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Abstract 

 

The fingerprint datasets in some cases may exceed a million of samples. The underlying 

distribution functions of the similarity scores are unknown. Therefore, the needed size of a 

biometric evaluation test set is an important question in terms of both efficiency and accuracy. In 

this article, Chebyshev’s inequality, in combination with simple random sampling, is used to 

determine the sample size for biometric applications. The performance of fingerprint-image 

matcher is measured by both the area under a Receiver Operating Characteristic (ROC) curve 

and the True Accept Rate (TAR) at an operational False Accept Rate (FAR). The Chebyshev’s 

greater-than-95% intervals of these two criteria based on 500 Monte Carlo iterations are 

computed for different sample sizes as well as for both high- and low-quality fingerprint-image 

matchers. The stability of such Monte Carlo calculations with respect to the number of iterations 

is also presented. The choice of sample size is dependent on the qualities of fingerprint-image 

matchers as well as on which performance criterion is invoked. However, in general, for 6000 

match similarity scores, 50000 to 70000 scores randomly selected from 35994000 non-match 

similarity scores can ensure reasonable accuracy with greater-than-95% probability. 
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1. Introduction 

 

The fingerprint datasets in many cases may exceed a million of samples. Therefore, the size of 

biometric evaluation test sample is an important question in terms of both efficiency and 

accuracy. Since two years ago, the National Institute of Standards and Technology (NIST) has 

used large samples of fingerprint data from a wide range of government sources to evaluate the 

fingerprint-image matchers from different vendors* [1,2]. In the SDK tests [2], 6000 subjects’ 

fingerprint images are used as a probe, and 6000 second fingerprint images of the same subjects 

are used as a gallery. The probe is matched against the gallery. This creates 6000 match 

similarity scores from the same subjects’ different fingerprint-image comparisons, and 35994000 

non-match similarity scores from different subjects’ fingerprint-image comparisons. 

 

For such fingerprint data, there is usually no underlying parametric distribution function for 

match and non-match similarity scores, respectively. Thus, the nonparametric approach must be 

employed to analyze the data and evaluate matchers [3]. Nonetheless the fingerprint-image 

matcher is designed in such a way that the higher (lower) values of similarity scores tend to 

indicate that two fingerprint images are more (less) similar. Hence, the distribution of the match 

similarity scores is always centered at higher scores than the distribution of the non-match 

similarity scores. The True Accept Rate (TAR) is defined as the cumulative probability of the 

match similarity scores at a specified similarity score (i.e., threshold) from the highest match 

similarity score. And the False Accept Rate (FAR) is determined as the cumulative probability of 

the non-match similarity scores at a threshold from the highest non-match similarity score [3]. 

 

The fingerprint-image matcher can be evaluated by a Receiver Operating Characteristic (ROC) 

curve. An ROC curve is constructed based on TAR and FAR by moving the threshold, one 

similarity score at a time, from the highest similarity score to the lowest similarity score. Thus, 

any ROC curve has two fixed endpoints, i.e., starting from (0, 0) and ending at (1, 1), in the 

                                                 
* These tests were performed for the Department of Homeland Security in accordance with section 303 of the Border 
Security Act, codified at 8 U.S.C. 1732. Specific hardware and software products identified in this report were used 
in order to adequately support the development of technology to conduct the performance evaluations described in 
this document.  In no case does such identification imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best 
available for the purpose. 
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FAR-and-TAR coordinate system. Usually, it is above the straight line that connects these two 

points [3]. An ROC curve can be measured by using either the area under the ROC curve [3] or 

the TAR value at an operational FAR value [1,2]. In this article, both of these two criteria will be 

employed. The size of our fingerprint datasets is very large in comparison to the applications of 

ROC curves in other areas [4,5,6,7, and references therein]. However, the principles remain the 

same. 

 

How much fingerprint data should be selected from a large dataset to obtain both efficiency and 

accuracy in biometric evaluation? Different sizes of samples generate different ROC curves. 

Hence, the sample size can be determined by the accepted deviations of ROC curves for samples 

with reduced sizes from the ROC curve in the baseline, i.e., Δ (ROC curve), in terms of both or 

either of the above two criteria, at a specified probability (e.g., 95%). The baseline can be 

generated from the largest dataset that the available computer power can handle from the largest 

consolidated dataset. 

