 
  OPTION TO TRANSFORM DATA 
  Transformations?    :  y/N 
------------------------------------------------------------------------------- 

6.4.5.1. Example of Multivariate Time Series Analysis
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  OPTION TO DETREND DATA 
  Seasonal adjusting? :  y/N 
------------------------------------------------------------------------------- 

  FITTING ORDER:  2 
  OUTPUT SECTION 
   the notation of the output follows the notation of the previous
   section 

                                   MATRIX FORM OF ESTIMATES 

       1 
     1.2265     0.2295 
    -0.0755     1.6823 

       2 
    -0.4095    -0.8057 
     0.0442    -0.8589 

 Estimate Std. Err t value Prob(t)

Con 1 -0.0337 0.0154 -2.1884 0.9673
Con 2 0.003 0.0342 0.0914 0.0725

 1.11 1.2265 0.0417 29.4033 > .9999
 1.12 0.2295 0.0530 4.3306 0.9999
 1.21 -0.0755 0.0926 -0.8150 0.5816
 1.22 1.6823 0.1177 14.2963 > .9999
 2.11 -0.4095 0.0354 -11.5633 > .9999
 2.12 -0.8057 0.0714 -11.2891 > .9999
 2.21 0.0442 0.0786 0.5617 0.4235
 2.22 -0.8589 0.1585 -5.4194 > .9999

        ------------------------------------------------------------------------------- 
  Statistics on the Residuals 

             MEANS 
    -0.0000     0.0000 

  COVARIANCE MATRIX 
       0.01307      -0.00118 
      -0.00118       0.06444 

  CORRELATION MATRIX 
     1.0000    -0.0407 
    -0.0407     1.0000 

---------------------------------------------------------------------- 
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SERIES   ORIGINAL      RESIDUAL    COEFFICIENT OF    
               VARIANCE     VARIANCE   DETERMINATION 
  1                9.03746           0.01307           99.85542                          
  2                1.05651           0.06444           93.90084                          

This illustrates excellent univariate fits for the individual series. 

--------------------------------------------------------------------- 
This portion of the computer output lists the results of testing for
independence (randomness) of each of the series. 

  Theoretical Chi-Square Value: 
  The 95th percentile       =   35.16595 
  for degrees of freedom  =   23 

  Test on randomness of Residuals for Series:  1 
  The Box-Ljung  value    =   20.7039      Both Box-Ljung and
Box-Pierce 
  The Box-Pierce value    =   16.7785       tests for randomness of
residuals 
  Hypothesis of randomness accepted.      using the chi-square test on
the 
                                                                sum of the squared residuals. 

  Test on randomness of Residuals for Series:  2 
  The Box-Ljung  value    =   16.9871       For example, 16.98 < 35.17 
  The Box-Pierce value    =   13.3958       and 13.40 < 35.17 
  Hypothesis of randomness accepted. 
 

     -------------------------------------------------------- 
                         FORECASTING SECTION 
     -------------------------------------------------------- 

The forecasting method is an extension of the model and follows the
theory outlined in the previous section. Based on the estimated variances
and number 
of forecasts we can compute the forecasts and their confidence limits.
The user, in this software, is able to choose how many forecasts to
obtain, and at what confidence levels. 

  Defaults are obtained by pressing the enter key, without input. 
  Default for number of periods ahead from last period = 6. 
  Default for the confidence band around the forecast  = 90%.

  How many periods ahead to forecast?     6 
  Enter confidence level for the forecast limits : .90: 

                             SERIES:  1 
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                      90 Percent Confidence limits 
    Next Period      Lower      Forecast         Upper 
         61            51.0534       51.2415       51.4295 
         62            50.9955       51.3053       51.6151 
         63            50.5882       50.9641       51.3400 
         64            49.8146       50.4561       51.0976 
         65            48.7431       49.9886       51.2341 
         66            47.6727       49.6864       51.7001 

                             SERIES:  2 

                      90 Percent Confidence limits 
    Next Period      Lower      Forecast         Upper 
         61              0.8142        1.2319        1.6495 
         62              0.4777        1.2957        2.1136 
         63              0.0868        1.2437        2.4005 
         64             -0.2661        1.1300        2.5260 
         65             -0.5321        1.0066        2.5453 
         66             -0.7010        0.9096        2.5202 
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6. Process or Product Monitoring and Control

6.5.Tutorials

Tutorial
contents

What do we mean by "Normal" data? 1.  

What do we do when data are "Non-normal"? 2.  

Elements of Matrix Algebra 

Numerical Examples 1.  

Determinant and Eigenstructure 2.  

3.  

Elements of Multivariate Analysis 

Mean vector and Covariance Matrix 1.  

The Multivariate Normal Distribution 2.  

Hotelling's  T2

Example of Hotelling's T2 Test 1.  

Example 1 (continued) 2.  

Example 2 (multiple groups) 3.  

3.  

Hotelling's T2 Chart 4.  

4.  

Principal Components 

Properties of Principal Components 1.  

Numerical Example 2.  

5.  
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6. Process or Product Monitoring and Control
6.5. Tutorials

6.5.1.What do we mean by "Normal" data?

The Normal
distribution
model

"Normal" data are data that are drawn (come from) a population that
has a normal distribution. This distribution is inarguably the most
important and the most frequently used distribution in both the theory
and application of statistics. If X is a normal random variable, then the
probability distribution of X is

Normal
probability
distribution

Parameters
of normal
distribution

The parameters of the normal distribution are the mean  and the

standard deviation  (or the variance 2). A special notation is
employed to indicate that X is normally distributed with these
parameters, namely

X ~ N( , ) or X ~ N( ,  2).

Shape is
symmetric
and unimodal

The shape of the normal distribution is symmetric and unimodal. It is
called the bell-shaped or Gaussian distribution after its inventor, Gauss
(although De Moivre also deserves credit).

The visual appearance is given below.

6.5.1. What do we mean by "Normal" data?
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Property of
probability
distributions
is that area
under curve
equals one

A property of a special class of non-negative functions, called
probability distributions, is that the area under the curve equals unity.
One finds the area under any portion of the curve by integrating the
distribution between the specified limits. The area under the
bell-shaped curve of the normal distribution can be shown to be equal
to 1, and therefore the normal distribution is a probability distribution.

Interpretation
of 

There is a simple interpretation of 

68.27% of the population fall between  +/- 1 
95.45% of the population fall between  +/- 2 
99.73% of the population fall between  +/- 3 

The
cumulative
normal
distribution

The cumulative normal distribution is defined as the probability that
the normal variate is less than or equal to some value v, or

Unfortunately this integral cannot be evaluated in closed form and one
has to resort to numerical methods. But even so, tables for all possible
values of  and  would be required. A change of variables rescues
the situation. We let

6.5.1. What do we mean by "Normal" data?
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Now the evaluation can be made independently of  and ; that is,

where (.) is the cumulative distribution function of the standard
normal distribution (  = 0,  = 1).

Tables for the
cumulative
standard
normal
distribution

Tables of the cumulative standard normal distribution are given in
every statistics textbook and in the handbook. A rich variety of
approximations can be found in the literature on numerical methods.

For example, if  = 0 and  = 1 then the area under the curve from  -
1  to  + 1  is the area from 0 - 1 to 0 + 1, which is 0.6827. Since
most standard normal tables give area to the left of the lookup value,
they will have for z = 1 an area of .8413 and for z = -1 an area of .1587.
By subtraction we obtain the area between -1 and +1 to be .8413 -
.1587 = .6826.
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6.5. Tutorials

6.5.2.What do we do when data are
"Non-normal"?

Often it is
possible to
transform
non-normal
data into
approximately
normal data

Non-normality is a way of life, since no characteristic (height, weight,
etc.) will have exactly a normal distribution. One strategy to make
non-normal data resemble normal data is by using a transformation. There
is no dearth of transformations in statistics; the issue is which one to select
for the situation at hand. Unfortunately, the choice of the "best"
transformation is generally not obvious.

This was recognized in 1964 by G.E.P. Box and D.R. Cox. They wrote a
paper in which a useful family of power transformations was suggested.
These transformations are defined only for positive data values. This
should not pose any problem because a constant can always be added if
the set of observations contains one or more negative values.

The Box-Cox power transformations are given by

The Box-Cox
Transformation

Given the vector of data observations x = x1, x2, ...xn, one way to select the
power  is to use the  that maximizes the logarithm of the likelihood
function

The logarithm
of the
likelihood
function where

is the arithmetic mean of the transformed data.

6.5.2. What do we do when data are "Non-normal"?
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Confidence
bound for 

In addition, a confidence bound (based on the likelihood ratio statistic) can

be constructed for  as follows: A set of  values that represent an
approximate 100(1- )% confidence bound for  is formed from those 
that satisfy

where  denotes the maximum likelihood estimator for  and  is the
upper 100x(1- ) percentile of the chi-square distribution with 1 degree of
freedom.

Example of the
Box-Cox
scheme

To illustrate the procedure, we used the data from Johnson and Wichern's
textbook (Prentice Hall 1988), Example 4.14. The observations are
microwave radiation measurements.

Sample data .15 .09 .18 .10 .05 .12 .08
.05 .08 .10 .07 .02 .01 .10
.10 .10 .02 .10 .01 .40 .10
.05 .03 .05 .15 .10 .15 .09
.08 .18 .10 .20 .11 .30 .02
.20 .20 .10 .30 .40 .30 .05

Table of
log-likelihood
values for
various values
of 

The values of the log-likelihood function obtained by varying  from -2.0
to 2.0 are given below.

LLF LLF LLF

-2.0 7.1146 -0.6 89.0587 0.7 103.0322
-1.9 14.1877 -0.5 92.7855 0.8 101.3254
-1.8 21.1356 -0.4 96.0974 0.9 99.3403
-1.7 27.9468 -0.3 98.9722 1.0 97.1030
-1.6 34.6082 -0.2 101.3923 1.1 94.6372
-1.5 41.1054 -0.1 103.3457 1.2 91.9643
-1.4 47.4229 0.0 104.8276 1.3 89.1034
-1.3 53.5432 0.1 105.8406 1.4 86.0714
1.2 59.4474 0.2 106.3947 1.5 82.8832
-1.1 65.1147 0.3 106.5069 1.6 79.5521
-0.9 75.6471 0.4 106.1994 1.7 76.0896
-0.8 80.4625 0.5 105.4985 1.8 72.5061
-0.7 84.9421 0.6 104.4330 1.9 68.8106

This table shows that  = .3 maximizes the log-likelihood function (LLF).
This becomes 0.28 if a second digit of accuracy is calculated.
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The Box-Cox transform is also discussed in Chapter 1 under the Box Cox
Linearity Plot and the Box Cox Normality Plot. The Box-Cox normality
plot discussion provides a graphical method for choosing  to transform a
data set to normality. The criterion used to choose  for the Box-Cox
linearity plot is the value of  that maximizes the correlation between the
transformed x-values and the y-values when making a normal probability
plot of the (transformed) data.

6.5.2. What do we do when data are "Non-normal"?

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc52.htm (3 of 3) [7/1/2003 5:25:46 PM]

http://www.itl.nist.gov/div898/handbook/eda/section3/eda335.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda335.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda336.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.5. Tutorials

6.5.3.Elements of Matrix Algebra

Elementary Matrix Algebra

Basic
definitions
and
operations of
matrix
algebra -
needed for
multivariate
analysis

Vectors and matrices are arrays of numbers. The algebra for symbolic
operations on them is different from the algebra for operations on
scalars, or single numbers. For example there is no division in matrix
algebra, although there is an operation called "multiplying by an
inverse". It is possible to express the exact equivalent of matrix algebra
equations in terms of scalar algebra expressions, but the results look
rather messy.

It can be said that the matrix algebra notation is shorthand for the
corresponding scalar longhand.

Vectors A vector is a column of numbers

The scalars ai are the elements of vector a.

Transpose The transpose of a, denoted by a', is the row arrangement of the
elements of a.

6.5.3. Elements of Matrix Algebra
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Sum of two
vectors

The sum of two vectors (say, a and b) is the vector of sums of
corresponding elements.

The difference of two vectors is the vector of differences of
corresponding elements.

Product of
a'b

The product a'b is a scalar formed by

which may be written in shortcut notation as

where ai and bi are the ith elements of vector a and b, respectively.

Product of
ab'

The product ab' is a square matrix

6.5.3. Elements of Matrix Algebra
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Product of
scalar times a
vector

The product of a scalar k, times a vector a is k times each element of a

A matrix is a
rectangular
table of
numbers

A matrix is a rectangular table of numbers, with p rows and n columns.
It is also referred to as an array of n column vectors of length p. Thus

is a p by n matrix. The typical element of A is aij, denoting the element
of row i and column j.

Matrix
addition and
subtraction

Matrices are added and subtracted on an element-by-element basis.
Thus

6.5.3. Elements of Matrix Algebra
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Matrix
multiplication

Matrix multiplication involves the computation of the sum of the
products of elements from a row of the first matrix (the premultiplier
on the left) and a column of the second matrix (the postmultiplier on
the right). This sum of products is computed for every combination of
rows and columns. For example, if A is a 2 x 3 matrix and B is a 3 x 2
matrix, the product AB is

Thus, the product is a 2 x 2 matrix. This came about as follows: The
number of columns of A must be equal to the number of rows of B. In
this case this is 3. If they are not equal, multiplication is impossible. If
they are equal, then the number of rows of the product AB is equal to
the number of rows of A and the number of columns is equal to the
number of columns of B.

Example of
3x2 matrix
multiplied by
a 2x3

It follows that the result of the product BA is a 3 x 3 matrix

General case
for matrix
multiplication

In general, if A is a k x p matrix and B is a p x n matrix, the product
AB is a k x n matrix. If k = n, then the product BA can also be formed.
We say that matrices conform for the operations of addition,
subtraction or multiplication when their respective orders (numbers of
row and columns) are such as to permit the operations. Matrices that do
not conform for addition or subtraction cannot be added or subtracted.
Matrices that do not conform for multiplication cannot be multiplied.

6.5.3. Elements of Matrix Algebra
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6.5.3.1.Numerical Examples

Numerical
examples of
matrix
operations

Numerical examples of the matrix operations described on the
previous page are given here to clarify these operations.

Sample matrices If

then

Matrix addition,
subtraction, and
multipication

and

6.5.3.1. Numerical Examples
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Multiply matrix
by a scalar

To multiply a a matrix by a given scalar, each element of the matrix
is multiplied by that scalar

Pre-multiplying
matrix by
transpose of a
vector

Pre-multiplying a p x n matrix by the transpose of a p-element vector
yields a n-element transpose

Post-multiplying
matrix by vector

Post-multiplying a p x n matrix by an n-element vector yields an
n-element vector

Quadratic form It is not possible to pre-multiply a matrix by a column vector, nor to
post-multiply a matrix by a row vector. The matrix product a'Ba
yields a scalar and is called a quadratic form. Note that B must be a
square matrix if a'Ba is to conform to multiplication. Here is an
example of a quadratic form

6.5.3.1. Numerical Examples
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Inverting a
matrix

The matrix analog of division involves an operation called inverting
a matrix. Only square matrices can be inverted. Inversion is a
tedious numerical procedure and it is best performed by computers.
There are many ways to invert a matrix, but ultimately whichever
method is selected by a program is immaterial. If you wish to try one
method by hand, a very popular numerical method is the
Gauss-Jordan method.

Identity matrix To augment the notion of the inverse of a matrix, A-1 (A inverse) we
notice the following relation

A-1A = A A-1 = I

I is a matrix of form

I is called the identity matrix and is a special case of a diagonal
matrix. Any matrix that has zeros in all of the off-diagonal positions
is a diagonal matrix.

