
Intelligent System for Reading Handwriting on Forms

Michael D. Garris
National Institute of Standards and Technology

Gaithersburg, MD 20899
mgarris@nist.gov

Abstract
The National Institute of Standards and Technology
(NIST) has developed a form-based handprint recognition
system for reading information written on forms. This
public domain software test-bed may be obtained from
NIST free of charge on CD-ROM. The recognition system
is modular in design and integrates algorithms from
heterogeneous computational paradigms including
artificial intelligence, image processing, robust statistics,
and pattern recognition. At the core of the system are
some 15 libraries containing more than 725 subroutines
and 39,000 lines of program code that together define an
Application Program Interface (API). Algorithms are
provided for conducting generalized form registration,
intelligent form removal, adaptive character
segmentation, neural network-based classification, and
lexical postprocessing. To support these tasks, a host of
data structures and interdisciplinary technologies are
utilized, including affine image transformations, image
morphology, connected image components, principal
component feature analysis, and machine learning.
Errors within the functional components of the system are
complex and non-additive; therefore, system performance
must be analyzed within the context of an end-to-end
application. This paper provides a functional description
of the software system and its architecture, identifies the
key technologies utilized, and evaluates the system’s
performance on a large application.

1. Introduction

Form-based optical character recognition (OCR) has
the potential of solving many economically important
problems using state-of-the-art technology, but currently
there is no universal off-the-shelf solution available for
large-scale, centralized forms processing applications.
These applications are comprised of many functional
components that rely on heterogeneous computational
paradigms including artificial intelligence, image
processing, robust statistics, and pattern recognition. The
literature contains a plethora of algorithms and techniques
for accomplishing these various tasks [1]. Even so, one
cannot expect to be able to arbitrarily select techniques

available as off-the-shelf products, organize them into a
workflow, and proceed to universally solve applications.
The fact is, interactions between components are often
nonlinear and non-additive [1]. The economically useful
systems being deployed today are successful because they
are constructed from components that have been
customized to capitalize on all the constraints afforded by
a particular application. Therefore, these systems are
defined more by their intended application than by
available general purpose technology.

Due to these factors, there is no best algorithm for a
specific system component, and there is no best suite of
components to comprise a universal system. The question
at hand is “Which combination of algorithms performs
best for a particular application?” To analyze the impact
of alternative algorithms, the National Institute of
Standards and Technology (NIST) has developed its own
recognition technology in addition to various techniques
for assessing performance. This suite of software has
been integrated into a prototype (or test-bed) system. This
software test-bed is what comprises the NIST Form-Based
Handprint Recognition System [2].

The software is written entirely in C, and at the core of
the system are 15 libraries containing more than 725
subroutines and 39,000 lines of program code that
together define an Application Program Interface (API).
Algorithms are provided for conducting generalized form
registration, intelligent form removal, adaptive character
segmentation, neural network-based classification, and
lexical postprocessing. To support these tasks, a host of
data structures and interdisciplinary technologies are
utilized, including affine image transformations, image
morphology, connected image components, principal
component feature analysis, machine learning, and
dynamic string matching.

The test-bed has been developed to run on common
UNIX platforms, and it has been tested on computers
manufactured by Digital Equipment Corporation, Hewlett
Packard, IBM, Silicon Graphics Incorporated, and Sun
Microsystems.1 On the faster machines, forms are
processed 10 to 15 seconds a page.

1 Specific hardware and software products identified in this paper were
used in order to adequately support the development of the technology
described in this document. In no case does such identification imply

The software test-bed is in its second release and
contains two recognition systems (an updated version of
one distributed with the original release [3] and a
completely new system). Both systems are designed to
read handwritten responses on Handwriting Sample Forms
(HSF) like those distributed in NIST Special Database 19
(SD19) [4]. An example of one of these completed forms
is shown in Figure 1. The new system incorporates new
methods for form registration [5], form removal [6], text
line isolation in handprinted paragraphs [7], character
segmentation [8], and new pattern classification [9]. The
method of dictionary-based spelling correction [10] is the
only major algorithm that remains the same.

The original NIST system uses a Probabilistic Neural
Network (PNN) [11] for its classifier whereas the new
system utilizes a sophisticated Multi-Layer Perception
(MLP) [12] neural network-based classifier. The software
test-bed not only contains pre-trained classifiers, but it
provides extensive training data along with the machine
learning algorithms implemented in software for retraining
the classifiers. In fact, it is possible for recipients of this
test-bed to train the provided classifiers on other pattern
recognition applications.