 

In the SDK tests [2], all performances of fingerprint-image matchers were evaluated based upon 

comparing the distribution of 6000 match similarity scores with the distribution of 35994000 

non-match similarity scores. If the current SDK evaluation is set to be a baseline, then with 

respect to 6000 match similarity scores, out of 35994000 non-match similarity scores, how many 

non-match similarity scores are needed to achieve the same performance? In other words, the 

issue of determining the sample size for SDK turns out to be: 1) reduce the number of non-match 

similarity scores, 2) take one trial, 3) the result must be close to the baseline result within an 

accepted tolerance at a specified probability. In this article, for simplicity, we restricted ourselves 

to the scenario in which the number of match similarity scores is fixed as 6000, but the number 

of non-match similarity scores can be varied. As a matter of fact, the same methodology can be 

applied to other scenarios. 

 

As specified above, one of our requirements is that the test be performed only once. To satisfy 

this objective, Chebyshev’s inequality is invoked. Using Chebyshev’s inequality, an interval in 

which a percentage of population resides can be determined, provided that the lower bound on 

the probability is specified. If an interval can contain the baseline result as well as, for example, 
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greater than 95% of the test results in a specified circumstance, then the one-trial test result will 

have greater-than-95% probability to fall in that interval and its deviation from the baseline result 

will not exceed the length of the interval. In other words, only matters the absolute error, not the 

relative error. This is consistent with the above statement of Δ (ROC curve). 

 

Further, as stated above, the number of match similarity scores is fixed as 6000. Thus, to ensure 

that the ROC curves from the test results are close to the ROC curve in the baseline in terms of 

the above criteria, the distributions of non-match similarity scores with reduced sizes must be 

“very similar” to the distribution of 35994000 non-match similarity scores in the baseline. To 

serve this purpose, the simple random sampling without replacement is applied. A simple 

random sample selected from 35994000 non-match similarity scores constitutes a new set of 

non-match similarity scores, and its distribution is used with the distribution of 6000 match 

similarity scores to generate an ROC curve. 

 

A Chebyshev’s greater-than-95% interval can be obtained using a Monte Carlo calculation. 

Different sizes of simple random samples are selected from 35994000 non-match similarity 

scores in the baseline. 500 Monte Carlo iterations are carried out for different sample sizes. 

Thereafter, the sample size of non-match similarity scores can be determined according to 

whether the Chebyshev’s interval is within an accepted tolerance. In addition, the stability of the 

Monte Carlo calculation with respect to the number of iterations is also dealt with in this article. 

It is quantified by the worst deviation of the test result from the baseline result within the 

Chebyshev’s interval. 

 

The methods, i.e., the Chebyshev’s inequality and Chebyshev’s greater-than-95% interval, the 

simple random sampling, and the stability metric, are presented in Section 2. The results of their 

applications to determining sample sizes of non-match similarity scores in biometric evaluation 

of high-quality and low-quality fingerprint-image matchers are provided in Section 3. Discussion 

of the sampling error of the sample mean, the scope of the application of this methodology, the 

matcher-quality dependence of the results, and other issues can be found in Section 4. Finally, 

the conclusion is stated in Section 5. 
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2. Methods 

 

Chebyshev’s inequality, in combination with simple random sampling, is used to determine the 

sample size for biometric applications. The stability of the calculation with respect to the number 

of Monte Carlo iterations will be addressed as well. 

 

2.1 Chebyshev’s Inequality [8] and Chebyshev’s Greater-Than-95% Interval 

 

If ξ is a random variable and its mean and variance exist, i.e., M (ξ) = μ < ∞ and V (ξ) = σ2 < ∞, 

then Chebyshev’s inequality 

2
1}|{|
k

kP ≤≥− σμξ  (1) 

is valid for any k > 1. A variation of Chebyshev’s inequality can be expressed as 

2
11}|{|
k

kP −><− σμξ  (2) 

It states that greater than (1 – 1 / k2) of population falls within k (k > 1) standard deviations, i.e., 

kσ, from the population mean μ. 

 

The proof of Chebyshev’s inequality is trivial. However, its concept is profound. First of all, it is 

important that Chebyshev’s inequality holds good without any assumption regarding the shape of 

the distribution of population as long as the mean and variance exist. This nonparametric 

characteristic is just the one that was encountered and dealt with for fingerprint data distributed 

with respect to similarity scores generated by fingerprint-image matchers [3]. Second, 

Chebyshev’s inequality provides a way to compute a quantitative relationship between an 

interval, which is greater than one standard deviation from the population mean, and the lower 

bound on the probability at which observation values of a random variable fall into that interval. 

In fact, there are many other implications of Chebyshev’s inequality, which are out of the scope 

of this article. 