6.5.3.1. Numerical Examples
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6.5.3.2.Determinant and Eigenstructure

A matrix
determinant is
difficult to define
but a very useful
number

Unfortunately, not every square matrix has an inverse (although
most do). Associated with any square matrix is a single number
that represents a unique function of the numbers in the matrix.
This scalar function of a square matrix is called the determinant.
The determinant of a matrix A is denoted by |A|. A formal
definition for the deteterminant of a square matrix A = (aij) is
somewhat beyond the scope of this Handbook. Consult any good
linear algebra textbook if you are interested in the mathematical
details.

Singular matrix As is the case of inversion of a square matrix, calculation of the
determinant is tedious and computer assistance is needed for
practical calculations. If the determinant of the (square) matrix is
exactly zero, the matrix is said to be singular and it has no
inverse.

Determinant of
variance-covariance
matrix

Of great interest in statistics is the determinant of a square
symmetric matrix D whose diagonal elements are sample
variances and whose off-diagonal elements are sample
covariances. Symmetry means that the matrix and its transpose
are identical (i.e., A = A'). An example is

where s1 and s2 are sample standard deviations and rij is the
sample correlation.

6.5.3.2. Determinant and Eigenstructure
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D is the sample variance-covariance matrix for observations of
a multivariate vector of p elements. The determinant of D, in
this case, is sometimes called the generalized variance.

Characteristic
equation

In addition to a determinant and possibly an inverse, every
square matrix has associated with it a characteristic equation.
The characteristic equation of a matrix is formed by subtracting
some particular value, usually denoted by the greek letter 
(lambda), from each diagonal element of the matrix, such that
the determinant of the resulting matrix is equal to zero. For
example, the characteristic equation of a second order (2 x 2)
matrix A may be written as

Definition of the
characteristic
equation for 2x2
matrix

Eigenvalues of a
matrix

For a matrix of order p, there may be as many as p different
values for  that will satisfy the equation. These different values
are called the eigenvalues of the matrix.

Eigenvectors of a
matrix

Associated with each eigenvalue is a vector, v, called the
eigenvector. The eigenvector satisfies the equation

Av = v

Eigenstructure of a
matrix

If the complete set of eigenvalues is arranged in the diagonal
positions of a diagonal matrix V, the following relationship
holds

AV = VL

This equation specifies the complete eigenstructure of A.
Eigenstructures and the associated theory figure heavily in
multivariate procedures and the numerical evaluation of L and V
is a central computing problem.

6.5.3.2. Determinant and Eigenstructure
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6.5.4.Elements of Multivariate Analysis

Multivariate
analysis

Multivariate analysis is a branch of statistics concerned with the
analysis of multiple measurements, made on one or several samples of
individuals. For example, we may wish to measure length, width and
weight of a product.

Multiple
measurement,
or
observation,
as row or
column
vector

A multiple measurement or observation may be expressed as

x = [4  2  0.6]

referring to the physical properties of length, width and weight,
respectively. It is customary to denote multivariate quantities with bold
letters. The collection of measurements on x is called a vector. In this
case it is a row vector. We could have written x as a column vector.

Matrix to
represent
more than
one multiple
measurement

If we take several such measurements, we record them in a rectangular
array of numbers. For example, the X matrix below represents 5
observations, on each of three variables.

6.5.4. Elements of Multivariate Analysis
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By
convention,
rows
typically
represent
observations
and columns
represent
variables

In this case the number of rows, (n = 5), is the number of observations,
and the number of columns, (p = 3), is the number of variables that are
measured. The rectangular array is an assembly of n row vectors of
length p. This array is called a matrix, or, more specifically, a n by p
matrix. Its name is X. The names of matrices are usually written in
bold, uppercase letters, as in Section 6.5.3. We could just as well have
written X as a p (variables) by n (measurements) matrix as follows:

Definition of
Transpose

A matrix with rows and columns exchanged in this manner is called the
transpose of the original matrix.

6.5.4. Elements of Multivariate Analysis
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6.5.4.1.Mean Vector and Covariance Matrix

The first step in analyzing multivariate data is computing the mean
vector and the variance-covariance matrix.

Sample data
matrix

Consider the following matrix:

The set of 5 observations, measuring 3 variables, can be described by its
mean vector and variance-covariance matrix. The three variables, from
left to right are length, width, and height of a certain object, for
example. Each row vector Xi is another observation of the three
variables (or components).

Definition of
mean vector
and
variance-
covariance
matrix

The mean vector consists of the means of each variable and the
variance-covariance matrix consists of the variances of the variables
along the main diagonal and the covariances between each pair of
variables in the other matrix positions.

6.5.4.1. Mean Vector and Covariance Matrix
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Mean vector
and
variance-
covariance
matrix for
sample data
matrix

The results are:

 

where the mean vector contains the arithmetic averages of the three
variables and the (unbiased) variance-covariance matrix S is calculated
by

where n = 5 for this example.

Thus, 0.025 is the variance of the length variable, 0.0075 is the
covariance between the length and the width variables, 0.00175 is the
covariance between the length and the weight variables, 0.007 is the
variance of the width variable, 0.00135 is the covariance between the
width and weight variables and .00043 is the variance of the weight
variable.

Centroid,
dispersion
matix

The mean vector is often referred to as the centroid and the
variance-covariance matrix as the dispersion or dispersion matrix. Also,
the terms variance-covariance matrix and covariance matrix are used
interchangeably. 
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6.5.4.2.The Multivariate Normal
Distribution

Determining the UCL that is to be subsequently applied to future
subgroups entails recomputing, if necessary, and x, and using a constant
and an -value that are different from the form given in Eq.(0.3). The
form is different because different distribution theory is involved since
future subgroups are assumed to be independent of the “current” set of
subgroups that is used in calculating and x. (The same thing happens
with charts; the problem is simply ignored through the use of 3-sigma
limits, although a different approach should be used when there is a
small number of subgroups --- and the necessary theory has been
worked out.) To illustrate, assume that subgroups had been discarded
(with possibly = 0) so that subgroups are used in obtaining and x. We
shall let these two values be represented by and xto distinguish them
from the original values, and x before any subgroups are deleted. Future
values to be plotted on the multivariate chart would then be obtained
from xfuturexxfuturex(0.4)with xfuture denoting an arbitrary vector
containing the averages for the characteristics for a single subgroup
obtained in the future. Each of these future values would be plotted on
the multivariate chart and compared with UCL, [, ](0.5) with denoting
the number of the original subgroups that are deleted before computing
and x. Notice that Eq. (0.5) does not reduce to Eq. (0.3) when , nor
should we expect it to since Eq. (0.3) is used when testing for control of
the entire set of subgroups that is used in computing and x.

6.5.4.2. The Multivariate Normal Distribution
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6.5.4.3.Hotelling's T squared

Hotelling's T2

distribution
A multivariate method that is the multivariate counterpart of
Student's-t and which also forms the basis for certain multivariate
control charts is based on Hotelling's T2 distribution, which was
introduced by Hotelling (1947).

Univariate
t-test for
mean

Recall, from Section 1.3.5.2,

has a t distribution provided that X is normally distributed, and can be
used as long as X doesn't differ greatly from a normal distribution. If
we wanted to test the hypothesis that  = 0, we would then have

so that

Generalize to
p variables

When t2 is generalized to p variables it becomes

with

           

S-1 is the inverse of the sample variance-covariance matrix, S, and n is
the sample size upon which each i, i = 1, 2, ..., p, is based. (The

6.5.4.3. Hotelling's T squared
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diagonal elements of S are the variances and the off-diagonal elements
are the covariances for the p variables. This is discussed further in
Section 6.5.4.3.1.)

Distribution
of T2

It is well known that when  = 0

with F(p,n-p) representing the F distribution with p degrees of freedom
for the numerator and n - p for the denominator. Thus, if  were
specified to be 0, this could be tested by taking a single p-variate

sample of size n, then computing T2 and comparing it with

for a suitably chosen .

Result does
not apply
directly to
multivariate
Shewhart-type
charts

Although this result applies to hypothesis testing, it does not apply
directly to multivariate Shewhart-type charts (for which there is no

0), although the result might be used as an approximation when a
large sample is used and data are in subgroups, with the upper control
limit (UCL) of a chart based on the approximation.

Three-sigma
limits from
univariate
control chart

When a univariate control chart is used for Phase I (analysis of
historical data), and subsequently for Phase II (real-time process
monitoring), the general form of the control limits is the same for each
phase, although this need not be the case. Specifically, three-sigma
limits are used in the univariate case, which skirts the relevant
distribution theory for each Phase.

Selection of
different
control limit
forms for
each Phase

Three-sigma units are generally not used with multivariate charts,
however, which makes the selection of different control limit forms for
each Phase (based on the relevant distribution theory), a natural
choice.

6.5.4.3. Hotelling's T squared
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6.5.4.3.1.T2 Chart for Subgroup Averages --
Phase I

Estimate 

with 

Since  is generally unknown, it is necessary to estimate  analogous

to the way that  is estimated when an  chart is used. Specifically,

when there are rational subgroups,  is estimated by , with

Obtaining the

i

Each i, i = 1, 2, ..., p, is obtained the same way as with an  chart,
namely, by taking k subgroups of size n and computing

.

Here  is used to denote the average for the lth subgroup of the ith
variable. That is,

with xilr denoting the rth observation (out of n) for the ith variable in
the lth subgroup.
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Estimating
the variances
and
covariances

The variances and covariances are similarly averaged over the
subgroups. Specifically, the sij elements of the variance-covariance
matrix S are obtained as

with sijl for i  j denoting the sample covariance between variables Xi

and Xj for the lth subgroup, and sij for i = j denotes the sample variance

of Xi. The variances  (= siil) for subgroup l and for variables i = 1, 2,

..., p are computed as

 .

Similarly, the covariances sijl between variables Xi and Xj for subgroup
l are computed as

 .

Compare T2

against
control
values

As with an  chart (or any other chart), the k subgroups would be
tested for control by computing k values of T2 and comparing each
against the UCL. If any value falls above the UCL (there is no lower
control limit), the corresponding subgroup would be investigated.

Formula for
plotted T2

values

Thus, one would plot

for the jth subgroup (j = 1, 2, ..., k), with  denoting a vector with p
elements that contains the subgroup averages for each of the p

characteristics for the jth subgroup. (  is the inverse matrix of the

"pooled" variance-covariance matrix, , which is obtained by
averaging the subgroup variance-covariance matrices over the k
subgroups.)

Formula for
the upper
control limit

Each of the k values of  given in the equation above would be

compared with

6.5.4.3.1. T2 Chart for Subgroup Averages -- Phase I
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Lower
control limits

A lower control limit is generally not used in multivariate control chart
applications, although some control chart methods do utilize a LCL.

Although a small value for  might seem desirable, a value that is

very small would likely indicate a problem of some type as we would

not expect every element of  to be virtually equal to every element
in .

Delete
out-of-control
points once
cause
discovered
and corrected

As with any Phase I control chart procedure, if there are any points that
plot above the UCL and can be identified as corresponding to
out-of-control conditions that have been corrected, the point(s) should
be deleted and the UCL recomputed. The remaining points would then
be compared with the new UCL and the process continued as long as
necessary, remembering that points should be deleted only if their
correspondence with out-of-control conditions can be identified and the
cause(s) of the condition(s) were removed.
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6.5.4.3.2.T2 Chart for Subgroup Averages --
Phase II

Phase II
requires
recomputing
Sp and 
and
different
control
limits

Determining the UCL that is to be subsequently applied to future subgroups entails
recomputing, if necessary, Sp and , and using a constant and an F-value that are
different from the form given for the Phase I control limits. The form is different
because different distribution theory is involved since future subgroups are
assumed to be independent of the "current" set of subgroups that is used in

calculating Sp and . (The same thing happens with  charts; the problem is
simply ignored through the use of 3-sigma limits, although a different approach
should be used when there is a small number of subgroups -- and the necessary
theory has been worked out.)

Illustration To illustrate, assume that a subgroups had been discarded (with possibly a = 0) so
that k - a subgroups are used in obtaining  and . We shall let these two values

be represented by  and  to distinguish them from the original values,  and

, before any subgroups are deleted. Future values to be plotted on the
multivariate chart would then be obtained from

with  denoting an arbitrary vector containing the averages for the p
characteristics for a single subgroup obtained in the future. Each of these future
values would be plotted on the multivariate chart and compared with

6.5.4.3.2. T2 Chart for Subgroup Averages -- Phase II
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Phase II
control
limits

with a denoting the number of the original subgroups that are deleted before
computing  and . Notice that the equation for the control limits for Phase II
given here does not reduce to the equation for the control limits for Phase I when a
= 0, nor should we expect it to since the Phase I UCL is used when testing for
control of the entire set of subgroups that is used in computing  and .
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6.5.4.3.3.Chart for Individual Observations
-- Phase I

Multivariate
individual
control
charts

Control charts for multivariate individual observations can be
constructed, just as charts can be constructed for univariate individual
observations.

Constructing
the control
chart

Assume there are m historical multivariate observations to be tested for
control, so that Qj, j = 1, 2, ...., m are computed, with

Control
limits

Each value of Qj is compared against control limits of

with B( ) denoting the beta distribution with parameters p/2 and
(m-p-1)/2. These limits are due to Tracy, Young and Mason (1992).
Note that a LCL is stated, unlike the other multivariate control chart
procedures given in this section. Although interest will generally be
centered at the UCL, a value of Q below the LCL should also be
investigated, as this could signal problems in data recording.

6.5.4.3.3. Chart for Individual Observations -- Phase I
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Delete
points if
special
cause(s) are
identified
and
corrected

As in the case when subgroups are used, if any points plot outside these
control limits and special cause(s) that were subsequently removed can
be identified, the point(s) would be deleted and the control limits
recomputed, making the appropriate adjustments on the degrees of
freedom, and re-testing the remaining points against the new limits.
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6.5.4.3.4.Chart for Individual Observations
-- Phase II

Control
limits

In Phase II, each value of Qj would be plotted against the UCL of

with, as before, p denoting the number of characteristics.

Further
Information

The control limit expressions given in this section and the immediately
preceding sections are given in Ryan (2000, Chapter 9).
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6.5.4.3.5.Charts for Controlling Multivariate
Variability

No
satisfactory
charts for
multivariate
variability

Unfortunately, there are no charts for controlling multivariate
variability, with either subgroups or individual observations, that are
simple, easy-to-understand and implement, and statistically defensible.
Methods based on the generalized variance have been proposed for
subgroup data, but such methods have been criticized by Ryan (2000,
Section 9.4) and some references cited therein. For individual
observations, the multivariate analogue of a univariate moving range
chart might be considered as an estimator of the variance-covariance
matrix for Phase I, although the distribution of the estimator is
unknown.

6.5.4.3.5. Charts for Controlling Multivariate Variability

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc5435.htm [7/1/2003 5:25:50 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control
6.5. Tutorials
6.5.4. Elements of Multivariate Analysis
6.5.4.3. Hotelling's T squared

6.5.4.3.6.Constructing Multivariate Charts

Multivariate
control charts
not commonly
available in
statistical
software

Although control charts were originally constructed and maintained by
hand, it would be extremely impractical to try to do that with the chart
procedures that were presented in Sections 6.5.4.3.1-6.5.4.3.4.
Unfortunately, the well-known statistical software packages do not
have capability for the four procedures just outlined. However,
Dataplot, which is used for case studies and tutorials throughout this
e-Handbook, does have that capability.
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6.5.5.Principal Components

Dimension
reduction tool

A Multivariate Analysis problem could start out with a substantial
number of correlated variables. Principal Component Analysis is a
dimension-reduction tool that can be used advantageously in such
situations. Principal component analysis aims at reducing a large set of
variables to a small set that still contains most of the information in
the large set.