Section 2 describes the heterogeneous algorithms used
in each of the functional components of the new NIST
recognition system, Section 3 compares the performance
between the original and new systems, and concluding
remarks are provided in Section 4.

2. Algorithmic overview of new system

Reference [1] describes the complexities of integrating
various technology components into a successful
handwriting OCR system. Very little can be found in the
literature published on the internal workings of complete
systems. Many of the technologies required for successful
OCR have been researched and results have been
published, but these components are typically tested in
isolation and their impact on overall recognition is not
measured. In addition, many of the algorithms
implemented in an end-to-end system are proprietary.
Companies disclose research results on pieces of their
recognition systems, but no current publications can be
found that disclose the details of an operational system.

recommendation or endorsement by the National Institute of Standards
and Technology, nor does it imply the equipment is necessarily the best
available for the purpose.

Figure 1. An example of a completed HSF form.

In contrast, NIST has developed a completely open
recognition software test-bed for which the components
are fully disclosed, and the source code is publicly
available. This software provides a baseline of
performance with which new technologies can be
compared and evaluated. This section describes the
application for which the new system, Hsfsys2, was
designed and provides a description of the algorithms
used in each of the system’s major components. An
algorithmic overview of the original recognition system,
Hsfsys1, can be found in Reference [3].

2.1 The Application

The HSF from in Figure 1 was designed to collect a
large sample of handwriting to support handprint
recognition research. A CD-ROM named SD19 is
publicly available, containing 3669 completed forms, each
filled in by a unique writer, and scanned binary at 11.8
pixel/mm (300 pixel/in). More than 250,000 segmented
and labeled characters extracted from SD19 are included
in the test-bed for training.

The NIST systems are designed to read all but the top
line of fields on the form. They process the 28 digit fields
and the randomly ordered lowercase and uppercase
alphabet fields along with the handprinted Preamble
paragraph at the bottom of the form.

2.2 System Components

Figure 2 illustrates the organization of the functional
components within Hsfsys2. Generally speaking, each
one of these components has many possible algorithmic
solutions. Therefore, the new system is designed in a
modular fashion so that different methods can be
evaluated and compared within the context of an end-to-
end system. This section provides a brief description of
the most recent techniques developed by NIST for each of
these tasks.

2.2.1 Batch Initialization. The new system is a non-
interactive batch processing system designed to process
one or more images of completed HSF forms with each
invocation. The first step loads all the precomputed items
required to process a particular type of form (in this case
HSF forms). These items include a list of the image files
to be processed along with files to support form
processing, character classification, and spelling
correction. There are four types of fields on the HSF
form: numeric, lowercase, uppercase, and the Preamble
paragraph. Each type of field requires a separate set of
classification-supporting files.

2.2.2 Load Form Image. The new system is strictly an
off-line recognition system. The time at which images are
scanned is independent from when recognition takes
place. For each form in the batch, the new system reads a
CCITT Group 4 [13] compressed binary raster image from
a file on disk, decompresses the image in software, and
passes the bitmap along with its attributes on to
subsequent components.

2.2.3 Register Form Image. Once loaded, the form must
be registered or aligned so that fields in the image
correspond with a prototypical template of fields (or
zones). The new system uses a generalized method of
form registration that automatically estimates the amount
of rotation and translation in the image without any
detailed knowledge of the form [5].

To measure rotational distortion, a technique similar to
the one invented by Postl is used [14]. This technique
traces parallel rays across the image, accumulating the
number of black pixels along each ray using a non-linear
function. A range of ray angles is sampled, and the angle
producing the maximum response is used to estimate the
rotational skew. The image is rotated based on this
estimate.

The next step detects translational distortion in the
image. The technique used capitalizes on the fact that
most forms contain a fixed configuration of vertical and
horizontal lines. Once the rotational skew is removed,
these lines correspond well with the raster grid of the

image. A run-based histogram is computed to detect the
top and bottom, left and right, dominant lines in the
image.

NIST Form-Based Recognition System Hsfsys2

Batch Initialization

Next Form in Batch

Load Form Image

Register Form Image

Next Field on Form

Remove Form Box

Isolate Line(s) of Handprint

Segment Text Line(s)

Normalize Characters

Extract Feature Vectors

Classify Characters

Spell-Correct Text Line(s)
(if dictionary available)

Store Results

Figure 2. Recognition system components.