 

On the other hand, Chebyshev’s inequality cannot offer the lower bound of the proportion of the 

population that lies within one standard deviation or less from the population mean. Furthermore, 
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for distributions that have a special shape, such as normal distribution, etc., the probability at 

which the population falls into an interval that is greater than one standard deviation from the 

population mean is much larger than the lower bound on the probability calculated using 

Chebyshev’s inequality for the same size of interval. In other words, for instance, for the normal 

distribution, 95% of the population is within 1.96σ  from the population mean. However, if the 

lower bound on the probability for any type of distribution is also set to be 95%, then the 

required interval provided by Chebyshev’s inequality is 4.48σ , that is about 2.29 times larger. 

 

Such an interval that is 4.48σ  from the population mean is defined as Chebyshev’s greater-than-

95% interval in this article. Chebyshev’s greater-than-95% interval is different from a 95% 

confidence interval for an estimate of the population mean, which is a consequence of the 

Central Limit Theorem. Chebyshev’s interval only describes the fact that the probability at which 

the population falls into an interval that is within 4.48σ  from the population mean is greater than 

95%, in spite of the shape of the population distribution. Therefore, no inferential statistics, such 

as hypothesis tests, etc., can be carried out based on Chebyshev’s interval. 

 

Chebyshev’s greater-than-95% interval serves the objective that the result of taking one trial 

must be close to the baseline result within a desired tolerance at a specified probability. Since 

greater than 95% of population lies in Chebyshev’s interval, assuming the interval contains the 

baseline result, the probability at which the one-trial test result falls in that interval and satisfies 

the requirement is greater than 95%. In addition, 95% for Chebyshev’s interval is the lower 

bound on the probability. Thus, it provides conservative estimates in its applications. 

 

In Chebyshev’s greater-than-95% interval, the population mean μ  and the population standard 

deviation σ  are used. The sample mean ∑
=

=
n

1  i

i n / xμ̂  and the sample standard deviation 

∑
=

−=
n

1  i

2
 i )1n/()μ̂ -x(σ̂ , where xi

’s are independent observation values of a random variable ξ 

and n is the number of observations, are unbiased point estimators of μ  and σ , respectively. 

However, according to the Law of Large Numbers, μ̂ and σ̂  converge to μ  and σ , respectively, 

as the number of observations increases [9]. While comparing the sample mean with the baseline 
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result, the sampling error of the sample mean, i.e., the absolute value of the difference between 

μ̂ and μ , might not be needed to be taken into account in our applications. This will be discussed 

in Section 4. 

 

4.48 σ̂  is not a small quantity in many applications, and it could happen that 4.48 σ̂  went beyond 

the allowed range of random variables. However, in our applications, thanks to the simple 

random sampling and the large size of fingerprint data, the sample standard deviation is very 

small (see Section 3.2). Therefore, 4.48 σ̂ , i.e., Chebyshev’s greater-than-95% interval, can be 

used as a criterion to determine the sample size in biometric evaluation of fingerprint data. 

 

2.2 Simple Random Sampling 

 

Both match and non-match similarity scores will be referred to as similarity scores in this 

section. In order to test how far the number of similarity scores can be reduced with respect to 

the baseline, a simple random sample of similarity scores is selected from the finite set of 

similarity scores in the baseline. The simple random sampling (SRS) applied in this article is 

carried out under three assumptions: 1) the population is finite, 2) each member in the population 

has the same probability of being selected, and 3) it is a sampling without replacement (WOR) 

for members in the population. 

 

The similarity scores can be represented as integers within different ranges, depending on 

different fingerprint-image matchers [3]. Let the integral score set be {s} = {smin, smin+1, …, 

smax}, consecutively from smin to smax, where smin and smax are the minimum and maximum 

similarity scores, respectively. Thus, the similarity score set is a set of integral scores, 

S = { si  |  ∀ i ∈ {1, …, N}} (3) 

where si ∈ {s} and N is the total number of similarity scores. The similarity scores si may not 

exhaust all members in the integral score set {s}. Moreover, some of the fingerprint-image 

comparisons may very well share the same integral value. Therefore, the similarity score set S 

can be partitioned into pairwise-disjoint subsets {Ss}. In each of the subsets, Ss, the members 

have the same integer s ∈ {s}. The similarity score set S is the union of all these subsets {Ss}. 
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The frequency f(s) of the similarity score s, which appears in the similarity score set S, is the size 

of the subset Ss. The corresponding probability p(s) equals the frequency f(s) divided by the total 

number of similarity scores, i.e., p(s) = f(s) / N. Thus, in the baseline, the discrete probability 

distribution function of the similarity scores, by including zero probability caused by some 

similarity scores that appear in the integral score set {s} but not in the similarity score set S, can 

be represented in terms of the probability p(s) as 

P = { p(s) | ∀ s ∈ {s} and ∑
=

max

min

s

sτ

 p(τ) = 1 } (4) 