Principal
factors

The technique of principal component analysis enables us to create
and use a reduced set of variables, which are called principal factors.
A reduced set is much easier to analyze and interpret. To study a data
set that results in the estimation of roughly 500 parameters may be
difficult, but if we could reduce these to 5 it would certainly make our
day. We will show in what follows how to achieve substantial
dimension reduction.

Inverse
transformaion
not possible

While these principal factors represent or replace one or more of the
original variables, it should be noted that they are not just a one-to-one
transformation, so inverse transformations are not possible.

Original data
matrix

To shed a light on the structure of principal components analysis, let
us consider a multivariate data matrix X, with n rows and p columns.
The p elements of each row are scores or measurements on a subject
such as height, weight and age.

Linear
function that
maximizes
variance

Next, standardize the X matrix so that each column mean is 0 and
each column variance is 1. Call this matrix Z. Each column is a vector
variable, zi, i = 1, . . . , p. The main idea behind principal component
analysis is to derive a linear function y for each of the vector variables
zi. This linear function possesses an extremely important property;
namely, its variance is maximized.

6.5.5. Principal Components
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Linear
function is
component of
z

This linear function is referred to as a component of z. To illustrate the
computation of a single element for the jth y vector, consider the
product y = z v' where v' is a column vector of V and V is a p x p
coefficient matrix that carries the p-element variable z into the derived
n-element variable y. V is known as the eigen vector matrix. The
dimension of z is 1 x p, the dimension of v' is p x 1. The scalar algebra
for the component score for the ith individual of yj, j = 1, ...p is:

yji = v'1z1i + v'2z2i + ... + v'pzpi

This becomes in matrix notation for all of the y:

Y = ZV

Mean and
dispersion
matrix of y

The mean of y is my = V'mz = 0, because mz = 0.

The dispersion matrix of y is

Dy = V'DzV = V'RV

R is
correlation
matrix

Now, it can be shown that the dispersion matrix Dz of a standardized
variable is a correlation matrix. Thus R is the correlation matrix for z.

Number of
parameters to
estimate
increases
rapidly as p
increases

At this juncture you may be tempted to say: "so what?". To answer
this let us look at the intercorrelations among the elements of a vector
variable. The number of parameters to be estimated for a p-element
variable is

p means●   

p variances●   

(p2 - p)/2 covariances●   

for a total of 2p + (p2-p)/2 parameters.●   

So

If p = 2, there are 5 parameters●   

If p = 10, there are 65 parameters●   

If p = 30, there are 495 parameters●   

Uncorrelated
variables
require no
covariance
estimation

All these parameters must be estimated and interpreted. That is a
herculean task, to say the least. Now, if we could transform the data so
that we obtain a vector of uncorrelated variables, life becomes much
more bearable, since there are no covariances.

6.5.5. Principal Components
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6.5.5.1.Properties of Principal Components

Orthogonalizing Transformations

Transformation
from z to y

The equation y = V'z represents a transformation, where y is the
transformed variable, z is the original standardized variable and V is
the premultiplier to go from z to y.

Orthogonal
transformations
simplify things

To produce a transformation vector for y for which the elements are
uncorrelated is the same as saying that we want V such that Dy is a
diagonal matrix. That is, all the off-diagonal elements of Dy must be
zero. This is called an orthogonalizing transformation.

Infinite number
of values for V

There are an infinite number of values for V that will produce a
diagonal Dy for any correlation matrix R. Thus the mathematical
problem "find a unique V such that Dy is diagonal" cannot be solved
as it stands. A number of famous statisticians such as Karl Pearson
and Harold Hotelling pondered this problem and suggested a
"variance maximizing" solution.

Principal
components
maximize
variance of the
transformed
elements, one
by one

Hotelling (1933) derived the "principal components" solution. It
proceeds as follows: for the first principal component, which will be
the first element of y and be defined by the coefficients in the first
column of V, (denoted by v1), we want a solution such that the
variance of y1 will be maximized.

6.5.5.1. Properties of Principal Components
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Constrain v to
generate a
unique solution

The constraint on the numbers in v1 is that the sum of the squares of
the coefficients equals 1. Expressed mathematically, we wish to
maximize

where

y1i = v1'  zi

and v1'v1 = 1 ( this is called "normalizing " v1).

Computation of
first principal
component
from R and v1

Substituting the middle equation in the first yields

where R is the correlation matrix of Z, which, in turn, is the
standardized matrix of X, the original data matrix. Therefore, we
want to maximize v1'Rv1 subject to v1'v1 = 1.

The eigenstructure

Lagrange
multiplier
approach

Let

>

introducing the restriction on v1 via the Lagrange multiplier
approach. It can be shown (T.W. Anderson, 1958, page 347, theorem
8) that the vector of partial derivatives is
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and setting this equal to zero, dividing out 2 and factoring gives

This is known as "the problem of the eigenstructure of R".

Set of p
homogeneous
equations

The partial differentiation resulted in a set of p homogeneous
equations, which may be written in matrix form as follows 

The characteristic equation

Characterstic
equation of R is
a polynomial of
degree p

The characteristic equation of R is a polynomial of degree p, which
is obtained by expanding the determinant of

and solving for the roots  j, j = 1, 2, ..., p.

Largest
eigenvalue

Specifically, the largest eigenvalue, 1, and its associated vector, v1,
are required. Solving for this eigenvalue and vector is another
mammoth numerical task that can realistically only be performed by
a computer. In general, software is involved and the algorithms are
complex.

Remainig p
eigenvalues

After obtaining the first eigenvalue, the process is repeated until all p
eigenvalues are computed.

6.5.5.1. Properties of Principal Components
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Full
eigenstructure
of R

To succinctly define the full eigenstructure of R, we introduce
another matrix L, which is a diagonal matrix with j in the jth
position on the diagonal. Then the full eigenstructure of R is given as

RV = VL
where

V'V = VV' = I
and

V'RV = L = D y

Principal Factors

Scale to zero
means and unit
variances

It was mentioned before that it is helpful to scale any transformation
y of a vector variable z so that its elements have zero means and unit
variances. Such a standardized transformation is called a factoring of
z, or of R, and each linear component of the transformation is called
a factor.

Deriving unit
variances for
principal
components

Now, the principal components already have zero means, but their
variances are not 1; in fact, they are the eigenvalues, comprising the
diagonal elements of L. It is possible to derive the principal factor
with unit variance from the principal component as follows

or for all factors:

substituting V'z for y we have

where

B = VL -1/2

B matrix The matrix B is then the matrix of factor score coefficients for
principal factors.

How many Eigenvalues?

6.5.5.1. Properties of Principal Components
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Dimensionality
of the set of
factor scores

The number of eigenvalues, N, used in the final set determines the
dimensionality of the set of factor scores. For example, if the original
test consisted of 8 measurements on 100 subjects, and we extract 2
eigenvalues, the set of factor scores is a matrix of 100 rows by 2
columns.

Eigenvalues
greater than
unity

Each column or principal factor should represent a number of
original variables. Kaiser (1966) suggested a rule-of-thumb that takes
as a value for N, the number of eigenvalues larger than unity.

Factor Structure

Factor
structure
matrix S

The primary interpretative device in principal components is the
factor structure, computed as

S = VL1/2

S is a matrix whose elements are the correlations between the
principal components and the variables. If we retain, for example,
two eigenvalues, meaning that there are two principal components,
then the S matrix consists of two columns and p (number of
variables) rows.

Table showing
relation
between
variables and
principal
components

 Principal Component
Variable 1 2

1 r11 r12

2 r21 r22

3 r31 r32

4 r41 r42

The rij are the correlation coefficients between variable i and
principal component j, where i ranges from 1 to 4 and j from 1 to 2.

The
communality

SS' is the source of the "explained" correlations among the variables.
Its diagonal is called "the communality".

Rotation

Factor analysis If this correlation matrix, i.e., the factor structure matrix, does not
help much in the interpretation, it is possible to rotate the axis of the
principal components. This may result in the polarization of the
correlation coefficients. Some practitioners refer to rotation after
generating the factor structure as factor analysis.

6.5.5.1. Properties of Principal Components
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Varimax
rotation

A popular scheme for rotation was suggested by Henry Kaiser in
1958. He produced a method for orthogonal rotation of factors, called
the varimax rotation, which cleans up the factors as follows:

for each factor, high loadings (correlations) will result for a
few variables; the rest will be near zero.

Example The following computer output from a principal component analysis
on a 4-variable data set, followed by varimax rotation of the factor
structure, will illustrate his point.

 Before Rotation After Rotation
Variable Factor 1 Factor 2 Factor 1 Factor 2

1 .853 -.989 .997 .058
2 .634 .762 .089 .987
3 .858 -.498 .989 .076
4 .633 .736 .103 .965

Communality

Formula for
communality
statistic

A measure of how well the selected factors (principal components)
"explain" the variance of each of the variables is given by a statistic
called communality. This is defined by

Explanation of
communality
statistic

That is: the square of the correlation of variable k with factor i gives
the part of the variance accounted for by that factor. The sum of these
squares for n factors is the communality, or explained variable for
that variable (row).

Roadmap to solve the V matrix
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Main steps to
obtaining
eigenstructure
for a
correlation
matrix

In summary, here are the main steps to obtain the eigenstructure for a
correlation matrix.

Compute R, the correlation matrix of the original data. R is
also the correlation matrix of the standardized data.

1.  

Obtain the characteristic equation of R which is a polynomial
of degree p (the number of variables), obtained from
expanding the determinant of |R-  I| = 0 and solving for the
roots  i, that is:  1,  2, ... ,  p.

2.  

Then solve for the columns of the V matrix, (v1, v2, ..vp). The
roots, , i, are called the eigenvalues (or latent values). The
columns of V are called the eigenvectors.

3.  
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6. Process or Product Monitoring and Control
6.5. Tutorials
6.5.5. Principal Components

6.5.5.2.Numerical Example

Calculation
of principal
components
example

A numerical example may clarify the mechanics of principal component analysis.

Sample data
set

Let us analyze the following 3-variate dataset with 10 observations. Each
observation consists of 3 measurements on a wafer: thickness, horizontal
displacement and vertical displacement.

6.5.5.2. Numerical Example
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Compute the
correlation
matrix

First compute the correlation matrix

Solve for the
roots of R

Next solve for the roots of R, using software

value proportion

1 1.769 .590
2 .927 .899
3 .304 1.000

Notice that

Each eigenvalue satisfies |R-  I| = 0.●   

The sum of the eigenvalues = 3 = p, which is equal to the trace of R (i.e., the
sum of the main diagonal elements).

●   

The determinant of R is the product of the eigenvalues.●   

The product is  1 x  2 x  3 = .499.●   

Compute the
first column
of the V
matrix

Substituting the first eigenvalue of 1.769 and R in the appropriate equation we
obtain

This is the matrix expression for 3 homogeneous equations with 3 unknowns and
yields the first column of V: .64  .69  -.34  (again, a computerized solution is
indispensable).

6.5.5.2. Numerical Example
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Compute the
remaining
columns of
the V matrix

Repeating this procedure for the other 2 eigenvalues yields the matrix V

Notice that if you multiply V by its transpose, the result is an identity matrix,
V'V=I.

Compute the
L1/2 matrix

Now form the matrix L1/2, which is a diagonal matrix whose elements are the
square roots of the eigenvalues of R. Then obtain S, the factor structure, using S =
V L1/2

So, for example, .91 is the correlation between variable 2 and the first principal
component.

Compute the
communality

Next compute the communality, using the first two eigenvalues only

Diagonal
elements
report how
much of the
variability is
explained

Communality consists of the diagonal elements.

var  
1 .8662
2 .8420
3 .9876

This means that the first two principal components "explain" 86.62% of the first
variable, 84.20 % of the second variable, and 98.76% of the third.

6.5.5.2. Numerical Example
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Compute the
coefficient
matrix

The coefficient matrix, B, is formed using the reciprocals of the diagonals of L1/2

Compute the
principal
factors

Finally, we can compute the factor scores from ZB, where Z is X converted to
standard score form. These columns are the principal factors.

Principal
factors
control
chart

These factors can be plotted against the indices, which could be times. If time is
used, the resulting plot is an example of a principal factors control chart.

6.5.5.2. Numerical Example

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc552.htm (4 of 4) [7/1/2003 5:25:53 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control

6.6.Case Studies in Process Monitoring

Detailed,
Realistic
Examples

The general points of the first five sections are illustrated in this section
using data from physical science and engineering applications. Each
example is presented step-by-step in the text, and is often cross-linked
with the relevant sections of the chapter describing the analysis in
general. Each analysis can also be repeated using a worksheet linked to
the appropriate Dataplot macros. The worksheet is also linked to the
step-by-step analysis presented in the text for easy reference.

Contents:
Section 6

Lithography Process Example1.  

Aerosol Particle Size Example2.  

6.6. Case Studies in Process Monitoring
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring

6.6.1.Lithography Process

Lithography
Process

This case study illustrates the use of control charts in analyzing a
lithography process.

Background and Data1.  

Graphical Representation of the Data2.  

Subgroup Analysis3.  

Shewhart Control Chart4.  

Work This Example Yourself5.  

6.6.1. Lithography Process
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.1.Background and Data

Case Study for SPC in Batch Processing Environment

Semiconductor
processing
creates
multiple
sources of
variability to
monitor

One of the assumptions in using classical Shewhart SPC charts is that the only
source of variation is from part to part (or within subgroup variation). This is
the case for most continuous processing situations. However, many of today's
processing situations have different sources of variation. The semiconductor
industry is one of the areas where the processing creates multiple sources of
variation.

In semiconductor processing, the basic experimental unit is a silicon wafer.
Operations are performed on the wafer, but individual wafers can be grouped
multiple ways. In the diffusion area, up to 150 wafers are processed in one
time in a diffusion tube. In the etch area, single wafers are processed
individually. In the lithography area, the light exposure is done on sub-areas of
the wafer. There are many times during the production of a computer chip
where the experimental unit varies and thus there are different sources of
variation in this batch processing environment.

tHE following is a case study of a lithography process. Five sites are measured
on each wafer, three wafers are measured in a cassette (typically a grouping of
24 - 25 wafers) and thirty cassettes of wafers are used in the study. The width
of a line is the measurement under study. There are two line width variables.
The first is the original data and the second has been cleaned up somewhat.
This case study uses the raw data. The entire data table is 450 rows long with
six columns.