To locate the top and bottom-most dominant lines, the
horizontal runs in the image are computed. The n-longest
runs (n=3) on each scanline of the image are accumulated
into a histogram bin. These bins are then analyzed for
relative maxima as described in Reference [5]. The
accumulation of the n-longest runs effectively suppresses
regions of the form containing handwriting and noise and
accentuates the lines on the form. The same analysis is
conducted on vertically-oriented runs to locate the left and
right-most dominant lines. Given the locations of these
lines, translation estimates in x and y are computed with
respect to the coordinates of prototypical lines, and the
image is translated accordingly. At this point, fields in the
image correspond to the coordinates of a prototypical
spatial template.

By using this general registration technique, new form
types can be trained automatically. A prototypical form is
scanned, its rotational distortion is automatically
measured and removed, and the positions of the detected
dominant lines are stored for future registrations. The
result of registering 500 HSF forms is shown in Figure 3.
The image displayed is the result of logically ORing
corresponding pixels across a set of 500 registered
images. Notice the tight correspondence of the boxes and
the printed instructions.

Figure 3. Composite image of 500 registered forms.

2.2.4 Remove Form Box. Upon registration, a spatial
template is used to extract a subimage of each field on the
form. Fields are extracted and processed one at a time.
Given a field subimage, black pixels corresponding to the
handwriting must be separated from the black pixels
corresponding to the form. This is a difficult task because
a black pixel can represent handwriting, the form, or an
overlap of both. As all the fields on the HSF form are
represented by boxes, the new system uses a general
algorithm that locates the box within the field subimage,
and intelligently removes the sides so as to preserve
overlapping characters [6].

Figure 4. Box removal results.

The sides of the box are detected using a run-based
technique that tracks the longest runs across the subimage.
By carefully analyzing the width of the sides of the box,
overlapping character stokes are identified using spatial
cues, and only pixels that are distinctly part of the form’s
box are removed. Figure 4 shows two fields before and
after form removal.

2.2.5 Isolate Line(s) of Handprint. The numeric and
alphabetic fields on an HSF form are written as single-line
responses. After the box is removed, the handprint
contained in a field is isolated (or lifted out) by extracting
all the connected components that overlap the interior
region of the detected box. A connected component is
defined as the largest set of black pixels where each pixel
is a direct neighbor of at least one other black pixel in the
component. (Single black pixels are also components.)

Line isolation is much more difficult for multiple-line
responses such as the handprinted paragraph at the bottom
of the HSF form. There are no guidelines provided within
this paragraph box, so the handwriting is relatively
unconstrained, and consequently, the baselines of the
writing often fluctuate significantly. This makes tracking
the lines of handprint difficult.

The new system uses a bottom-up approach to isolate
the lines of handprint within a paragraph. This technique
starts by decomposing a paragraph into a set of connected
components. Each component is represented by its
geometric center. To reconstruct the handprinted lines of
text, a nearest neighbor search is performed left-to-right
and top-to-bottom through the system of 2-dimensional
points [10]. The search is horizontally biased and links
sequences of points into piecewise-linear segments.
Simple statistics are used to sort components into
categories of too small, too tall, problematic, and normal.
Only those components determined to be normal are
linked together by the search.

Figure 5. Line-bands computed from a paragraph.
Given these piecewise-linear trajectories, the tops and

bottoms of linked components are interpolated and

smoothed forming line bands. An example of these bands
is shown in Figure 5. These bands form a spatial map,
and all the components in the image are sorted into their
respective lines in correct reading order according to their
overlap and/or proximity to these bands [7]. At this point,
the handwriting in the paragraph is isolated into individual
text lines.

2.2.6 Segment Text Line(s). Connected components are
used as first-order approximations to single and complete
characters. Connected components frequently represent
single characters and are computed very quickly. On the
other hand, their direct use as character segments is prone
to error. Errors occur when characters touch one another
and when characters are written with disconnected
strokes.