 

According to the SRS as stated above, each member in the similarity score set S with size N in 

the baseline has the same probability of being selected. Hence, the probability of being chosen 

for such a member is 1/N. Furthermore, the SRS is assumed to be WOR for scores in the 

similarity score set S. Thus, for any similarity score s in the integral score set {s}, whose 

frequency of appearing in the similarity score set S is f(s), the probability of being selected is f(s) 

/ N. As a result, after sufficiently large amount of such selections, the discrete probability 

distribution function of the selected similarity scores will approach to the discrete probability 

distribution function of the similarity scores in the baseline as expressed in Equation (4). 

 

The size of the similarity scores is relatively large. Therefore, for a large amount of simple 

random samples, the variance of area under an ROC curve and even the variance of the TAR 

value at an operational FAR value, caused by the discrepancy between the distribution of the 

selected similarity scores and the distribution in the baseline, are quite small. It follows that 

4.48 σ̂ , i.e., Chebyshev’s greater-than-95% interval, can be applied as a criterion to determine the 

sample size and is suitable to serve our objectives. As for using the Kolmogorov-Smirnov Test to 

see the difference between such two distributions, it depends on how to deal with the ties of 

similarity scores in these two discrete probability distribution functions (see Section 3.1). 

 

2.3 The Stability Metric 

 

Chebyshev’s greater-than-95% interval can be obtained using Monte Carlo calculation, i.e., by 

running a number of Monte Carlo iterations. How many iterations of the Monte Carlo calculation 
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based upon SRS are needed to determine the sample size of similarity scores in the biometric 

evaluation of fingerprint data for a fingerprint-image matcher? In other words, how stable is the 

Monte Carlo calculation with respect to the number of iterations? The Monte Carlo stability is 

related to how much the sample size of similarity scores is, which fingerprint-image matcher is 

dealt with, and which criterion of evaluation of ROC curve is involved. 

 

The discrete probability distribution functions of the selected similarity scores for the amount of 

sample sizes discussed in this article do not deviate very much from the discrete probability 

distribution function in the baseline. Thus, Chebyshev’s intervals always contain the baseline 

result as observed in our tests (see Section 3.2). Thereafter, the maximum of two distances 

between the baseline result and two end points of Chebyshev’s greater-than-95% interval, 

respectively, can be chosen as a metric to measure the stability of our Monte Carlo calculation. 

 

Such a stability metric can be expressed as 

]b)σ̂48.4μ̂(),σ̂48.4μ̂(max[bM nnnnn −+−−=  (5) 

where Mn is the stability metric for n Monte Carlo iterations, b is the baseline result (either the 

area under an ROC curve or the TAR value at an operational FAR value in the basline), and nμ̂  

and nσ̂  are the unbiased point estimators of the population mean μ  and the population standard 

deviation σ  after n iterations, respectively. And the population is determined by the sample size 

of similarity scores and a chosen fingerprint-image matcher. This stability metric describes the 

worst deviation of the one-trial test result from the baseline result inside Chebyshev’s greater-

than-95% interval. That is, with greater-than-95% probability, a one-trial test result will not 

deviate from the baseline result by more than the stability metric in a specified circumstance. 

 

Outside Chebyshev’s greater-than-95% interval, some points can have deviations from the 

baseline result less than the stability metric, if the baseline result is not in the middle of 

Chebyshev’s interval. If these points happen to be one-trial test results, the real probability at 

which the one-trial test result deviates from the baseline result less than the stability metric will 

be greater than the exact probability at which the population lies inside the Chebyshev’s interval, 

which is subsequently greater than the lower bound on the probability computed using 

Chebyshev’s inequality. Therefore, the stability metric is a more conservative measurement than 
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Chebyshev’s interval. Once the variation of the stability metric over the number of iterations is 

within an accepted tolerance, the stability of the Monte Carlo calculation is achieved. 
 

3. Results 

 

Chebyshev’s greater-than-95% intervals vary depending upon 1) the quality of the fingerprint-

image matcher, 2) the criterion to evaluate ROC curves, 3) the sample size of SRS, and 4) the 

number of Monte Carlo iterations. Two fingerprint-image matchers were taken as examples, 

among which Matcher 1 was high-quality matcher and Matcher 2 was low-quality matcher. Both 

matchers were executed on the same fingerprint dataset. And two criteria were employed, 

namely, the area under an ROC curve (i.e., AUROC) as well as the TAR value at an operational 

FAR value that is set to be 0.001 (abbreviated as TVAFV in the following). 