6.6.1.1. Background and Data
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Case study
data: wafer
line width
measurements

                              Raw             Cleaned
                             Line                Line
Cassette Wafer  Site        Width  Sequence     Width
=====================================================
 1         1     Top     3.199275      1     3.197275
 1         1     Lef     2.253081      2     2.249081
 1         1     Cen     2.074308      3     2.068308
 1         1     Rgt     2.418206      4     2.410206
 1         1     Bot     2.393732      5     2.383732
 1         2     Top     2.654947      6     2.642947
 1         2     Lef     2.003234      7     1.989234
 1         2     Cen     1.861268      8     1.845268
 1         2     Rgt     2.136102      9     2.118102
 1         2     Bot     1.976495     10     1.956495
 1         3     Top     2.887053     11     2.865053
 1         3     Lef     2.061239     12     2.037239
 1         3     Cen     1.625191     13     1.599191
 1         3     Rgt     2.304313     14     2.276313
 1         3     Bot     2.233187     15     2.203187
 2         1     Top     3.160233     16     3.128233
 2         1     Lef     2.518913     17     2.484913
 2         1     Cen     2.072211     18     2.036211
 2         1     Rgt     2.287210     19     2.249210
 2         1     Bot     2.120452     20     2.080452
 2         2     Top     2.063058     21     2.021058
 2         2     Lef     2.217220     22     2.173220
 2         2     Cen     1.472945     23     1.426945
 2         2     Rgt     1.684581     24     1.636581
 2         2     Bot     1.900688     25     1.850688
 2         3     Top     2.346254     26     2.294254
 2         3     Lef     2.172825     27     2.118825
 2         3     Cen     1.536538     28     1.480538
 2         3     Rgt     1.966630     29     1.908630
 2         3     Bot     2.251576     30     2.191576
 3         1     Top     2.198141     31     2.136141
 3         1     Lef     1.728784     32     1.664784
 3         1     Cen     1.357348     33     1.291348
 3         1     Rgt     1.673159     34     1.605159
 3         1     Bot     1.429586     35     1.359586
 3         2     Top     2.231291     36     2.159291
 3         2     Lef     1.561993     37     1.487993
 3         2     Cen     1.520104     38     1.444104
 3         2     Rgt     2.066068     39     1.988068

6.6.1.1. Background and Data
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 3         2     Bot     1.777603     40     1.697603
 3         3     Top     2.244736     41     2.162736
 3         3     Lef     1.745877     42     1.661877
 3         3     Cen     1.366895     43     1.280895
 3         3     Rgt     1.615229     44     1.527229
 3         3     Bot     1.540863     45     1.450863
 4         1     Top     2.929037     46     2.837037
 4         1     Lef     2.035900     47     1.941900
 4         1     Cen     1.786147     48     1.690147
 4         1     Rgt     1.980323     49     1.882323
 4         1     Bot     2.162919     50     2.062919
 4         2     Top     2.855798     51     2.753798
 4         2     Lef     2.104193     52     2.000193
 4         2     Cen     1.919507     53     1.813507
 4         2     Rgt     2.019415     54     1.911415
 4         2     Bot     2.228705     55     2.118705
 4         3     Top     3.219292     56     3.107292
 4         3     Lef     2.900430     57     2.786430
 4         3     Cen     2.171262     58     2.055262
 4         3     Rgt     3.041250     59     2.923250
 4         3     Bot     3.188804     60     3.068804
 5         1     Top     3.051234     61     2.929234
 5         1     Lef     2.506230     62     2.382230
 5         1     Cen     1.950486     63     1.824486
 5         1     Rgt     2.467719     64     2.339719
 5         1     Bot     2.581881     65     2.451881
 5         2     Top     3.857221     66     3.725221
 5         2     Lef     3.347343     67     3.213343
 5         2     Cen     2.533870     68     2.397870
 5         2     Rgt     3.190375     69     3.052375
 5         2     Bot     3.362746     70     3.222746
 5         3     Top     3.690306     71     3.548306
 5         3     Lef     3.401584     72     3.257584
 5         3     Cen     2.963117     73     2.817117
 5         3     Rgt     2.945828     74     2.797828
 5         3     Bot     3.466115     75     3.316115
 6         1     Top     2.938241     76     2.786241
 6         1     Lef     2.526568     77     2.372568
 6         1     Cen     1.941370     78     1.785370
 6         1     Rgt     2.765849     79     2.607849
 6         1     Bot     2.382781     80     2.222781
 6         2     Top     3.219665     81     3.057665
 6         2     Lef     2.296011     82     2.132011
 6         2     Cen     2.256196     83     2.090196
 6         2     Rgt     2.645933     84     2.477933
 6         2     Bot     2.422187     85     2.252187
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 6         3     Top     3.180348     86     3.008348
 6         3     Lef     2.849264     87     2.675264
 6         3     Cen     1.601288     88     1.425288
 6         3     Rgt     2.810051     89     2.632051
 6         3     Bot     2.902980     90     2.722980
 7         1     Top     2.169679     91     1.987679
 7         1     Lef     2.026506     92     1.842506
 7         1     Cen     1.671804     93     1.485804
 7         1     Rgt     1.660760     94     1.472760
 7         1     Bot     2.314734     95     2.124734
 7         2     Top     2.912838     96     2.720838
 7         2     Lef     2.323665     97     2.129665
 7         2     Cen     1.854223     98     1.658223
 7         2     Rgt     2.391240     99     2.19324
 7         2     Bot     2.196071     100    1.996071
 7         3     Top     3.318517     101    3.116517
 7         3     Lef     2.702735     102    2.498735
 7         3     Cen     1.959008     103    1.753008
 7         3     Rgt     2.512517     104    2.304517
 7         3     Bot     2.827469     105    2.617469
 8         1     Top     1.958022     106    1.746022
 8         1     Lef     1.360106     107    1.146106
 8         1     Cen     0.971193     108    0.755193
 8         1     Rgt     1.947857     109    1.729857
 8         1     Bot     1.643580     110    1.42358
 8         2     Top     2.357633     111    2.135633
 8         2     Lef     1.757725     112    1.533725
 8         2     Cen     1.165886     113    0.939886
 8         2     Rgt     2.231143     114    2.003143
 8         2     Bot     1.311626     115    1.081626
 8         3     Top     2.421686     116    2.189686
 8         3     Lef     1.993855     117    1.759855
 8         3     Cen     1.402543     118    1.166543
 8         3     Rgt     2.008543     119    1.770543
 8         3     Bot     2.139370     120    1.899370
 9         1     Top     2.190676     121    1.948676
 9         1     Lef     2.287483     122    2.043483
 9         1     Cen     1.698943     123    1.452943
 9         1     Rgt     1.925731     124    1.677731
 9         1     Bot     2.057440     125    1.807440
 9         2     Top     2.353597     126    2.101597
 9         2     Lef     1.796236     127    1.542236
 9         2     Cen     1.241040     128    0.985040
 9         2     Rgt     1.677429     129    1.419429
 9         2     Bot     1.845041     130    1.585041
 9         3     Top     2.012669     131    1.750669
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 9         3     Lef     1.523769     132    1.259769
 9         3     Cen     0.790789     133    0.524789
 9         3     Rgt     2.001942     134    1.733942
 9         3     Bot     1.350051     135    1.080051
10         1     Top     2.825749     136    2.553749
10         1     Lef     2.502445     137    2.228445
10         1     Cen     1.938239     138    1.662239
10         1     Rgt     2.349497     139    2.071497
10         1     Bot     2.310817     140    2.030817
10         2     Top     3.074576     141    2.792576
10         2     Lef     2.057821     142    1.773821
10         2     Cen     1.793617     143    1.507617
10         2     Rgt     1.862251     144    1.574251
10         2     Bot     1.956753     145    1.666753
10         3     Top     3.072840     146    2.780840
10         3     Lef     2.291035     147    1.997035
10         3     Cen     1.873878     148    1.577878
10         3     Rgt     2.475640     149    2.177640
10         3     Bot     2.021472     150    1.721472
11         1     Top     3.228835     151    2.926835
11         1     Lef     2.719495     152    2.415495
11         1     Cen     2.207198     153    1.901198
11         1     Rgt     2.391608     154    2.083608
11         1     Bot     2.525587     155    2.215587
11         2     Top     2.891103     156    2.579103
11         2     Lef     2.738007     157    2.424007
11         2     Cen     1.668337     158    1.352337
11         2     Rgt     2.496426     159    2.178426
11         2     Bot     2.417926     160    2.097926
11         3     Top     3.541799     161    3.219799
11         3     Lef     3.058768     162    2.734768
11         3     Cen     2.187061     163    1.861061
11         3     Rgt     2.790261     164    2.462261
11         3     Bot     3.279238     165    2.949238
12         1     Top     2.347662     166    2.015662
12         1     Lef     1.383336     167    1.049336
12         1     Cen     1.187168     168    0.851168
12         1     Rgt     1.693292     169    1.355292
12         1     Bot     1.664072     170    1.324072
12         2     Top     2.385320     171    2.043320
12         2     Lef     1.607784     172    1.263784
12         2     Cen     1.230307     173    0.884307
12         2     Rgt     1.945423     174    1.597423
12         2     Bot     1.907580     175    1.557580
12         3     Top     2.691576     176    2.339576
12         3     Lef     1.938755     177    1.584755
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12         3     Cen     1.275409     178    0.919409
12         3     Rgt     1.777315     179    1.419315
12         3     Bot     2.146161     180    1.786161
13         1     Top     3.218655     181    2.856655
13         1     Lef     2.912180     182    2.548180
13         1     Cen     2.336436     183    1.970436
13         1     Rgt     2.956036     184    2.588036
13         1     Bot     2.423235     185    2.053235
13         2     Top     3.302224     186    2.930224
13         2     Lef     2.808816     187    2.434816
13         2     Cen     2.340386     188    1.964386
13         2     Rgt     2.795120     189    2.417120
13         2     Bot     2.865800     190    2.485800
13         3     Top     2.992217     191    2.610217
13         3     Lef     2.952106     192    2.568106
13         3     Cen     2.149299     193    1.763299
13         3     Rgt     2.448046     194    2.060046
13         3     Bot     2.507733     195    2.117733
14         1     Top     3.530112     196    3.138112
14         1     Lef     2.940489     197    2.546489
14         1     Cen     2.598357     198    2.202357
14         1     Rgt     2.905165     199    2.507165
14         1     Bot     2.692078     200    2.292078
14         2     Top     3.764270     201    3.362270
14         2     Lef     3.465960     202    3.061960
14         2     Cen     2.458628     203    2.052628
14         2     Rgt     3.141132     204    2.733132
14         2     Bot     2.816526     205    2.406526
14         3     Top     3.217614     206    2.805614
14         3     Lef     2.758171     207    2.344171
14         3     Cen     2.345921     208    1.929921
14         3     Rgt     2.773653     209    2.355653
14         3     Bot     3.109704     210    2.689704
15         1     Top     2.177593     211    1.755593
15         1     Lef     1.511781     212    1.087781
15         1     Cen     0.746546     213    0.320546
15         1     Rgt     1.491730     214    1.063730
15         1     Bot     1.268580     215    0.838580
15         2     Top     2.433994     216    2.001994
15         2     Lef     2.045667     217    1.611667
15         2     Cen     1.612699     218    1.176699
15         2     Rgt     2.082860     219    1.644860
15         2     Bot     1.887341     220    1.447341
15         3     Top     1.923003     221    1.481003
15         3     Lef     2.124461     222    1.680461
15         3     Cen     1.945048     223    1.499048
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15         3     Rgt     2.210698     224    1.762698
15         3     Bot     1.985225     225    1.535225
16         1     Top     3.131536     226    2.679536
16         1     Lef     2.405975     227    1.951975
16         1     Cen     2.206320     228    1.750320
16         1     Rgt     3.012211     229    2.554211
16         1     Bot     2.628723     230    2.168723
16         2     Top     2.802486     231    2.340486
16         2     Lef     2.185010     232    1.721010
16         2     Cen     2.161802     233    1.695802
16         2     Rgt     2.102560     234    1.634560
16         2     Bot     1.961968     235    1.491968
16         3     Top     3.330183     236    2.858183
16         3     Lef     2.464046     237    1.990046
16         3     Cen     1.687408     238    1.211408
16         3     Rgt     2.043322     239    1.565322
16         3     Bot     2.570657     240    2.090657
17         1     Top     3.352633     241    2.870633
17         1     Lef     2.691645     242    2.207645
17         1     Cen     1.942410     243    1.456410
17         1     Rgt     2.366055     244    1.878055
17         1     Bot     2.500987     245    2.010987
17         2     Top     2.886284     246    2.394284
17         2     Lef     2.292503     247    1.798503
17         2     Cen     1.627562     248    1.131562
17         2     Rgt     2.415076     249    1.917076
17         2     Bot     2.086134     250    1.586134
17         3     Top     2.554848     251    2.052848
17         3     Lef     1.755843     252    1.251843
17         3     Cen     1.510124     253    1.004124
17         3     Rgt     2.257347     254    1.749347
17         3     Bot     1.958592     255    1.448592
18         1     Top     2.622733     256    2.110733
18         1     Lef     2.321079     257    1.807079
18         1     Cen     1.169269     258    0.653269
18         1     Rgt     1.921457     259    1.403457
18         1     Bot     2.176377     260    1.656377
18         2     Top     3.313367     261    2.791367
18         2     Lef     2.559725     262    2.035725
18         2     Cen     2.404662     263    1.878662
18         2     Rgt     2.405249     264    1.877249
18         2     Bot     2.535618     265    2.005618
18         3     Top     3.067851     266    2.535851
18         3     Lef     2.490359     267    1.956359
18         3     Cen     2.079477     268    1.543477
18         3     Rgt     2.669512     269    2.131512
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18         3     Bot     2.105103     270    1.565103
19         1     Top     4.293889     271    3.751889
19         1     Lef     3.888826     272    3.344826
19         1     Cen     2.960655     273    2.414655
19         1     Rgt     3.618864     274    3.070864
19         1     Bot     3.562480     275    3.012480
19         2     Top     3.451872     276    2.899872
19         2     Lef     3.285934     277    2.731934
19         2     Cen     2.638294     278    2.082294
19         2     Rgt     2.918810     279    2.360810
19         2     Bot     3.076231     280    2.516231
19         3     Top     3.879683     281    3.317683
19         3     Lef     3.342026     282    2.778026
19         3     Cen     3.382833     283    2.816833
19         3     Rgt     3.491666     284    2.923666
19         3     Bot     3.617621     285    3.047621
20         1     Top     2.329987     286    1.757987
20         1     Lef     2.400277     287    1.826277
20         1     Cen     2.033941     288    1.457941
20         1     Rgt     2.544367     289    1.966367
20         1     Bot     2.493079     290    1.913079
20         2     Top     2.862084     291    2.280084
20         2     Lef     2.404703     292    1.820703
20         2     Cen     1.648662     293    1.062662
20         2     Rgt     2.115465     294    1.527465
20         2     Bot     2.633930     295    2.043930
20         3     Top     3.305211     296    2.713211
20         3     Lef     2.194991     297    1.600991
20         3     Cen     1.620963     298    1.024963
20         3     Rgt     2.322678     299    1.724678
20         3     Bot     2.818449     300    2.218449
21         1     Top     2.712915     301    2.110915
21         1     Lef     2.389121     302    1.785121
21         1     Cen     1.575833     303    0.969833
21         1     Rgt     1.870484     304    1.262484
21         1     Bot     2.203262     305    1.593262
21         2     Top     2.607972     306    1.995972
21         2     Lef     2.177747     307    1.563747
21         2     Cen     1.246016     308    0.630016
21         2     Rgt     1.663096     309    1.045096
21         2     Bot     1.843187     310    1.223187
21         3     Top     2.277813     311    1.655813
21         3     Lef     1.764940     312    1.140940
21         3     Cen     1.358137     313    0.732137
21         3     Rgt     2.065713     314    1.437713
21         3     Bot     1.885897     315    1.255897
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22         1     Top     3.126184     316    2.494184
22         1     Lef     2.843505     317    2.209505
22         1     Cen     2.041466     318    1.405466
22         1     Rgt     2.816967     319    2.178967
22         1     Bot     2.635127     320    1.995127
22         2     Top     3.049442     321    2.407442
22         2     Lef     2.446904     322    1.802904
22         2     Cen     1.793442     323    1.147442
22         2     Rgt     2.676519     324    2.028519
22         2     Bot     2.187865     325    1.537865
22         3     Top     2.758416     326    2.106416
22         3     Lef     2.405744     327    1.751744
22         3     Cen     1.580387     328    0.924387
22         3     Rgt     2.508542     329    1.850542
22         3     Bot     2.574564     330    1.914564
23         1     Top     3.294288     331    2.632288
23         1     Lef     2.641762     332    1.977762
23         1     Cen     2.105774     333    1.439774
23         1     Rgt     2.655097     334    1.987097
23         1     Bot     2.622482     335    1.952482
23         2     Top     4.066631     336    3.394631
23         2     Lef     3.389733     337    2.715733
23         2     Cen     2.993666     338    2.317666
23         2     Rgt     3.613128     339    2.935128
23         2     Bot     3.213809     340    2.533809
23         3     Top     3.369665     341    2.687665
23         3     Lef     2.566891     342    1.882891
23         3     Cen     2.289899     343    1.603899
23         3     Rgt     2.517418     344    1.829418
23         3     Bot     2.862723     345    2.172723
24         1     Top     4.212664     346    3.520664
24         1     Lef     3.068342     347    2.374342
24         1     Cen     2.872188     348    2.176188
24         1     Rgt     3.040890     349    2.342890
24         1     Bot     3.376318     350    2.676318
24         2     Top     3.223384     351    2.521384
24         2     Lef     2.552726     352    1.848726
24         2     Cen     2.447344     353    1.741344
24         2     Rgt     3.011574     354    2.303574
24         2     Bot     2.711774     355    2.001774
24         3     Top     3.359505     356    2.647505
24         3     Lef     2.800742     357    2.086742
24         3     Cen     2.043396     358    1.327396
24         3     Rgt     2.929792     359    2.211792
24         3     Bot     2.935356     360    2.215356
25         1     Top     2.724871     361    2.002871
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25         1     Lef     2.239013     362    1.515013
25         1     Cen     2.341512     363    1.615512
25         1     Rgt     2.263617     364    1.535617
25         1     Bot     2.062748     365    1.332748
25         2     Top     3.658082     366    2.926082
25         2     Lef     3.093268     367    2.359268
25         2     Cen     2.429341     368    1.693341
25         2     Rgt     2.538365     369    1.800365
25         2     Bot     3.161795     370    2.421795
25         3     Top     3.178246     371    2.436246
25         3     Lef     2.498102     372    1.754102
25         3     Cen     2.445810     373    1.699810
25         3     Rgt     2.231248     374    1.483248
25         3     Bot     2.302298     375    1.552298
26         1     Top     3.320688     376    2.568688
26         1     Lef     2.861800     377    2.107800
26         1     Cen     2.238258     378    1.482258
26         1     Rgt     3.122050     379    2.364050
26         1     Bot     3.160876     380    2.400876
26         2     Top     3.873888     381    3.111888
26         2     Lef     3.166345     382    2.402345
26         2     Cen     2.645267     383    1.879267
26         2     Rgt     3.309867     384    2.541867
26         2     Bot     3.542882     385    2.772882
26         3     Top     2.586453     386    1.814453
26         3     Lef     2.120604     387    1.346604
26         3     Cen     2.180847     388    1.404847
26         3     Rgt     2.480888     389    1.702888
26         3     Bot     1.938037     390    1.158037
27         1     Top     4.710718     391    3.928718
27         1     Lef     4.082083     392    3.298083
27         1     Cen     3.533026     393    2.747026
27         1     Rgt     4.269929     394    3.481929
27         1     Bot     4.038166     395    3.248166
27         2     Top     4.237233     396    3.445233
27         2     Lef     4.171702     397    3.377702
27         2     Cen     3.04394      398    2.247940
27         2     Rgt     3.91296      399    3.114960
27         2     Bot     3.714229     400    2.914229
27         3     Top     5.168668     401    4.366668
27         3     Lef     4.823275     402    4.019275
27         3     Cen     3.764272     403    2.958272
27         3     Rgt     4.396897     404    3.588897
27         3     Bot     4.442094     405    3.632094
28         1     Top     3.972279     406    3.160279
28         1     Lef     3.883295     407    3.069295
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28         1     Cen     3.045145     408    2.229145
28         1     Rgt     3.51459      409    2.696590
28         1     Bot     3.575446     410    2.755446
28         2     Top     3.024903     411    2.202903
28         2     Lef     3.099192     412    2.275192
28         2     Cen     2.048139     413    1.222139
28         2     Rgt     2.927978     414    2.099978
28         2     Bot     3.15257      415    2.322570
28         3     Top     3.55806      416    2.726060
28         3     Lef     3.176292     417    2.342292
28         3     Cen     2.852873     418    2.016873
28         3     Rgt     3.026064     419    2.188064
28         3     Bot     3.071975     420    2.231975
29         1     Top     3.496634     421    2.654634
29         1     Lef     3.087091     422    2.243091
29         1     Cen     2.517673     423    1.671673
29         1     Rgt     2.547344     424    1.699344
29         1     Bot     2.971948     425    2.121948
29         2     Top     3.371306     426    2.519306
29         2     Lef     2.175046     427    1.321046
29         2     Cen     1.940111     428    1.084111
29         2     Rgt     2.932408     429    2.074408
29         2     Bot     2.428069     430    1.568069
29         3     Top     2.941041     431    2.079041
29         3     Lef     2.294009     432    1.430009
29         3     Cen     2.025674     433    1.159674
29         3     Rgt     2.21154      434    1.343540
29         3     Bot     2.459684     435    1.589684
30         1     Top     2.86467      436    1.992670
30         1     Lef     2.695163     437    1.821163
30         1     Cen     2.229518     438    1.353518
30         1     Rgt     1.940917     439    1.062917
30         1     Bot     2.547318     440    1.667318
30         2     Top     3.537562     441    2.655562
30         2     Lef     3.311361     442    2.427361
30         2     Cen     2.767771     443    1.881771
30         2     Rgt     3.388622     444    2.500622
30         2     Bot     3.542701     445    2.652701
30         3     Top     3.184652     446    2.292652
30         3     Lef     2.620947     447    1.726947
30         3     Cen     2.697619     448    1.801619
30         3     Rgt     2.860684     449    1.962684
30         3     Bot     2.758571     450    1.858571
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.2.Graphical Representation of the
Data