Building upon the utility of connected components, the
new system utilizes a method of handprint character
segmentation that uses a simple adaptive model of writing
style [8]. Using this model, fragmented characters are
reconstructed, multiple characters are split, and noise
components are identified and discarded. Visual features
are measured (the width of the pen stroke and the height
of the characters) and used by fuzzy rules, making the
method robust. Examples of segmentation results are
illustrated in Figure 6 and Figure 7. The segmentor
performs best when applied to single-line responses, and
then even better when the fields are numeric.

2.2.7 Normalize Characters. The recognition technique
used by the new system falls under the category of
feature-based pattern classification. The segmented
character images vary greatly in size, slant, and shape.
Image normalization is performed to deal with the size
and slant of writing, leaving the recognition process
primarily the task of differentiating characters by variation
in shape.

The segmented character images are size-normalized
by scaling the image either up or down so that the
character tightly fits within a 20×32 pixel region. The
stroke width is also normalized using simple morphology:
if the pixel content of the character image is too high, it is
eroded (strokes are thinned), and if too low, it is dilated
(strokes are widened).

Slant is removed by interpolating a line between the
top left-most black pixel in the scaled image and the
bottom left-most black pixel. The line (centered on the
image) is used as a horizontal shear function. The slant of
the character is removed as horizontal rows of pixels in
the image are increasingly shifted (left or right) outwards
from the center of the image. Upon normalization, each
character is centered in a 32×32 pixel image. Size and
slant normalization is discussed in detail in Reference [3].

Figure 6.Results of merging components.

Figure 7. Results of splitting components.

2.2.8 Extract Feature Vectors. At this point, characters
are represented by 1024 binary pixel values. Principal
component analysis using the Karhunen Loève (KL)

transform is applied to these binary pixel vectors in order
to reduce dimensionality, suppress noise, and produce
optimally compact features (in terms of variance) for
classification [15].

A training set of normalized character images is used
to compute a covariance matrix that is diagonalized using
standard linear algebra routines, producing eigenvalues
and corresponding eigenvectors. This computation is
relatively expensive, but is done once off-line, and the
top-n ranked eigenvectors are stored as basis functions
and used subsequently for feature extraction. Feature
vectors of length 128 are used in the new system, and each
coefficient in the vector is the dot product of a subsequent
eigenvector with the 1024 pixel vector of the character
being classified.

2.2.9 Classify Characters. Once segmented characters
are represented as feature vectors, a whole host of
different pattern classification techniques can be applied.
NIST has conducted extensive research on classification
methods that utilize machine learning, and most of these
have been various types of neural networks. In previous
work, the PNN was shown to provide better zero-reject
error performance on character classification problems
than Radial Basis Function (RBF) and MLP neural
network methods [16]. Later work demonstrated that
various combined neural networks could provide
performance equal to PNN and substantially better error-
reject performance. However, these systems were very
expensive to train and were much slower and less memory
efficient than MLP-based systems [17].

NIST has developed a robust training method that
produces MLP networks with performance equal to or
better than PNN for character recognition [9]. This is
achieved with a single three-layer network by integrating
fundamental changes in the network optimization strategy.
These changes are: 1) Sinusoidal neuron activation
functions are used which reduce the probability of
singular Jacobians; 2) Successive regularization is used to
constrain the volume of the weight space; 3) Boltzmann
pruning is used to constrain the dimension of the weight
space [18]. All three of these changes are made in the
inner loop of a conjugate gradient optimization iteration
[19] and are intended to simplify the training dynamics of
the optimization. On handprinted digit classification
problems, these modifications improve error-reject
performance by factors between two and four and reduce
network size by 40% to 60%.

Using eigenvectors loaded during batch initialization, a
normalized character image is transformed into a feature
vector. The feature vector is then presented to the MLP
network. The result is an assigned classification along
with a confidence value.

2.2.10 Spell-Correct Text Line(s). The only field on the
HSF form that has any linguistic information that can be
applied is the Preamble field. The Preamble is comprised
of 38 unique words which are used to form a field-specific
dictionary.

The dictionary-based processing conducted by the new
system is somewhat different from other correction
techniques [20][21]. Up to this point, segmented character
images have been extracted from the handprinted
paragraph, sorted into reading order line by line, and
classified. This results in one long contiguous character
stream for each line in the paragraph. The MLP weights
used to process the Preamble paragraph were trained to
map lowercase and uppercase instances of the same letter
into the same class, making the output of the classifier
case-invariant. There are also no interword gaps
identified by the system at this point. Figure 8 shows an
example of these raw classifications.