 

The baseline result of a matcher was obtained using 6000 match similarity scores and 35994000 

non-match similarity scores, as performed in the current SDK tests. For the results presented 

here, the number of match similarity scores was fixed as 6000, however the number of non-

match similarity scores was reduced from 35994000. So the issue turns out to be how much low 

the number of non-match similarity scores can go to keep the one-trial test result as close as to 

the baseline result within accepted tolerance at a specified probability. In addition, to test the 

stability, different numbers of Monte Carlo iterations were carried out. 

 

3.1 The Discrete Probability Distribution Functions [3] 

 

It is always a good thing to take a look at the distribution function first. For Matcher 1, the 

discrete probability distribution functions of the 6000 match similarity scores, the 35994000 non-

match similarity scores, and the 60000 non-match similarity scores that were a simple random 

sample selected from 35994000 non-match similarity scores, are shown in Figure 1 A, B, and C, 

respectively. The integral similarity scores of Matcher 1 run from 0 through 2000. And for 

Matcher 2, the corresponding discrete probability distribution functions are presented in Figure 2 

A, B, and C, respectively. Its integral similarity scores run from 0 to 306. 
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Figure 1 The discrete probability distribution functions of the 6000 match similarity scores (A), the 35994000 
non-match similarity scores (B), and the 60000 non-match similarity scores selected simply randomly from 
35994000 non-match similarity scores (C), respectively. All distributions were generated by using the 
fingerprint-image Matcher 1. The integral similarity scores run from 0 to 2000. The widths of peaks at the 
score 2000 and zero are enlarged to show the characteristics of the distribution. 
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Figure 2 The discrete probability distribution functions of the 6000 match similarity scores (A), the 35994000 
non-match similarity scores (B), and the 60000 non-match similarity scores selected simply randomly from 
35994000 non-match similarity scores (C), respectively. All distributions were generated by using the 
fingerprint-image Matcher 2. The integral similarity scores run from 0 to 306. 
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For the discrete probability distribution function of 6000 match similarity scores, Matcher 1 has 

a sharp peak at the highest similarity score as depicted in Figure 1A. However, Matcher 2 does 

not have such kind of peak as shown in Figure 2A. To show the contrast, the probability is 

depicted in logarithmic scale in these two figures. For the distribution function of 35994000 non-

match similarity scores, Matcher 1 and 2 are completely different as presented in Figure 1B and 

2B, respectively. All these demonstrate that distributions of similarity scores vary very much 

from matcher to matcher and in many cases there is no parametric model to fit [3]. 

 

To explore the relationship between the distribution of simple random samples of non-match 

similarity scores and the distribution of 35994000 non-match similarity scores in the baseline, 

the discrete probability distribution functions of 60000 non-match similarity scores of simple 

random samples were examined for Matcher 1 and 2, as shown in Figure 1C and 2C, 

respectively. By using Kolmogorov-Smirnov Test, if a tie of non-match similarity scores in a 

discrete distribution was treated as separated individual scores that shared the same value while 

comparing two cumulative distribution functions [10], it was found that the two-tailed p-values 

of two distribution functions (i.e., 35994000 against 60000 non-match similarity scores) for 

Matcher 1 and 2, respectively, were much less than 1%. This indicates that these two 

distributions are likely to be different. 

 

However, if a tie of non-match similarity scores was dealt with as a single bar at the shared value 

of these scores, then the two-tailed p-values of the Kolmogorov-Smirnov Test were much larger 

than 5%. In this sense, these two distributions are unlikely to be different. This is why it is hard 

to see the difference between these two distribution functions visually. Indeed, such a treatment 

of ties matches the way of formation of ROC curve, which is generated by moving the threshold, 

one similarity score at a time, from the highest similarity score to the lowest, for two 

distributions of match and non-match similarity scores [3]. Therefore, the SRS has little impact 

on ROC curves, even when the sample size of non-match similarity scores is as small as 60000. 

In other words, the variances of AUROC and TVAFV, caused by using SRS, i.e., by the 

discrepancy between the distribution of the selected similarity scores and the distribution in the 

baseline, are so small that Chebyshev’s greater-than-95% interval can be invoked. 
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3.2 Chebyshev’s Greater-Than-95% Interval 

 

The results of fingerprint-image Matcher 1 and 2 are presented. The quality of Matcher 1 is 

higher than that of Matcher 2. Two criteria, AUROC and TVAFV, are used to evaluate the 

qualities of matchers. AUROC has a standard error associated with [3], but TVAFV does not. To 

be consistent between these two criteria as well as for simplicity, the standard error of AUROC 

is not used in this article. The values of AUROC and TVAFV of the baseline for Matcher 1 and 2 

are shown in Table 1. 