The first step in analyzing the data is to generate some simple plots of
the response and then of the response versus the various factors.

4-Plot of
Data

Interpretation This 4-plot shows the following.

The run sequence plot (upper left) indicates that the location and
scale are not constant over time. This indicates that the three
factors do in fact have an effect of some kind.

1.  

The lag plot (upper right) indicates that there is some mild
autocorrelation in the data. This is not unexpected as the data are
grouped in a logical order of the three factors (i.e., not
randomly) and the run sequence plot indicates that there are
factor effects.

2.  

The histogram (lower left) shows that most of the data fall
between 1 and 5, with the center of the data at about 2.2.

3.  

Due to the non-constant location and scale and autocorrelation in4.  
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the data, distributional inferences from the normal probability
plot (lower right) are not meaningful.

The run sequence plot is shown at full size to show greater detail. In
addition, a numerical summary of the data is generated.

Run
Sequence
Plot of Data

Numerical
Summary

  
  
                                 SUMMARY
  
                      NUMBER OF OBSERVATIONS =      450
  
  
 ***********************************************************************
 *        LOCATION MEASURES         *       DISPERSION MEASURES        *
 ***********************************************************************
 *  MIDRANGE     =   0.2957607E+01  *  RANGE        =   0.4422122E+01  *
 *  MEAN         =   0.2532284E+01  *  STAND. DEV.  =   0.6937559E+00  *
 *  MIDMEAN      =   0.2393183E+01  *  AV. AB. DEV. =   0.5482042E+00  *
 *  MEDIAN       =   0.2453337E+01  *  MINIMUM      =   0.7465460E+00  *
 *               =                  *  LOWER QUART. =   0.2046285E+01  *
 *               =                  *  LOWER HINGE  =   0.2048139E+01  *
 *               =                  *  UPPER HINGE  =   0.2971948E+01  *
 *               =                  *  UPPER QUART. =   0.2987150E+01  *
 *               =                  *  MAXIMUM      =   0.5168668E+01  *
 ***********************************************************************
 *       RANDOMNESS MEASURES        *     DISTRIBUTIONAL MEASURES      *
 ***********************************************************************
 *  AUTOCO COEF  =   0.6072572E+00  *  ST. 3RD MOM. =   0.4527434E+00  *
 *               =   0.0000000E+00  *  ST. 4TH MOM. =   0.3382735E+01  *
 *               =   0.0000000E+00  *  ST. WILK-SHA =   0.6957975E+01  *
 *               =                  *  UNIFORM PPCC =   0.9681802E+00  *
 *               =                  *  NORMAL  PPCC =   0.9935199E+00  *
 *               =                  *  TUK -.5 PPCC =   0.8528156E+00  *
 *               =                  *  CAUCHY  PPCC =   0.5245036E+00  *
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 ***********************************************************************

This summary generates a variety of statistics. In this case, we are primarily interested in the
mean and standard deviation. From this summary, we see that the mean is 2.53 and the
standard deviation is 0.69.

Plot response
agains
individual
factors

The next step is to plot the response against each individual factor. For
comparison, we generate both a scatter plot and a box plot of the data.
The scatter plot shows more detail. However, comparisons are usually
easier to see with the box plot, particularly as the number of data points
and groups become larger.

Scatter plot
of width
versus
cassette

Box plot of
width versus
cassette

6.6.1.2. Graphical Representation of the Data

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc612.htm (3 of 8) [7/1/2003 5:26:02 PM]

http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm


Interpretation We can make the following conclusions based on the above scatter and
box plots.

There is considerable variation in the location for the various
cassettes. The medians vary from about 1.7 to 4.

1.  

There is also some variation in the scale.2.  

There are a number of outliers.3.  

Scatter plot
of width
versus wafer

6.6.1.2. Graphical Representation of the Data
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Box plot of
width versus
wafer

Interpretation We can make the following conclusions based on the above scatter and
box plots.

The locations for the 3 wafers are relatively constant.1.  

The scales for the 3 wafers are relatively constant.2.  

There are a few outliers on the high side.3.  

It is reasonable to treat the wafer factor as homogeneous.4.  

Scatter plot
of width
versus site
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Box plot of
width versus
site

Interpretation We can make the following conclusions based on the above scatter and
box plots.

There is some variation in location based on site. The center site
in particular has a lower median.

1.  

The scales are relatively constant across sites.2.  

There are a few outliers.3.  

Dex mean
and sd plots

We can use the dex mean plot and the dex standard deviation plot to
show the factor means and standard deviations together for better
comparison.

Dex mean
plot

6.6.1.2. Graphical Representation of the Data
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Dex sd plot

6.6.1.2. Graphical Representation of the Data
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Summary The above graphs show that there are differences between the lots and
the sites.

There are various ways we can create subgroups of this dataset: each
lot could be a subgroup, each wafer could be a subgroup, or each site
measured could be a subgroup (with only one data value in each
subgroup).

Recall that for a classical Shewhart Means chart, the average within
subgroup standard deviation is used to calculate the control limits for
the Means chart. However, on the means chart you are monitoring the
subgroup mean-to-mean variation. There is no problem if you are in a
continuous processing situation - this becomes an issue if you are
operating in a batch processing environment.

We will look at various control charts based on different subgroupings
next.

6.6.1.2. Graphical Representation of the Data
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.3.Subgroup Analysis

Control
charts for
subgroups

The resulting classical Shewhart control charts for each possible
subgroup are shown below.

Site as
subgroup

The first pair of control charts use the site as the subgroup. However,
since site has a subgroup size of one we use the control charts for
individual measurements. A moving average and a moving range chart
are shown.

Moving
average
control chart

6.6.1.3. Subgroup Analysis
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Moving
range control
chart

Wafer as
subgroup

The next pair of control charts use the wafer as the subgroup. In this
case, that results in a subgroup size of 5. A mean and a standard
deviation control chart are shown.

Mean control
chart

6.6.1.3. Subgroup Analysis
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SD control
chart

Note that there is no LCL here because of the small subgroup size.

Cassette as
subgroup

The next pair of control charts use the cassette as the subgroup. In this
case, that results in a subgroup size of 15. A mean and a standard
deviation control chart are shown.

Mean control
chart

6.6.1.3. Subgroup Analysis
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SD control
chart

Interpretation Which of these subgroupings of the data is correct? As you can see,
each sugrouping produces a different chart. Part of the answer lies in
the manufacturing requirements for this process. Another aspect that
can be statistically determined is the magnitude of each of the sources
of variation. In order to understand our data structure and how much
variation each of our sources contribute, we need to perform a variance
component analysis. The variance component analysis for this data set
is shown below.

Component
of variance
table

Component
Variance Component

Estimate

Cassette 0.2645
Wafer 0.0500
Site 0.1755

Equating
mean squares
with expected
values

If your software does not generate the variance components directly,
they can be computed from a standard analysis of variance output by
equating means squares (MSS) to expected mean squares (EMS).

JMP ANOVA
output

Below we show SAS JMP 4 output for this dataset that gives the SS,
MSS, and components of variance (the model entered into JMP is a
nested, random factors model). The EMS table contains the
coefficients needed to write the equations setting MSS values equal to
their EMS's. This is further described below.

6.6.1.3. Subgroup Analysis
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Variance
Components
Estimation

From the ANOVA table, labelled "Tests wrt to Random Effects" in the
JMP output, we can make the following variance component
calculations:

 4.3932  = (3*5)*Var(cassettes) + 5*Var(wafer) +
           Var(site)
 0.42535 = 5*Var(wafer) + Var(site)
 0.1755  =  Var(site)
    

Solving these equations we obtain the variance component estimates
0.2645, 0.04997 and 0.1755 for cassettes, wafers and sites, respectively.

6.6.1.3. Subgroup Analysis
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.4.Shewhart Control Chart

Choosing
the right
control
charts to
monitor the
process

The largest source of variation in this data is the lot-to-lot variation. So,
using classical Shewhart methods, if we specify our subgroup to be
anything other than lot, we will be ignoring the known lot-to-lot
variation and could get out-of-control points that already have a known,
assignable cause - the data comes from different lots. However, in the
lithography processing area the measurements of most interest are the
site level measurements, not the lot means. How can we get around this
seeming contradiction?

Chart
sources of
variation
separately

One solution is to chart the important sources of variation separately.
We would then be able to monitor the variation of our process and truly
understand where the variation is coming from and if it changes. For this
dataset, this approach would require having two sets of control charts,
one for the individual site measurements and the other for the lot means.
This would double the number of charts necessary for this process (we
would have 4 charts for line width instead of 2).

Chart only
most
important
source of
variation

Another solution would be to have one chart on the largest source of
variation. This would mean we would have one set of charts that
monitor the lot-to-lot variation. From a manufacturing standpoint, this
would be unacceptable.

Use boxplot
type chart

We could create a non-standard chart that would plot all the individual
data values and group them together in a boxplot type format by lot. The
control limits could be generated to monitor the individual data values
while the lot-to-lot variation would be monitored by the patterns of the
groupings. This would take special programming and management
intervention to implement non-standard charts in most floor shop control
systems.

6.6.1.4. Shewhart Control Chart
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Alternate
form for
mean
control
chart

A commonly applied solution is the first option; have multiple charts on
this process. When creating the control limits for the lot means, care
must be taken to use the lot-to-lot variation instead of the within lot
variation. The resulting control charts are: the standard
individuals/moving range charts (as seen previously), and a control chart
on the lot means that is different from the previous lot means chart. This
new chart uses the lot-to-lot variation to calculate control limits instead
of the average within-lot standard deviation. The accompanying
standard deviation chart is the same as seen previously.