Raw Classifications

WEJTHEPEOPIEOPTHEUNITEASTATFSJLNORDERTO
AMOREPQRFKTUNIONJEBTAEIBHJUSTICEJINSURE
DOMDLCITRONGUIIJTYIPROVIDEFPRTHFCOMMQN
DEFENBELPROMOTETHEGENEMIWELNRELAND
SECURETHEBLCSSINPOFLIBBHYTOOURSELUES
ANDOURPOSTERLTYIDOORBINANDQDADLISH
THISCONETITUTIBNFORTHEUNIFEDSBTES
OFAMERICA

Self-Corrected Words

WE THE PEOPLE THE UNITED A STATES ORDER TO
A MORE UNION THE JUSTICE INSURE
DO TRANQUILITY PROVIDE FOR THE COMMON
DEFENSE PROMOTE THE GENERAL WELFARE AND
SECURE THE BLESSINGS OF LIBERTY TO OURSELVES
AND OUR POSTERITY DO FOR IN AND A
THIS CONSTITUTION FOR THE UNITED STATES
OF AMERICA

Figure 8. Word recognition from a paragraph image.

Words are parsed from each line of raw classifications
by applying the preloaded dictionary as described in
reference [10]. This process identifies words within the
character stream while simultaneously compensating for
errors due to wrong segmentations and classifications.
The limited size of the dictionary helps offset the burden
placed on this process.

Hypothesized words are constructed from sequences of
the classifier output and then matched to the dictionary.
When there is a sufficiently good match, the dictionary
word is output, the process resynchronizes and resumes.

2.2.11 Store Results. When processing the Preamble
paragraph, the system produces a sequence of spell-
corrected words as output. Results of spell-correcting the
paragraph image in Figure 8 are listed at the bottom of the

figure. Shorter words such as articles and prepositions are
frequently deleted and inserted, while the system does a
reasonable job of recognizing longer words. This type of
dictionary processing is better suited to word-spotting
than to full OCR transcription.

For the numeric and randomly ordered alphabet fields,
the new system outputs for each segmented character an
assigned class and its associated confidence as determined
by the MLP classifier.

3. Performance Evaluation and Comparisons

This section evaluates and compares the performances
between the updated version of the original system,
Hsfsys1, and the new system, Hsfsys2. Comprehensive
results on recognition accuracy and error versus reject
performance are presented.

3.1 Accuracy and Error Rates

In order to compile statistics on accuracy and error
rates, each system was run across the forms in SD19 and
recognition results were stored to file. Recognition
system classifications were stored to hypothesis files, and
their associated confidence values were stored to
confidence files. Once generated, these files were
processed using the NIST Scoring Package [22], and
performance statistics were compiled at the character,
word, and field levels.

Table 1 lists the digit recognition results of running the
PNN-based system, Hsfsys1, on the first 2,100 forms
(partitions hsf_0 to hsf_3) in SD19. The forms in the
remaining partitions differ enough that the method of form
registration used in Hsfsys1 fails. The top portion of the
table reports character-level statistics, and the bottom
reports field-level accuracies. Thirty three of the 2,100
forms were rejected due to form registration failures and
their characters are not included in the table. It was
determined that a majority of these failures occurred due
to writing outside the provided boxes with continued
responses or annotations.

The performance statistics in Table 1 can be compared
to those listed in Table 2. The second table reports the
digit recognition results from the new MLP-based system,
Hsfsys2. These two systems use significantly different
algorithms for more than just classification, and as can be
seen, Hsfsys2 performs significantly better than Hsfsys1.
In terms of digit accuracy, Hsfsys2 is 3.2% more accurate
at 96.3% and it recognizes 86% of the digit fields entirely

correctly (6% more than Hsfsys1). This difference in
accuracy is primarily attributed to the different
segmentation methods used in the systems, not to the
different classifiers. Studies have shown that at zero-
rejection, PNN and the new MLP classifier have similar
accuracy [9]. Looking at deletion errors, Hsfsys2 cuts
them by 80%, which confirms the improved performance
of the system’s statistically adaptive segmentor [8]. In
addition, Hsfsys2 is capable of registering every form in
SD19.

Equivalent tables for uppercase and lowercase
recognition are reported in Reference [2]. Hsfsys2
recognizes uppercase characters at nearly 90% (4.6%
higher than Hsfsys1). The difference in performance can
be primarily attributed to the segmentation methods used.
With Hsfsys2, insertion errors are reduced by 46% and
deletion errors by 58%.