 

Matcher AUROC TVAFV 

1 0.997170 0.991167 

2 0.983862 0.892333 

                                                    Table 1 The baseline results of Matcher 1 and 2. 

 

Generally speaking, the smaller the sample size of 35994000 non-match similarity scores, the 

wider the Chebyshev’s greater-than-95% interval. The error bars, i.e., 4.48 σ̂ , are relatively small 

for the sample size greater than 100000, and relatively large for the sample size less than 10000. 

Therefore, results are presented with the sample sizes decreasing from 100000 non-match 

similarity scores down to 10000 by every 10000 for both Matcher 1 and 2. The Monte Carlo 

calculation was run for 500 iterations in each case. Chebyshev’s greater-than-95% interval is 

expressed in terms of sample mean, the error bar, the upper bound (sample mean plus error bar), 

and the lower bound (sample mean minus error bar). The results of AUROC and TVAFV for two 

matchers are shown, respectively, from Table 2 to Table 5. The trend of variations of 

Chebyshev’s greater-than-95% interval in each case, and the relationship between the intervals 

and the baseline results are accordingly depicted, respectively, from Figure 3 to Figure 6. 
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Table 2 Matcher 1’s Chebyshev’s greater-than-95% intervals in terms of sample mean, error bar, upper 
bound and lower bound of 500 Monte Carlo iterations for different sample sizes of non-match similarity 
scores using AUROC. 

 

 

Table 3 Matcher 1’s Chebyshev’s greater-than-95% intervals in terms of sample mean, error bar, upper 
bound and lower bound of 500 Monte Carlo iterations for different sample sizes of non-match similarity 
scores using TVAFV. 

 

 

Table 4 Matcher 2’s Chebyshev’s greater-than-95% intervals in terms of sample mean, error bar, upper 
bound and lower bound of 500 Monte Carlo iterations for different sample sizes of non-match similarity 
scores using AUROC. 

 

 

Table 5 Matcher 2’s Chebyshev’s greater-than-95% intervals in terms of sample mean, error bar, upper 
bound and lower bound of 500 Monte Carlo iterations for different sample sizes of non-match similarity 
scores using TVAFV. 

 

 

Sample Size 100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 

Mean 0.997171 0.997170 0.997171 0.997170 0.997171 0.997171 0.997170 0.997170 0.997171 0.997171 

Error Bar 0.000024 0.000025 0.000028 0.000030 0.000031 0.000033 0.000038 0.000042 0.000052 0.000070 

Upper Bound 0.997194 0.997195 0.997198 0.997200 0.997201 0.997204 0.997207 0.997212 0.997223 0.997241 

Lower Bound 0.997147 0.997146 0.997143 0.997140 0.997140 0.997137 0.997132 0.997129 0.997119 0.997101 

Sample Size 100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 

Mean 0.991168 0.991171 0.991176 0.991178 0.991172 0.991193 0.991196 0.991204 0.991224 0.991257 

Error Bar 0.000301 0.000325 0.000414 0.000434 0.000453 0.000609 0.000720 0.000898 0.001273 0.001778 

Upper Bound 0.991469 0.991496 0.991590 0.991612 0.991625 0.991802 0.991916 0.992102 0.992498 0.993035 

Lower Bound 0.990868 0.990846 0.990761 0.990744 0.990719 0.990584 0.990476 0.990305 0.989951 0.989478 

Sample Size 100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 

Mean 0.983857 0.983862 0.983862 0.983864 0.983863 0.983862 0.983871 0.983863 0.983857 0.983875 

Error Bar 0.000230 0.000233 0.000242 0.000255 0.000281 0.000317 0.000344 0.000401 0.000509 0.000716 

Upper Bound 0.984087 0.984095 0.984104 0.984119 0.984144 0.984179 0.984215 0.984263 0.984366 0.984592 

Lower Bound 0.983627 0.983630 0.983621 0.983608 0.983582 0.983545 0.983527 0.983462 0.983348 0.983159 

Sample Size 100000 90000 80000 70000 60000 50000 40000 30000 20000 10000 

Mean 0.890305 0.890031 0.890005 0.889935 0.889876 0.889819 0.889999 0.889649 0.889493 0.889071 

Error Bar 0.012728 0.013214 0.013112 0.013309 0.013486 0.014527 0.014990 0.016486 0.020722 0.030589 

Upper Bound 0.903033 0.903245 0.903117 0.903243 0.903362 0.904346 0.904988 0.906135 0.910215 0.919660 

Lower Bound 0.877578 0.876817 0.876894 0.876626 0.876390 0.875292 0.875009 0.873163 0.868771 0.858482 
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Figure 3 Matcher 1’s Chebyshev’s greater-than-95% intervals of 500 Monte Carlo iterations for different 
sample sizes of non-match similarity scores using AUROC, along with the baseline result of AUROC. 