Mean
control
chart using
lot-to-lot
variation

The control limits labeled with "UCL" and "LCL" are the standard
control limits. The control limits labeled with "UCL: LL" and "LCL:
LL" are based on the lot-to-lot variation.

6.6.1.4. Shewhart Control Chart
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.1. Lithography Process

6.6.1.5.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this case
study yourself. Each step may use results from previous
steps, so please be patient. Wait until the software verifies
that the current step is complete before clicking on the next
step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

  1. Read in the data.   1. You have read 5 columns of numbers
     into Dataplot, variables CASSETTE,
     WAFER, SITE, WIDTH, and RUNSEQ.

2. Plot of the response variable

  1. Numerical summary of WIDTH.

  2. 4-Plot of WIDTH.

 1. The summary shows the mean line width
    is 2.53 and the standard deviation
    of the line width is 0.69.

 2. The 4-plot shows non-constant
    location and scale and moderate
    autocorrelation.

6.6.1.5. Work This Example Yourself
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  3. Run sequence plot of WIDTH.  3. The run sequence plot shows
    non-constant location and scale.

3. Generate scatter and box plots against
   individual factors.

  1. Scatter plot of WIDTH versus
     CASSETTE.

  2. Box plot of WIDTH versus
     CASSETTE.

  3. Scatter plot of WIDTH versus
     WAFER.

  4. Box plot of WIDTH versus
     WAFER.

  5. Scatter plot of WIDTH versus
     SITE.

  6. Box plot of WIDTH versus
     SITE.

  7. Dex mean plot of WIDTH versus
     CASSETTE, WAFER, and SITE.

  8. Dex sd plot of WIDTH versus
     CASSETTE, WAFER, and SITE.

 1. The scatter plot shows considerable
    variation in location.

 2. The box plot shows considerable
    variation in location and scale
    and the prescence of some outliers.

 3. The scatter plot shows minimal
    variation in location and scale.

 4. The box plot shows minimal
    variation in location and scale.
    It also show some outliers.

 5. The scatter plot shows some
    variation in location.

 6. The box plot shows some
    variation in location.  Scale
    seems relatively constant.
    Some outliers.

 7. The dex mean plot shows effects
    for CASSETTE and SITE, no effect
    for WAFER.

 8. The dex sd plot shows effects
    for CASSETTE and SITE, no effect
    for WAFER.

6.6.1.5. Work This Example Yourself
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4. Subgroup analysis.

  1. Generate a moving mean control
     chart.

  2. Generate a moving range control
     chart.

  3. Generate a mean control chart
     for WAFER.

  4. Generate a sd control chart
     for WAFER.

  5. Generate a mean control chart
     for CASSETTE.

  6. Generate a sd control chart
     for CASSETTE.

  7. Generate an analysis of
     variance.  This is not
     currently implemented in
     DATAPLOT for nested
     datasets.

  8. Generate a mean control chart
     using lot-to-lot variation.

 1. The moving mean plot shows
    a large number of out-of-
    control points.

 2. The moving range plot shows
    a large number of out-of-
    control points.

 3. The mean control chart shows
    a large number of out-of-
    control points.

 4. The sd control chart shows
    no out-of-control points.

 5. The mean control chart shows
    a large number of out-of-
    control points.

 6. The sd control chart shows
    no out-of-control points.

 7. The analysis of variance and
    components of variance
    calculations show that
    cassette to cassette
    variation is 54% of the total
    and site to site variation
    is 36% of the total.

8. The mean control chart shows one
   point that is on the boundary of
   being out of control.

6.6.1.5. Work This Example Yourself
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring

6.6.2.Aerosol Particle Size

Box-Jenkins
Modeling of
Aerosol
Particle Size

This case study illustrates the use of Box-Jenkins modeling with aerosol
particle size data.

Background and Data1.  

Model Identification2.  

Model Estimation3.  

Model Validation4.  

Work This Example Yourself5.  

6.6.2. Aerosol Particle Size
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.1.Background and Data

Data Source The source of the data for this case study is Antuan Negiz who
analyzed these data while he was a post-doc in the NIST Statistical
Engineering Division from the Illinois Institute of Technology.

Data
Collection

These data were collected from an aerosol mini-spray dryer device. The
purpose of this device is to convert a slurry stream into deposited
particles in a drying chamber. The device injects the slurry at high
speed. The slurry is pulverized as it enters the drying chamber when it
comes into contact with a hot gas stream at low humidity. The liquid
contained in the pulverized slurry particles is vaporized, then
transferred to the hot gas stream leaving behind dried small-sized
particles.

The response variable is particle size, which is collected equidistant in
time. There are a variety of associated variables that may affect the
injection process itself and hence the size and quality of the deposited
particles. For this case study, we restrict our analysis to the response
variable.

Applications Such deposition process operations have many applications from
powdered laundry detergents at one extreme to ceramic molding at an
important other extreme. In ceramic molding, the distribution and
homogeneity of the particle sizes are particularly important because
after the molds are baked and cured, the properties of the final molded
ceramic product is strongly affected by the intermediate uniformity of
the base ceramic particles, which in turn is directly reflective of the
quality of the initial atomization process in the aerosol injection device.

6.6.2.1. Background and Data
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Aerosol
Particle Size
Dynamic
Modeling
and Control

The data set consists of particle sizes collected over time. The basic
distributional properties of this process are of interest in terms of
distributional shape, constancy of size, and variation in size. In
addition, this time series may be examined for autocorrelation structure
to determine a prediction model of particle size as a function of
time--such a model is frequently autoregressive in nature. Such a
high-quality prediction equation would be essential as a first step in
developing a predictor-corrective recursive feedback mechanism which
would serve as the core in developing and implementing real-time
dynamic corrective algorithms. The net effect of such algorthms is, of
course, a particle size distribution that is much less variable, much
more stable in nature, and of much higher quality. All of this results in
final ceramic mold products that are more uniform and predictable
across a wide range of important performance characteristics. 

For the purposes of this case study, we restrict the analysis to
determining an appropriate Box-Jenkins model of the particle size.

Case study
data 115.36539

114.63150
114.63150
116.09940
116.34400
116.09940
116.34400
116.83331
116.34400
116.83331
117.32260
117.07800
117.32260
117.32260
117.81200
117.56730
118.30130
117.81200
118.30130
117.81200
118.30130
118.30130
118.54590
118.30130
117.07800
116.09940
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118.30130
118.79060
118.05661
118.30130
118.54590
118.30130
118.54590
118.05661
118.30130
118.54590
118.30130
118.30130
118.30130
118.30130
118.05661
118.30130
117.81200
118.30130
117.32260
117.32260
117.56730
117.81200
117.56730
117.81200
117.81200
117.32260
116.34400
116.58870
116.83331
116.58870
116.83331
116.83331
117.32260
116.34400
116.09940
115.61010
115.61010
115.61010
115.36539
115.12080
115.61010
115.85471
115.36539
115.36539
115.36539
115.12080
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114.87611
114.87611
115.12080
114.87611
114.87611
114.63150
114.63150
114.14220
114.38680
114.14220
114.63150
114.87611
114.38680
114.87611
114.63150
114.14220
114.14220
113.89750
114.14220
113.89750
113.65289
113.65289
113.40820
113.40820
112.91890
113.40820
112.91890
113.40820
113.89750
113.40820
113.65289
113.89750
113.65289
113.65289
113.89750
113.65289
113.16360
114.14220
114.38680
113.65289
113.89750
113.89750
113.40820
113.65289
113.89750
113.65289
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113.65289
114.14220
114.38680
114.63150
115.61010
115.12080
114.63150
114.38680
113.65289
113.40820
113.40820
113.16360
113.16360
113.16360
113.16360
113.16360
112.42960
113.40820
113.40820
113.16360
113.16360
113.16360
113.16360
111.20631
112.67420
112.91890
112.67420
112.91890
113.16360
112.91890
112.67420
112.91890
112.67420
112.91890
113.16360
112.67420
112.67420
112.91890
113.16360
112.67420
112.91890
111.20631
113.40820
112.91890
112.67420
113.16360
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113.65289
113.40820
114.14220
114.87611
114.87611
116.09940
116.34400
116.58870
116.09940
116.34400
116.83331
117.07800
117.07800
116.58870
116.83331
116.58870
116.34400
116.83331
116.83331
117.07800
116.58870
116.58870
117.32260
116.83331
118.79060
116.83331
117.07800
116.58870
116.83331
116.34400
116.58870
116.34400
116.34400
116.34400
116.09940
116.09940
116.34400
115.85471
115.85471
115.85471
115.61010
115.61010
115.61010
115.36539
115.12080
115.61010
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115.85471
115.12080
115.12080
114.87611
114.87611
114.38680
114.14220
114.14220
114.38680
114.14220
114.38680
114.38680
114.38680
114.38680
114.38680
114.14220
113.89750
114.14220
113.65289
113.16360
112.91890
112.67420
112.42960
112.42960
112.42960
112.18491
112.18491
112.42960
112.18491
112.42960
111.69560
112.42960
112.42960
111.69560
111.94030
112.18491
112.18491
112.18491
111.94030
111.69560
111.94030
111.94030
112.42960
112.18491
112.18491
111.94030
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112.18491
112.18491
111.20631
111.69560
111.69560
111.69560
111.94030
111.94030
112.18491
111.69560
112.18491
111.94030
111.69560
112.18491
110.96170
111.69560
111.20631
111.20631
111.45100
110.22771
109.98310
110.22771
110.71700
110.22771
111.20631
111.45100
111.69560
112.18491
112.18491
112.18491
112.42960
112.67420
112.18491
112.42960
112.18491
112.91890
112.18491
112.42960
111.20631
112.42960
112.42960
112.42960
112.42960
113.16360
112.18491
112.91890
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112.91890
112.67420
112.42960
112.42960
112.42960
112.91890
113.16360
112.67420
113.16360
112.91890
112.42960
112.67420
112.91890
112.18491
112.91890
113.16360
112.91890
112.91890
112.91890
112.67420
112.42960
112.42960
113.16360
112.91890
112.67420
113.16360
112.91890
113.16360
112.91890
112.67420
112.91890
112.67420
112.91890
112.91890
112.91890
113.16360
112.91890
112.91890
112.18491
112.42960
112.42960
112.18491
112.91890
112.67420
112.42960
112.42960
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112.18491
112.42960
112.67420
112.42960
112.42960
112.18491
112.67420
112.42960
112.42960
112.67420
112.42960
112.42960
112.42960
112.67420
112.91890
113.40820
113.40820
113.40820
112.91890
112.67420
112.67420
112.91890
113.65289
113.89750
114.38680
114.87611
114.87611
115.12080
115.61010
115.36539
115.61010
115.85471
116.09940
116.83331
116.34400
116.58870
116.58870
116.34400
116.83331
116.83331
116.83331
117.32260
116.83331
117.32260
117.56730
117.32260
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117.07800
117.32260
117.81200
117.81200
117.81200
118.54590
118.05661
118.05661
117.56730
117.32260
117.81200
118.30130
118.05661
118.54590
118.05661
118.30130
118.05661
118.30130
118.30130
118.30130
118.05661
117.81200
117.32260
118.30130
118.30130
117.81200
117.07800
118.05661
117.81200
117.56730
117.32260
117.32260
117.81200
117.32260
117.81200
117.07800
117.32260
116.83331
117.07800
116.83331
116.83331
117.07800
115.12080
116.58870
116.58870
116.34400
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115.85471
116.34400
116.34400
115.85471
116.58870
116.34400
115.61010
115.85471
115.61010
115.85471
115.12080
115.61010
115.61010
115.85471
115.61010
115.36539
114.87611
114.87611
114.63150
114.87611
115.12080
114.63150
114.87611
115.12080
114.63150
114.38680
114.38680
114.87611
114.63150
114.63150
114.63150
114.63150
114.63150
114.14220
113.65289
113.65289
113.89750
113.65289
113.40820
113.40820
113.89750
113.89750
113.89750
113.65289
113.65289
113.89750
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113.40820
113.40820
113.65289
113.89750
113.89750
114.14220
113.65289
113.40820
113.40820
113.65289
113.40820
114.14220
113.89750
114.14220
113.65289
113.65289
113.65289
113.89750
113.16360
113.16360
113.89750
113.65289
113.16360
113.65289
113.40820
112.91890
113.16360
113.16360
113.40820
113.40820
113.65289
113.16360
113.40820
113.16360
113.16360
112.91890
112.91890
112.91890
113.65289
113.65289
113.16360
112.91890
112.67420
113.16360
112.91890
112.67420
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112.91890
112.91890
112.91890
111.20631
112.91890
113.16360
112.42960
112.67420
113.16360
112.42960
112.67420
112.91890
112.67420
111.20631
112.42960
112.67420
112.42960
113.16360
112.91890
112.67420
112.91890
112.42960
112.67420
112.18491
112.91890
112.42960
112.18491
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.2.Model Identification

Check for
Stationarity,
Outliers,
Seasonality

The first step in the analysis is to generate a run sequence plot of the
response variable. A run sequence plot can indicate stationarity (i.e.,
constant location and scale), the presence of outliers, and seasonal
patterns.

Non-stationarity can often be removed by differencing the data or
fitting some type of trend curve. We would then attempt to fit a
Box-Jenkins model to the differenced data or to the residuals after
fitting a trend curve.

Although Box-Jenkins models can estimate seasonal components, the
analyst needs to specify the seasonal period (for example, 12 for
monthly data). Seasonal components are common for economic time
series. They are less common for engineering and scientific data.

Run Sequence
Plot

6.6.2.2. Model Identification
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Interpretation
of the Run
Sequence Plot

We can make the following conclusions from the run sequence plot.

The data show strong and positive autocorrelation.1.  

There does not seem to be a significant trend or any obvious
seasonal pattern in the data.

2.  

The next step is to examine the sample autocorrelations using the
autocorrelation plot.

Autocorrelation
Plot

Interpretation
of the
Autocorrelation
Plot

The autocorrelation plot has a 95% confidence band, which is
constructed based on the assumption that the process is a moving
average process. The autocorrelation plot shows that the sample
autocorrelations are very strong and positive and decay very slowly.

The autocorrelation plot indicates that the process is non-stationary
and suggests an ARIMA model. The next step is to difference the
data.

6.6.2.2. Model Identification
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Run Sequence
Plot of
Differenced
Data

Interpretation
of the Run
Sequence Plot

The run sequence plot of the differenced data shows that the mean of
the differenced data is around zero, with the differenced data less
autocorrelated than the original data.

The next step is to examine the sample autocorrelations of the
differenced data.

Autocorrelation
Plot of the
Differenced
Data

6.6.2.2. Model Identification
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Interpretation
of the
Autocorrelation
Plot of the
Differenced
Data

The autocorrelation plot of the differenced data with a 95%
confidence band shows that only the autocorrelation at lag 1 is
significant. The autocorrelation plot together with run sequence of
the differenced data suggest that the differenced data are stationary.
Based on the autocorrelation plot, an MA(1) model is suggested for
the differenced data.

To examine other possible models, we produce the partial
autocorrelation plot of the differenced data.

Partial
Autocorrelation
Plot of the
Differenced
Data

Interpretation
of the Partial
Autocorrelation
Plot of the
Differenced
Data

The partial autocorrelation plot of the differenced data with 95%
confidence bands shows that only the partial autocorrelations of the
first and second lag are significant. This suggests an AR(2) model for
the differenced data.

6.6.2.2. Model Identification
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Akaike
Information
Criterion (AIC
and AICC)

Information-based criteria, such as the AIC or AICC (see Brockwell
and Davis (2002), pp. 171-174), can be used to automate the choice
of an appropriate model. When available, the AIC or AICC can be a
useful tool for model identification.