Hsfsys2 correctly recognizes not quite 80% of the
lowercase characters in SD19. The new system conducts
intelligent line removal that preserves character stroke
data that overlaps with the form and extends beyond the
immediate limits of the field. An independent study [6]
showed that one can expect up to a 3% improvement in
lowercase accuracy when using this method of line
removal. The difference between Hsfsys1 and Hsfsys2 is
2.8%. Adaptive character segmentation is also
contributing, as insertion errors are reduced by 70%. This
demonstrates the segmentor’s ability to compose
characters from multiple connected components, as
unattached fragments contribute to insertion errors. On
the other hand, the number of deletion errors increases
with Hsfsys2. This leads one to conclude that the
adaptive segmentor may be over-aggressive in merging
components, and not aggressive enough when it comes to
splitting touching characters.

Reference [2] also contains tables reporting the results
of recognizing words across SD19’s Preamble fields.
Word-level statistics were computed by tokenizing each
word in the system output. The NIST Scoring Package
[22] was used to align the word tokens with the known
Preamble text, and statistics were accumulated. Much
effort was spent in improving the line isolation algorithm
used in Hsfsys2 [7]. Even so, overall word accuracy only
improved 2.3% (61.6% to 63.9%). Considerable work
remains in improving the segmentation of vertically and
horizontally touching characters, the detection of
punctuation marks, and dictionary-based spelling
correction.

Table 1. Hsfsys1 digit recognition.

Table 2. Hsfsys2 digit recognition.

Realize that results are reported with Hsfsys2 having
processed the entire set of forms in SD19. This is one of
the largest published experiments of its kind, and it is
reproducible by purchasing the SD19 database from
NIST. In all, sample handwriting from 3669 writers was
tested and a total of 109,200 words and 667,758
characters were recognized and scored.

As SD19 is our only handprint database, training
samples were extracted from specific writer partitions and
used to train the PNN and MLP character classifiers off-
line. In the case of digits, the writers in hsf_6 (61,094
characters) were used in the training set, and in the case of
upper and lowercase, writers in both hsf_4 and hsf_6
(totaling 24,420 uppercase characters and 24,205
lowercase characters) were used.

Comparing Hsfsys2’s results on hsf_6 to other
partitions, it is interesting to see that the inclusion of hsf_6
in the classifier training does have some influence,
however the influence is small. With digits, Hsfsys2 is
97.3% correct on hsf_6 whereas the results on hsf_3 are
almost as good at 97.2%, and the other partitions (with the
exception of hsf_4) range between 96% and 97%. The
writers in hsf_4 are from a different population and are
known to be statistically more difficult to recognize [23].

The influence of training is a bit more pronounced with
the results on upper and lowercase fields [2]. These small
differences (particularly for the digits) demonstrate that
the MLP character classifier is doing a reasonably good
job at generalizing on writers it hasn't seen during its off-
line training

3.2 Error versus Rejection Rate

The advantages of using a machine for OCR in many
ways complement the performance of humans [1].
Machines are very efficient in doing tasks that are
primarily repetitive and reflexive, whereas humans
quickly fatigue under these conditions. Humans, on the
other hand, are very adept at performing tasks requiring
higher-level reasoning, and as a result, provide more
robust but much slower solutions to complex problems.
Accounting for these differences, successful recognition
systems allow a machine to perform the bulk of the work,
and on an exception basis, humans can be used to resolve
ambiguities and potential errors. This is accomplished
through rejection mechanisms that automatically route
low-confidence machine decisions to humans for
verification.

The graph in Figure 9 plots error versus rejection rates
with error plotted on a logarithmic scale. The results
plotted were computed from the first 500 writers (partition
hsf_0) in SD19. Results are shown for Hsfsys1 and the
new system Hsfsys2, and they are broken out by digit,
upper, and lowercase recognition. In general, as the
number of rejected character classifications increases, the
error rate on the remaining accepted (or non-rejected)
classifications decreases, and accuracy improves. Also,
the impact of rejection on accuracy tapers off as more and
more characters are rejected.