 

 

 

Figure 4 Matcher 1’s Chebyshev’s greater-than-95% intervals of 500 Monte Carlo iterations for different 
sample sizes of non-match similarity scores using TVAFV, along with the baseline result of TVAFV. 
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Figure 5 Matcher 2’s Chebyshev’s greater-than-95% intervals of 500 Monte Carlo iterations for different 
sample sizes of non-match similarity scores using AUROC, along with the baseline result of AUROC. 

 

 

 

Figure 6 Matcher 2’s Chebyshev’s greater-than-95% intervals of 500 Monte Carlo iterations for different 
sample sizes of non-match similarity scores using TVAFV, along with the baseline result of TVAFV. 
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As illustrated in the tables, if using the criterion of AUROC, the error bars monotonically 

increase from 0.000024 to 0.000070 while the sizes of simple random samples selected from 

35994000 non-match similarity scores decrease from 100000 down to 10000 for high-quality 

Matcher 1, but from 0.000230 to 0.000716 for low-quality Matcher 2. If using the criterion of 

TVAFV, the error bars vary between 0.000301 and 0.001778 within the same range of sample 

sizes for Matcher 1, but between 0.012728 and 0.030589 for Matcher 2. As shown in the figures, 

all Chebyshev’s greater-than-95% intervals contain the corresponding baseline results, and no 

upper bound of Chebyshev’s greater-than-95% interval is exceeding one. 

 

The error bars as well as the deviations between the sample means and the corresponding 

baseline results all depend on the qualities of the fingerprint-image matchers and the criteria 

invoked for evaluation of ROC curve. For high-quality matcher such as Matcher 1 as opposed to 

low-quality matcher such as Matcher 2, the error bars are smaller and the sample means are 

closer to the corresponding baseline results. The same relationship exists between AUROC and 

TVAFV. 

 

The higher the matcher’s quality is, the more convergent the outcome is, therefore the less the 

variance will be. To reach the same error bar, the higher-quality matcher needs much smaller 

number of non-match similarity scores than the lower-quality matcher. As for comparing 

AUROC with TVAFV, the former is taking the whole ROC curve into account [3], but the latter 

is only picking a TAR value on an ROC curve at an operational FAR value. Hence, TVAFV is 

more sensitive to SRS than AUROC. 

 

The tolerances used to determine the sample size for high-quality matchers must be smaller than 

the ones for low-quality matchers, since the values of AUROC and TVAFV of high-quality 

matchers are very close to 1. Therefore, if invoking the criterion of AUROC, 10000 non-match 

similarity scores are enough for both Matcher 1 and 2, once the tolerances for Matcher 1 and 2 

are set to be 0.0001 and 0.001, respectively. If using the criterion of TVAFV, 30000 non-match 

similarity scores are enough for both Matcher 1 and 2, while the tolerances for Matcher 1 and 2 

are set to be 0.001 and 0.02, respectively. 
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The choice of sample size is dependent on the qualities of fingerprint-image matchers as well as 

on which criterion is invoked. To be more conservative, as well as to get balance among different 

qualities of matchers and between two different criteria of AUROC and TVAFV, in general, it 

seems that for 6000 match similarity scores, 50000 to 70000 non-match similarity scores 

randomly selected from 35994000 non-match similarity scores are enough to ensure that the 

error bars of Chebyshev’s intervals are within the accepted tolerance range with greater-than-

95% probability. 

 

3.3 The Stability of Monte Carlo Calculation 

 

The above results were derived from 500 iterations of Monte Carlo calculations. How stable are 

the results with respect to the number of Monte Carlo iterations? The smaller the sizes of simple 

random samples selected from 35994000 non-match similarity scores are, the larger deviation 

the distributions of selected non-match similarity scores have from the distribution in the 

baseline, therefore the less stable the outcome is. As a result, the case of 10000 non-match 

similarity scores is chosen to show the stability. 