Many software programs for time series analysis will generate the
AIC or AICC for a broad range of models. At this time, Dataplot
does not support this feature. However, based on the plots in this
section, we will examine the ARIMA(2,1,0) and ARIMA(0,1,1)
models in detail.

Note that whatever method is used for model identification, model
diagnostics should be performed on the selected model.

6.6.2.2. Model Identification
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.3.Model Estimation

Dataplot
ARMA
Output
for the
AR(2)
Model

Based on the differenced data, Dataplot generated the following estimation output for the AR(2)
model:
  
  
 #############################################################
 #  NONLINEAR LEAST SQUARES ESTIMATION FOR THE PARAMETERS OF #
 #  AN ARIMA MODEL USING BACKFORECASTS                       #
 #############################################################
  
  SUMMARY OF INITIAL CONDITIONS
  ------------------------------
  
     MODEL SPECIFICATION
  
        FACTOR          (P     D     Q)    S
             1           2     1     0     1
  
  
  
 DEFAULT SCALING USED FOR ALL PARAMETERS.
  
                                                           ##STEP SIZE FOR
                                          ######PARAMETER  ##APPROXIMATING
  #################PARAMETER DESCRIPTION  STARTING VALUES  #####DERIVATIVE
  INDEX  #########TYPE  ##ORDER  ##FIXED  ##########(PAR)  ##########(STP)
  
      1  AR (FACTOR 1)        1       NO   0.10000000E+00   0.77167549E-06
      2  AR (FACTOR 1)        2       NO   0.10000000E+00   0.77168311E-06
      3             MU      ###       NO   0.00000000E+00   0.80630875E-06
  
  NUMBER OF OBSERVATIONS                  (N)   559
  MAXIMUM NUMBER OF ITERATIONS ALLOWED                      (MIT)   500
  MAXIMUM NUMBER OF MODEL SUBROUTINE CALLS ALLOWED                 1000
  
  CONVERGENCE CRITERION FOR TEST BASED ON THE
     FORECASTED RELATIVE CHANGE IN RESIDUAL SUM OF SQUARES (STOPSS)  0.1000E-09
     MAXIMUM SCALED RELATIVE CHANGE IN THE PARAMETERS       (STOPP)  0.1489E-07
  
  MAXIMUM CHANGE ALLOWED IN THE PARAMETERS AT FIRST ITERATION (DELTA)   100.0
  RESIDUAL SUM OF SQUARES FOR INPUT PARAMETER VALUES                    138.7
       (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION FOR INPUT PARAMETER VALUES    (RSD)      0.4999
  BASED ON DEGREES OF FREEDOM       559 -   1 -   3 =  555
  
  NONDEFAULT VALUES....
  
  AFCTOL.... V(31) =  0.2225074-307
  
  
  ##### RESIDUAL SUM OF SQUARES CONVERGENCE #####
  

6.6.2.3. Model Estimation
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  ESTIMATES FROM LEAST SQUARES FIT (* FOR FIXED PARAMETER)
  ########################################################
  
                PARAMETER     STD DEV OF ###PAR/   ##################APPROXIMATE
                ESTIMATES  ####PARAMETER ####(SD    95 PERCENT CONFIDENCE LIMITS
  TYPE ORD    ###(OF PAR)  ####ESTIMATES ##(PAR)    #######LOWER     ######UPPER
  
  FACTOR 1
    AR  1 -0.40604575E+00 0.41885445E-01   -9.69 -0.47505616E+00 -0.33703534E+00
    AR  2 -0.16414479E+00 0.41836922E-01   -3.92 -0.23307525E+00 -0.95214321E-01
    MU ## -0.52091780E-02 0.11972592E-01   -0.44 -0.24935207E-01  0.14516851E-01
  
  NUMBER OF OBSERVATIONS                  (N)   559
  RESIDUAL SUM OF SQUARES                  109.2642
      (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION             0.4437031
  BASED ON DEGREES OF FREEDOM  559 -   1 -   3 =  555
  APPROXIMATE CONDITION NUMBER             3.498456

Interpretation
of Output

The first section of the output identifies the model and shows the starting values for the fit. This output
is primarily useful for verifying that the model and starting values were correctly entered.

The section labeled "ESTIMATES FROM LEAST SQUARES FIT" gives the parameter estimates,
standard errors from the estimates, and 95% confidence limits for the parameters. A confidence
interval that contains zero indicates that the parameter is not statistically significant and could
probably be dropped from the model.

The model for the differenced data, Yt, is an AR(2) model:

with 0.44.

It is often more convenient to express the model in terms of the original data, Xt, rather than the
differenced data. From the definition of the difference, Yt = Xt - Xt-1, we can make the appropriate
substitutions into the above equation:

to arrive at the model in terms of the original series:

Dataplot
ARMA
Output for
the MA(1)
Model

Alternatively, based on the differenced data Dataplot generated the following estimation output for an
MA(1) model:

6.6.2.3. Model Estimation
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 #############################################################
 #  NONLINEAR LEAST SQUARES ESTIMATION FOR THE PARAMETERS OF #
 #  AN ARIMA MODEL USING BACKFORECASTS                       #
 #############################################################
  
  SUMMARY OF INITIAL CONDITIONS
  ------------------------------
  
     MODEL SPECIFICATION
  
        FACTOR          (P     D     Q)    S
             1           0     1     1     1
  
  
  
 DEFAULT SCALING USED FOR ALL PARAMETERS.
  
                                                           ##STEP SIZE FOR
                                          ######PARAMETER  ##APPROXIMATING
  #################PARAMETER DESCRIPTION  STARTING VALUES  #####DERIVATIVE
  INDEX  #########TYPE  ##ORDER  ##FIXED  ##########(PAR)  ##########(STP)
  
      1             MU      ###       NO   0.00000000E+00   0.20630657E-05
      2  MA (FACTOR 1)        1       NO   0.10000000E+00   0.34498203E-07
  
  NUMBER OF OBSERVATIONS                  (N)   559
  MAXIMUM NUMBER OF ITERATIONS ALLOWED                      (MIT)   500
  MAXIMUM NUMBER OF MODEL SUBROUTINE CALLS ALLOWED                 1000
  
  CONVERGENCE CRITERION FOR TEST BASED ON THE
     FORECASTED RELATIVE CHANGE IN RESIDUAL SUM OF SQUARES (STOPSS)  0.1000E-09
     MAXIMUM SCALED RELATIVE CHANGE IN THE PARAMETERS       (STOPP)  0.1489E-07
  
  MAXIMUM CHANGE ALLOWED IN THE PARAMETERS AT FIRST ITERATION (DELTA)   100.0
  RESIDUAL SUM OF SQUARES FOR INPUT PARAMETER VALUES                    120.0
       (BACKFORECASTS INCLUDED)
  RESIDUAL STANDARD DEVIATION FOR INPUT PARAMETER VALUES    (RSD)      0.4645
  BASED ON DEGREES OF FREEDOM       559 -   1 -   2 =  556
  
  NONDEFAULT VALUES....
  
  AFCTOL.... V(31) =  0.2225074-307
  
  
  
  ##### RESIDUAL SUM OF SQUARES CONVERGENCE #####
  
  
  
  
  
  ESTIMATES FROM LEAST SQUARES FIT (* FOR FIXED PARAMETER)
  ########################################################
  
                PARAMETER     STD DEV OF ###PAR/   ##################APPROXIMATE
                ESTIMATES  ####PARAMETER ####(SD    95 PERCENT CONFIDENCE LIMITS
  TYPE ORD    ###(OF PAR)  ####ESTIMATES ##(PAR)    #######LOWER     ######UPPER
  
  FACTOR 1
    MU ## -0.51160754E-02 0.11431230E-01   -0.45 -0.23950101E-01  0.13717950E-01
    MA  1  0.39275694E+00 0.39028474E-01   10.06  0.32845386E+00  0.45706001E+00
  
  NUMBER OF OBSERVATIONS                  (N)   559
  RESIDUAL SUM OF SQUARES                  109.6880
      (BACKFORECASTS INCLUDED)

6.6.2.3. Model Estimation
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  RESIDUAL STANDARD DEVIATION             0.4441628
  BASED ON DEGREES OF FREEDOM  559 -   1 -   2 =  556
  APPROXIMATE CONDITION NUMBER             3.414207

Interpretation
of the Output

The model for the differenced data, Yt, is an ARIMA(0,1,1) model:

with 0.44.

It is often more convenient to express the model in terms of the
original data, Xt, rather than the differenced data. Making the
appropriate substitutions into the above equation:

we arrive at the model in terms of the original series:

6.6.2.3. Model Estimation
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.4.Model Validation

Residuals After fitting the model, we should check whether the model is appropriate.

As with standard non-linear least squares fitting, the primary tool for model
diagnostic checking is residual analysis.

4-Plot of
Residuals from
ARIMA(2,1,0)
Model

The 4-plot is a convenient graphical technique for model validation in that it
tests the assumptions for the residuals on a single graph.

6.6.2.4. Model Validation
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Interpretation
of the 4-Plot

We can make the following conclusions based on the above 4-plot.

The run sequence plot shows that the residuals do not violate the
assumption of constant location and scale. It also shows that most of
the residuals are in the range (-1, 1).

1.  

The lag plot indicates that the residuals are not autocorrelated at lag 1.2.  

The histogram and normal probability plot indicate that the normal
distribution provides an adequate fit for this model.

3.  

Autocorrelation
Plot of
Residuals from
ARIMA(2,1,0)
Model

In addition, the autocorrelation plot of the residuals from the ARIMA(2,1,0)
model was generated.

Interpretation
of the
Autocorrelation
Plot

The autocorrelation plot shows that for the first 25 lags, all sample
autocorrelations expect those at lags 7 and 18 fall inside the 95% confidence
bounds indicating the residuals appear to be random.

6.6.2.4. Model Validation
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Ljung-Box Test
for
Randomness
for the
ARIMA(2,1,0)
Model

Instead of checking the autocorrelation of the residuals, portmanteau tests
such as the test proposed by Ljung and Box (1978) can be used. In this
example, the test of Ljung and Box indicates that the residuals are random at
the 95% confidence level and thus the model is appropriate. Dataplot
generated the following output for the Ljung-Box test.

               LJUNG-BOX TEST FOR RANDOMNESS
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      559
       LAG TESTED                  =       24
       LAG 1 AUTOCORRELATION       =  -0.1012441E-02
       LAG 2 AUTOCORRELATION       =   0.6160716E-02
       LAG 3 AUTOCORRELATION       =   0.5182213E-02
  
    LJUNG-BOX TEST STATISTIC       =    31.91066
  
 2. PERCENT POINTS OF THE REFERENCE CHI-SQUARE DISTRIBUTION
    (REJECT HYPOTHESIS OF RANDOMNESS IF TEST STATISTIC VALUE
    IS GREATER THAN PERCENT POINT VALUE)
    FOR LJUNG-BOX TEST STATISTIC
       0          % POINT    =          0.
       50         % POINT    =    23.33673
       75         % POINT    =    28.24115
       90         % POINT    =    33.19624
       95         % POINT    =    36.41503
       99         % POINT    =    42.97982
  
  
 3. CONCLUSION (AT THE 5% LEVEL):
    THE DATA ARE RANDOM.

4-Plot of
Residuals from
ARIMA(0,1,1)
Model

The 4-plot is a convenient graphical technique for model validation in that it
tests the assumptions for the residuals on a single graph.

6.6.2.4. Model Validation

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc624.htm (3 of 6) [7/1/2003 5:26:08 PM]

http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm


Interpretation
of the 4-Plot
from the
ARIMA(0,1,1)
Model

We can make the following conclusions based on the above 4-plot.

The run sequence plot shows that the residuals do not violate the
assumption of constant location and scale. It also shows that most of
the residuals are in the range (-1, 1).

1.  

The lag plot indicates that the residuals are not autocorrelated at lag 1.2.  

The histogram and normal probability plot indicate that the normal
distribution provides an adequate fit for this model.

3.  

This 4-plot of the residuals indicates that the fitted model is an adequate
model for these data.

Autocorrelation
Plot of
Residuals from
ARIMA(0,1,1)
Model

The autocorrelation plot of the residuals from ARIMA(0,1,1) was generated.

6.6.2.4. Model Validation
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Interpretation
of the
Autocorrelation
Plot

Similar to the result for the ARIMA(2,1,0) model, it shows that for the first
25 lags, all sample autocorrelations expect those at lags 7 and 18 fall inside
the 95% confidence bounds indicating the residuals appear to be random.

Ljung-Box Test
for
Randomness of
the Residuals
for the
ARIMA(0,1,1)
Model

The Ljung and Box test is also applied to the residuals from the
ARIMA(0,1,1) model. The test indicates that the residuals are random at the
99% confidence level, but not at the 95% level.

Dataplot generated the following output for the Ljung-Box test.

               LJUNG-BOX TEST FOR RANDOMNESS
  
 1. STATISTICS:
       NUMBER OF OBSERVATIONS      =      559
       LAG TESTED                  =       24
       LAG 1 AUTOCORRELATION       =  -0.1280136E-01
       LAG 2 AUTOCORRELATION       =  -0.3764571E-02
       LAG 3 AUTOCORRELATION       =   0.7015200E-01
  
    LJUNG-BOX TEST STATISTIC       =    38.76418
  
 2. PERCENT POINTS OF THE REFERENCE CHI-SQUARE DISTRIBUTION
    (REJECT HYPOTHESIS OF RANDOMNESS IF TEST STATISTIC VALUE
    IS GREATER THAN PERCENT POINT VALUE)
    FOR LJUNG-BOX TEST STATISTIC
       0          % POINT    =          0.
       50         % POINT    =    23.33673
       75         % POINT    =    28.24115
       90         % POINT    =    33.19624
       95         % POINT    =    36.41503

6.6.2.4. Model Validation
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       99         % POINT    =    42.97982
  
  
 3. CONCLUSION (AT THE 5% LEVEL):
    THE DATA ARE NOT RANDOM.

Summary Overall, the ARIMA(0,1,1) is an adequate model. However, the
ARIMA(2,1,0) is a little better than the ARIMA(0,1,1).

6.6.2.4. Model Validation
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6. Process or Product Monitoring and Control
6.6. Case Studies in Process Monitoring
6.6.2. Aerosol Particle Size

6.6.2.5.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot . It is required that you
have already downloaded and installed Dataplot and configured your
browser. to run Dataplot. Output from each analysis step below will be
displayed in one or more of the Dataplot windows. The four main
windows are the Output Window, the Graphics window, the Command
History window, and the data sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete before
clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Invoke Dataplot and read data.

   1. Read in the data.   1. You have read one column of numbers
     into Dataplot, variable Y.

2. Model identification plots

  1. Run sequence plot of Y.

  2. Autocorrelation plot of Y.

  3. Run sequence plot of the
     differenced data of Y.

 1. The run sequence plot shows that the
    data show strong and positive
    autocorrelation.

 2. The autocorrelation plot indicates
    significant autocorrelation 
    and that the data are not
    stationary.

 3. The run sequence plot shows that the
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  4. Autocorrelation plot of the
     differenced data of Y.

  5. Partial autocorrelation plot
     of the differenced data of Y.

    differenced data appear to be stationary
    and do not exhibit seasonality.