In the figure, the bottom two curves (1&2) represent
the performance of the new and old systems on
recognizing characters in the numeric fields on the HSF
forms. With no rejection, Hsfsys2 has an error rate near
4%, and Hsfsys1 has an error rate over 7.5%. As the
number of rejected digit classifications is increased, the
error rate proceeds to drop, only Hsfsys2 falls at a
significantly faster rate than does Hsfsys1. The difference
in the slope of the two digit curves confirms the
robustness of the MLP classifier used in HSFYS2 over the
PNN classifier used in Hsfsys1. The digit error rate of
Hsfsys2 continues to drop to nearly 1.2% at 15%
rejection. One concludes from these results, that in terms
of recognizing numeric fields, the new NIST recognition
system is more than twice as good as the original system.

5.

6.
%
E
R
R
O
R

% REJECTED

1. Hsfsys2 digit
2. Hsfsys1 digit
3. Hsfsys2 upper
4. Hsfsys1 upper
5. Hsfsys2 lower
6. Hsfsys1 lower

1.

2.

3.

4.

Figure 9. Error versus rejection rates.

The differences between the two systems are less
dramatic with upper and lowercase recognition. The
middle two curves (3&4) in Figure 9 correspond to the
results of recognizing the uppercase alphabet fields on the
HSF forms. The Hsfsys2 curve does fall off slightly faster
than does Hsfsys1’s, but the distance between the curves is
not as large as that of the digit curves. With no rejection,
Hsfsys2 has an error rate of almost 13% and Hsfsys1 is
just over 19%.

The two lowercase curves (5&6) are even closer to
each other, and their distance only slightly increases
across the range of rejections plotted. This emphasizes
that lowercase recognition is still the most difficult for the
NIST systems. The minimal increase in separation
between these two curves can be attributed to a
combination of two factors. First, the decision surfaces
trained within the MLP classifier for lowercase are much
more complex than those of uppercase, and even more
than those of digits [9]. Second, the challenges remaining
in the system that are impacting accuracy lie primarily in
components other than the classifier. Otherwise, the
relative slopes in the upper and lowercase curves would
more closely resemble those of the digit classifications.

4. Conclusions

The interactions between recognition system
components are complex and difficult to model, therefore
it is not possible with conventional knowledge to measure
the performance of a component in isolation and to predict
a component’s impact on overall system performance.
The only meaningful way to compare alternative
components for use in an application is by integrating
each alternative into an end-to-end system and comparing
their impact on overall system performance. This has
been the focus of much of our research at NIST, as
effective performance assessment facilitates the
comparison of technical alternatives and more importantly
helps insure successful deployment of technology to
specific applications.

An overview of the NIST public domain Form-Based
Handprint Recognition System has been presented. From
the functional description provided, it can be seen that the
major components of the system rely heavily on the
integration of heterogeneous computational paradigms,
including artificial intelligence, image processing, robust
statistics, and pattern recognition. This paper has
documented how a complex recognition system can be
evaluated in order to access the performance of these
integrated technologies.

For those interested in a more detailed analysis of this
technology integration and its implementation, a CD-
ROM distribution of the software test-bed can be obtained
free of charge by sending a letter of request to the author.
Any portion of this distribution may be used without
restrictions because it was created with U.S. government
funding. This software test-bed was produced by NIST,
an agency of the U.S. government, and by statute is not
subject to copyright in the United States. Recipients of
this software assume all responsibilities associated with its
operation, modification, and maintenance.

To get more information about the Visual Image
Processing Group at NIST, access the group’s anonymous

FTP server, sequoyah.nist.gov, or Web page at
http://www.nist.gov/itl/div894/894.03.

5. References

[1] C. L. Wilson, J. Geist, M. D. Garris, and R. Chellappa,
"Design, Integration, and Evaluation of Form-Based Handprint
and OCR Systems," NIST Internal Report 5932, December
1996.

[2] M. D. Garris, J. L. Blue, G. T. Candela, P. J. Grother, S. A.
Janet, and C. L. Wilson, "NIST Form-Based Handprint
Recognition System (Release 2.0)," NIST Internal Report 5959
and CD-ROM, January 1997.

[3] M. D. Garris, J. L. Blue, G. T. Candela, D. L. Dimmick, J.
Geist, P. J. Grother, S. A. Janet, and C. L. Wilson, "NIST Form-
Based Handprint Recognition System," NIST Internal Report
5469 and CD-ROM, July 1994.