 

The stability metrics from 100 to 500 Monte Carlo iterations for sample size of 10000 are 

presented in Table 6, for Matcher 1 and 2 as well as for two different criteria of AUROC and 

TVAFV, respectively. As expected, the stability metric of Matcher 1 is smaller than the one of 

Matcher 2 for a fixed criterion, and the stability metric of AUROC is smaller than the one of 

TVAFV for a specified matcher. This indicates again that the higher-quality matcher has less 

variance, and AUROC criterion is more convergent than TVAFV criterion. 

 

Monte Carlo Iterations 
Criterion Matcher 

100 200 300 400 500 

1 0.000083 0.000072 0.000068 0.000073 0.000071 
AUROC 

2 0.000689 0.000721 0.000669 0.000673 0.000730 

1 0.001686 0.001738 0.001764 0.001910 0.001868 
TVAFV 

2 0.035012 0.032547 0.035804 0.032913 0.033851 

             Table 6 The stability metrics of 10000 non-match similarity scores. 
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In Table 6, it shows that the outcome of Monte Carlo calculation for 10000 non-match similarity 

scores is very stable from 100 iterations up to 500 iterations with respect to specified matcher 

and criterion. The worst deviations of the one-trial test result from the baseline result with 

greater-than-95% probability vary by no-larger-than 0.000015, 0.000061, 0.000224, and 

0.003257 (the maximum minus the minimum in each row of Table 6) from 100 to 500 iterations 

for Matcher 1 and 2 and for two different criteria, respectively, even when the sample size is 

down to only 10000 non-match similarity scores. As a consequence, the results presented above 

out of 500 Monte Carlo iterations are reliable. 

 

4. Discussion 

 

The methodology of invoking Chebyshev’s greater-than-95% interval in combination with 

simple random sampling serves our objective well. The result of taking one trial with reduced 

number of non-match similarity scores must be close to the baseline result. In terms of evaluation 

of ROC curves, that is, Δ (ROC curve) must be within an accepted tolerance with greater-than-

95% probability. The half of Chebyshev’s greater-than-95% interval is 4.48 σ̂ . And the margin of 

error of 95% confidence interval estimate of the population mean is 1.96 n/σ̂ , where n is 500 in 

our case. The former is about 51 times larger than the latter. Therefore, the sampling error of the 

sample mean, namely, the absolute value of the difference between the unbiased point estimator 

of the population mean (i.e., the sample mean) and the population mean, is relatively negligible 

in each case, while using Chebyshev’s greater-than-95% interval. 

 

In this article, only the case is explored, in which the number of non-match similarity scores 

needs to be reduced. As a matter of fact, the same technique can be applied to other scenarios of 

the biometric evaluation of fingerprint data, as long as the standard deviation of the population is 

small and the objective is only taking one trial instead of taking average of many trials. For 

instance, what if we want to see the results while the numbers of both non-match similarity 

scores and match similarity scores are reduced? As a matter of fact, the requirement that the 

standard deviation of the population be small is the disadvantage of employing Chebyshev’s 

inequality. 



 21

 

As has been demonstrated, the outcome is very much dependent on the qualities of fingerprint-

image matchers. The higher-quality matchers are more convergent, thus have less variance than 

the lower-quality matchers. Hence, the higher-quality matchers need fewer number of non-match 

similarity scores than the lower-quality matchers in our application. Accordingly, the accepted 

tolerance is also dependent on the quality of matchers. Presented in this article are only two 

matchers, namely, Matcher 1 and 2. And Matcher 1’s quality is higher than Matcher 2’s. In our 

tests for this article, four fingerprint-image matchers were used, two of which were high-quality 

matchers, and the other two were low-quality matchers. They exhibit the similar behavior to that 

shown in this article. 

 

In biometric evaluation of fingerprint data, the sample sizes are also determined by other factors. 

For instance, if using the TVAFV criterion to evaluate ROC curve and setting the operational 

FAR value to be 0.001, for very high-quality fingerprint-image matchers, the TAR value could 

reach as high as 0.999. If there are only 6000 match similarity scores, then the number of failures 

related to Type I error is only about 6, which is very much less significant. For such quality of 

matchers, in order to increase the significance of test, the number of match similarity scores must 

increase accordingly. 

 

5. Conclusion 

 

In conclusion, in the current framework of SDK tests, with respect to 6000 match similarity 

scores, it seems that 35994000 non-match similarity scores are much more than what is needed. 

The number of non-match similarity scores can be dramatically reduced down to 50000 to 

70000, as long as that amount of non-match similarity scores is a simple random sample of 

35994000 non-match similarity scores. It holds good for different qualities of fingerprint-image 

matchers as well as for criteria of both AUROC and TVAFV. And it is valid with greater-than-

95% probability. 
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