 4. The autocorrelation plot of the
    differenced data suggests an
    ARIMA(0,1,1) model may be
    appropriate.

 5. The partial autocorrelation plot
    suggests an ARIMA(2,1,0) model may
    be appropriate.

3. Estimate the model.

  1. ARIMA(2,1,0) fit of Y.

  2. ARIMA(0,1,1) fit of Y.

 1. The ARMA fit generates parameter
    estimates for the ARIMA(2,1,0)
    model.

 2. The ARMA fit generates parameter
    estimates for the ARIMA(0,1,1)
    model.

4. Model validation.

  1. Generate a 4-plot of the
     residuals from the ARIMA(2,1,0)
     model.

  2. Generate an autocorrelation plot
     of the residuals from the
     ARIMA(2,1,0) model.

  3. Perform a Ljung-Box test of
     randomness for the residuals from
     the ARIMA(2,1,0) model.

  4. Generate a 4-plot of the
     residuals from the ARIMA(0,1,1)
     model.

 1. The 4-plot shows that the
    assumptions for the residuals
    are satisfied.

 2. The autocorrelation plot of the
    residuals indicates that the
    residuals are random.

 3. The Ljung-Box test indicates
    that the residuals are
    random.

 4. The 4-plot shows that the
    assumptions for the residuals
    are satisfied.
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  5. Generate an autocorrelation plot
     of the residuals from the
     ARIMA(0,1,1) model.

  6. Perform a Ljung-Box test of
     randomness for the residuals from
     the ARIMA(0,1,1) model.

 5. The autocorrelation plot of the
    residuals indicates that the
    residuals are random.

 6. The Ljung-Box test indicates
    that the residuals are not
    random at the 95% level, but
    are random at the 99% level.

6.6.2.5. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc625.htm (3 of 3) [7/1/2003 5:26:08 PM]

http://www.itl.nist.gov/div898/handbook/pmc/section6/negiz4/dpmacros/resauto2.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/negiz4/dpmacros/resauto2.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/negiz4/dpmacros/resauto2.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/negiz4/dpmacros/lujan2.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/negiz4/dpmacros/lujan2.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/negiz4/dpmacros/lujan2.dp
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


6. Process or Product Monitoring and Control

6.7.References

Selected References

Time Series Analysis

Abraham, B. and Ledolter, J. (1983). Statistical Methods for Forecasting, Wiley, New
York, NY.

Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994). Time Series Analysis,
Forecasting and Control, 3rd ed. Prentice Hall, Englewood Clifs, NJ.

Box, G. E. P. and McGregor, J. F. (1974). "The Analysis of Closed-Loop Dynamic
Stochastic Systems", Technometrics, Vol. 16-3.

Brockwell, Peter J. and Davis, Richard A. (1987). Time Series: Theory and Methods,
Springer-Verlang.

Brockwell, Peter J. and Davis, Richard A. (2002). Introduction to Time Series and
Forecasting, 2nd. ed., Springer-Verlang.

Chatfield, C. (1996). The Analysis of Time Series, 5th ed., Chapman & Hall, New York,
NY.

DeLurgio, S. A. (1998). Forecasting Principles and Applications, Irwin McGraw-Hill,
Boston, MA.

Ljung, G. and Box, G. (1978). "On a Measure of Lack of Fit in Time Series Models",
Biometrika, 67, 297-303.

Nelson, C. R. (1973). Applied Time Series Analysis for Managerial Forecasting,
Holden-Day, Boca-Raton, FL.

Makradakis, S., Wheelwright, S. C. and McGhee, V. E. (1983). Forecasting: Methods
and Applications, 2nd ed., Wiley, New York, NY.

Statistical Process and Quality Control

6.7. References

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm (1 of 3) [7/1/2003 5:26:08 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/


Army Chemical Corps (1953). Master Sampling Plans for Single, Duplicate, Double and
Multiple Sampling, Manual No. 2.

Bissell, A. F. (1990). "How Reliable is Your Capability Index?", Applied Statistics, 39,
331-340.

Champ, C.W., and Woodall, W.H. (1987). "Exact Results for Shewhart Control Charts
with Supplementary Runs Rules", Technometrics, 29, 393-399.

Duncan, A. J. (1986). Quality Control and Industrial Statistics, 5th ed., Irwin,
Homewood, IL.

Hotelling, H. (1947). Multivariate Quality Control. In C. Eisenhart, M. W. Hastay, and
W. A. Wallis, eds. Techniques of Statistical Analysis. New York: McGraw-Hill.

Juran, J. M. (1997). "Early SQC: A Historical Supplement", Quality Progress, 30(9)
73-81.

Montgomery, D. C. (2000). Introduction to Statistical Quality Control, 4th ed., Wiley,
New York, NY.

Kotz, S. and Johnson, N. L. (1992). Process Capability Indices, Chapman & Hall,
London.

Lowry, C. A., Woodall, W. H., Champ, C. W., and Rigdon, S. E. (1992). "A Multivariate
Exponentially Weighted Moving Average Chart", Technometrics, 34, 46-53.

Lucas, J. M. and Saccucci, M. S. (1990). "Exponentially weighted moving average
control schemes: Properties and enhancements", Technometrics 32, 1-29.

Ott, E. R. and Schilling, E. G. (1990). Process Quality Control, 2nd ed., McGraw-Hill,
New York, NY.

Quesenberry, C. P. (1993). "The effect of sample size on estimated limits for  and X
control charts", Journal of Quality Technology, 25(4) 237-247.

Ryan, T.P. (2000). Statistical Methods for Quality Improvement, 2nd ed., Wiley, New
York, NY.

Ryan, T. P. and Schwertman, N. C. (1997). "Optimal limits for attributes control charts",
Journal of Quality Technology, 29 (1), 86-98.

Schilling, E. G. (1982). Acceptance Sampling in Quality Control, Marcel Dekker, New
York, NY.

Tracy, N. D., Young, J. C. and Mason, R. L. (1992). "Multivariate Control Charts for
Individual Observations", Journal of Quality Technology, 24(2), 88-95.

Woodall, W. H. (1997). "Control Charting Based on Attribute Data: Bibliography and
Review", Journal of Quality Technology, 29, 172-183.

6.7. References

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm (2 of 3) [7/1/2003 5:26:08 PM]



Woodall, W. H., and Adams, B. M. (1993); "The Statistical Design of CUSUM Charts",
Quality Engineering, 5(4), 559-570.

Zhang, Stenback, and Wardrop (1990). "Interval Estimation of the Process Capability
Index", Communications in Statistics: Theory and Methods, 19(21), 4455-4470.

Statistical Analysis

Anderson, T. W. (1984). Introduction to Multivariate Statistical Analysis, 2nd ed., Wiley
New York, NY.

Johnson, R. A. and Wichern, D. W. (1998). Applied Multivariate Statistical Analysis,
Fourth Ed., Prentice Hall, Upper Saddle River, NJ.

6.7. References

http://www.itl.nist.gov/div898/handbook/pmc/section7/pmc7.htm (3 of 3) [7/1/2003 5:26:08 PM]

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


    

     

International SEMATECH,
headquartered in Austin, Texas, is a
global consortium of leading
semiconductor manufacturers that
represent about half the world’s
semiconductor production.
International SEMATECH engages in
cooperative, precompetitive efforts to
improve semiconductor
manufacturing technology through
the support of our members.
More...

Our members include:
AMD, Hewlett-Packard, Infineon
Technologies, IBM, Intel, Motorola,
Philips, TSMC, and Texas
Instruments.

Contact Us:
International SEMATECH
2706 Montopolis Drive
Austin, Texas 78741
(512) 356-3500

New
Perspectives
Accompany
Public Unveiling
of Industry
Economic
Model
International
SEMATECH’s
first public
release of the
Industry
Economic Model
(IEM) has
brought a wealth
of new
perspectives that
will help sharpen
and proliferate
the statistical
forecast tool,
according to its
main developer.
More...

Standardized
Defect-Detection
Systems Key to
Mask Cost
Control,
Workshop Told
With the cost of
advanced
semiconductor
photomask sets
approaching $1
million apiece,
the need for
sophisticated,

4th International Symposium on
157nm Lithography

Fab Managers Forum

e-Diagnostics/e-Manufacturing
Workshop

AEC/APC Symposium XV

2nd EUVL Symposium

Welcome to International SEMATECH

http://www.sematech.org/public/index.htm (1 of 2) [7/1/2003 5:26:12 PM]

http://www.sematech.org/public/contact/index.htm
http://www.sematech.org/public/sitemap/index.htm
http://www.sematech.org:8080/
http://www.sematech.org/public/help/index.htm
http://www.sematech.org/public/corporate/index.htm
http://www.sematech.org/public/careers/index.htm
http://www.sematech.org/public/news/index.htm
http://www.sematech.org/public/community/index.htm
http://www.sematech.org/public/publications/index.htm
http://www.sematech.org/public/resources/index.htm
http://www.sematech.org/public/wafersales/index.htm
http://www.sematech.org/public/corporate/index.htm
http://www.sematech.org/public/contact/index.htm
http://www.sematech.org/public/news/index.htm
https://www.sematech.org/
http://www.sematech.org/public/news/mfgproc/mfgproc.htm
http://public.itrs.net/
http://www.sematech.org/public/news/conferences/index.htm
http://www.sematech.org/public/news/conferences/157nm/index.htm
http://www.sematech.org/public/news/conferences/157nm/index.htm
http://events.semi.org/semiconwest/V40/conference/session.cvn?eID=289
http://www.sematech.org/public/resources/ediag/workshops/07182003/mtg.htm
http://www.sematech.org/public/resources/ediag/workshops/07182003/mtg.htm
http://www.sematech.org/public/news/conferences/aecapc/index.shtml
http://www.sematech.org/public/resources/litho/euvl/2003/index.htm


standardized,
commercially
available
software to snare
mask defects
early in the
production cycle
seems an idea
whose time has
come.
More...

Moore's Law
Endures But
Suggests Need
for New
Production
Strategies,
Analyst Says
Moore’s Law still
rules the
semiconductor
industry in key
areas of cost and
capability – and
that viability
might be to
blame for the
industry’s current
economic woes,
attendees at an
International
SEMATECH
symposium heard
recently.
More...

 

  

 
Copyright 2002, SEMATECH, Inc.
Please read these important Trademark and Legal Notices

Welcome to International SEMATECH

http://www.sematech.org/public/index.htm (2 of 2) [7/1/2003 5:26:12 PM]

http://www.sematech.org/public/news/releases/mask.htm
http://www.sematech.org/public/news/releases/ges3.htm
http://www.sematech.org/public/notices.htm


National Institute of Standards and Technology

http://www.nist.gov/ (3 of 3) [7/1/2003 5:26:13 PM]


	nist.gov
	6. Process or Product Monitoring and Control
	6.1. Introduction
	6.1.1. How did Statistical Quality Control Begin?
	6.1.2. What are Process Control Techniques?
	6.1.3. What is Process Control?
	6.1.4. What to do if the process is "Out of Control"?
	6.1.5. What to do if "In Control" but Unacceptable?
	6.1.6. What is Process Capability?
	6.2. Test Product for Acceptability: Lot Acceptance Sampling
	6.2.1. What is Acceptance Sampling?
	6.2.2. What kinds of Lot Acceptance Sampling Plans (LASPs) are there?
	6.2.3. How do you Choose a Single Sampling Plan?
	6.2.3.1. Choosing a Sampling Plan: MIL Standard 105D
	6.2.3.2. Choosing a Sampling Plan with a given OC Curve
	6.2.4. What is Double Sampling?
	6.2.5. What is Multiple Sampling?
	6.2.6. What is a Sequential Sampling Plan?
	6.2.7. What is Skip Lot Sampling?
	6.3. Univariate and Multivariate Control Charts
	6.3.1. What are Control Charts?
	6.3.2. What are Variables Control Charts?
	6.3.2.1. Shewhart X-bar and R and S Control Charts
	6.3.2.2. Individuals Control Charts
	6.3.2.3. Cusum Control Charts
	6.3.2.3.1. Cusum Average Run Length
	6.3.2.4. EWMA Control Charts
	6.3.3. What are Attributes Control Charts?
	6.3.3.1. Counts Control Charts
	6.3.3.2. Proportions Control Charts
	6.3.4. What are Multivariate Control Charts?
	6.3.4.1. Hotelling Control Charts
	6.3.4.2. Principal Components Control Charts
	6.3.4.3. Multivariate EWMA Charts
	6.4. Introduction to Time Series Analysis
	6.4.1. Definitions, Applications and Techniques
	6.4.2. What are Moving Average or Smoothing Techniques?
	6.4.2.1. Single Moving Average
	6.4.2.2. Centered Moving Average
	6.4.3. What is Exponential Smoothing?
	6.4.3.1. Single Exponential Smoothing
	6.4.3.2. Forecasting with Single Exponential Smoothing
	6.4.3.3. Double Exponential Smoothing
	6.4.3.4. Forecasting with Double Exponential Smoothing(LASP)
	6.4.3.5. Triple Exponential Smoothing
	6.4.3.6. Example of Triple Exponential Smoothing
	6.4.3.7. Exponential Smoothing Summary
	6.4.4. Univariate Time Series Models
	6.4.4.1. Sample Data Sets
	6.4.4.1.1. Data Set of Monthly CO2 Concentrations
	6.4.4.1.2. Data Set of Southern Oscillations
	6.4.4.2. Stationarity
	6.4.4.3. Seasonality
	6.4.4.3.1. Seasonal Subseries Plot
	6.4.4.4. Common Approaches to Univariate Time Series
	6.4.4.5. Box-Jenkins Models
	6.4.4.6. Box-Jenkins Model Identification
	6.4.4.6.1. Model Identification for Southern Oscillations Data
	6.4.4.6.2. Model Identification for the CO<sub>2</sub> Concentrations Data
	6.4.4.6.3. Partial Autocorrelation Plot
	6.4.4.7. Box-Jenkins Model Estimation
	6.4.4.8. Box-Jenkins Model Diagnostics
	6.4.4.9. Example of Univariate Box-Jenkins Analysis
	6.4.4.10. Box-Jenkins Analysis on Seasonal Data
	6.4.5. Multivariate Time Series Models
	6.4.5.1. Example of Multivariate Time Series Analysis
	6.5. Tutorials
	6.5.1. What do we mean by "Normal" data?
	6.5.2. What do we do when data are "Non-normal"?
	6.5.3. Elements of Matrix Algebra
	6.5.3.1. Numerical Examples
	6.5.3.2. Determinant and Eigenstructure
	6.5.4. Elements of Multivariate Analysis
	6.5.4.1. Mean Vector and Covariance Matrix
	6.5.4.2. The Multivariate Normal Distribution
	6.5.4.3. Hotelling's T squared
	6.5.4.3.1. T2 Chart for Subgroup Averages -- Phase I
	6.5.4.3.2. T2 Chart for Subgroup Averages -- Phase II
	6.5.4.3.3. Chart for Individual Observations -- Phase I
	6.5.4.3.4. Chart for Individual Observations -- Phase II
	6.5.4.3.5. Charts for Controlling Multivariate Variability
	6.5.4.3.6. Constructing Multivariate Charts
	6.5.5. Principal Components
	6.5.5.1. Properties of Principal Components
	6.5.5.2. Numerical Example
	6.6. Case Studies in Process Monitoring
	6.6.1. Lithography Process
	6.6.1.1. Background and Data
	6.6.1.2. Graphical Representation of the Data
	6.6.1.3. Subgroup Analysis
	6.6.1.4. Shewhart Control Chart
	6.6.1.5. Work This Example Yourself
	6.6.2. Aerosol Particle Size
	6.6.2.1. Background and Data
	6.6.2.2. Model Identification
	6.6.2.3. Model Estimation
	6.6.2.4. Model Validation
	6.6.2.5. Work This Example Yourself
	6.7. References


	PFINKJPBALJFPJKLDKJEPKELBDCLOKOM: 
	form1: 
	x: 
	f1: [Go To Section:]