[4] P. J. Grother, "Handprinted Forms and Characters
Database, NIST Special Database 19," NIST Technical Report
and CD-ROM, March 1995.

[5] M. D. Garris and P. J. Grother, "Generalized Form
Registration Using Structure-Based Techniques," NIST Internal
Report 5726 and in Proceedings of the Fifth Annual Symposium
on Document Analysis and Information Retrieval, pp. 321-334,
UNLV, April 1996.

[6] M. D. Garris, "Method and Evaluation of Character Stroke
Preservation of Handprint Recognition," NIST Internal Report
5687, July 1995, and in Proceedings of Document Recognition
III, Vol. 2660, pp. 321-332, SPIE, San Jose, February 1996.

[7] M. D. Garris, "Teaching Computers to Read Handprinted
Paragraphs," NIST Internal Report 5894, September 1996.

[8] M. D. Garris, "Component-Based Handprint Segmentation
Using Adaptive Writing Style Model," NIST Internal Report
5843, June 1996.

[9] C. L. Wilson, J. L. Blue, O. M. Omidvar, "The Effect of
Training Dynamics on Neural Network Performance," NIST
Internal Report 5696, August 1995.

[10] M. D. Garris, "Unconstrained Handprint Recognition Using
a Limited Lexicon," NIST Internal Report 5310, December
1993, and in Proceedings of Document Recognition, Vol. 2181,
pp. 36-46, SPIE, San Jose, February 1994.

[11] D. F. Specht, "Probabilistic Neural Networks." Neural
Networks, Vol. 3(1), pp 109-119, 1990.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Parallel
Distributed Processing, Volume 1: Foundations, edited by D. E.
Rumelhart, J. L. McClelland, et. al., MIT Press, Cambridge, pp.
318-362, 1986.

[13] CCITT, "Facsimile Coding Schemes and Coding Control
Functions for Group 4 Facsimile Apparatus, Fascicle VII.3 -
Rec. T.6," 1984.

[14] W. Postl, "Method for Automatic Correction of Character
Skew in the Acquisition of a Text Original in the Form of

Digital Scan Results," United States Patent Number 4,723,297,
February 1988.

[15] P. J. Grother, "Karhunen Loève Feature Extraction for
Neural Handwritten Character Recognition," NIST Internal
Report 4824, April 1992, and in Proceedings of Applications of
Artificial Neural Networks III, Vol. 1709, pp. 155-166. SPIE,
Orlando, April 1992.

[16] J. L. Blue, G. T. Candela, P. J. Grother, R. Chellappa, and
C. L. Wilson, "Evaluation of Pattern Classifiers for Fingerprint
and OCR Applications," Pattern Recognition, Vol. 27, No. 4,
pp. 485-501, 1994.

[17] C. L. Wilson, P. J. Grother, and C. S. Barnes, "Binary
Decision Clustering for Neural Network Based Optical
Character Recognition," NIST Internal Report 5542, December
1994, and in Pattern Recognition, Vol. 29, No. 3, pp. 425-437,
1996.

[18] O. M. Omidvar and C. L. Wilson, "Information Content in
Neural Net Optimization," NIST Internal Report 4766, February
1992, and in Journal of Connection Science, 6:91-103, 1993.

[19] J. L. Blue and P. J. Grother, "Training Feed Forward
Networks Using Conjugate Gradients," NIST Internal Report
4776, February 1992, and in Conference on Character
Recognition and Digitizer Technologies, Vol. 1661, pp. 179-
190, SPIE, San Jose, February 1992.

[20] M. J. Ganzberger, R. Rovner, A. M. Gillies, D. J. Hepp,
and P. D. Gader, "Matching Database Records to Handwritten
Text," in Proceedings on Document Recognition, Vol. 2181, pp.
66-75, SPIE, San Jose, February 1994.

[21] G. L. Martin and J. A. Pittman, "Recognizing Hand-Printed
Letters and Digits," Neural Networks, Vol. 3, pp. 258-267,
1991.

[22] S. A. Janet, "NIST Scoring Package User's Guide, Release
2.0," NIST Technical Report and Software, to be published.

[23] P. J. Grother, "Cross Validation Comparison of NIST OCR
Databases," NIST Internal Report 5123, January 1993, and in
Proceedings of Character Recognition Technologies, Vol. 1906,
pp. 296-307, SPIE, San Jose, February 1993.

