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ABSTRACT

This paper describes a new rapid speaker adaptation al-
gorithm using a small amount of adaptation data. This
algorithm, termed adaptation by correlation (ABC), ex-
ploits the intrinsic correlation among speech units to up-
date the speech models. The algorithmupdates the means
of each Gaussian based on its correlation with means of
the Gaussians which are observed in the adaptation data;
the updating formula is derived from the theory of least
squares. Our experiments on the ARPA NAB-94 evalu-
ation (Eval-94) and the ARPA Hub4-96 (Hub4-96) tasks
indicate that ABC seems more stable than MLLR when
the amount of data for adaptation is very small (� 5 sec-
onds), and that ABC seems to enhance MLLR when they
are combined.

1. INTRODUCTION

The problem of speaker adaptation is to adjust the pa-
rameters of a speech recognizer according to a certain
amount of adaptation data. In recent years, considerable
amount of research e�ort has been invested in this area;
various techniques have been proposed, such as MAP [6],
MLLR [5] and CT (clustered transformation) [7].

In this paper, we are interested in the problem of rapid
speaker adaptation, the problem of adapting speech sys-
tems using a very limited amount of data, e.g. , � 10
seconds of speech. In such a situation, it is important
that the limited amount of information in the data is fully
exploited for the purpose of adaptation.

We assume that the basic speech recognition system
uses HMM's to model the speech production process, and
mixtures of continuous-density Gaussians to model the
output distributions of the HMM's. Based on the adapta-
tion data, counts can be obtained by running the forward-
backward algorithm; since the amount of adaptation data
is small, some Gaussians are observed, while most Gaus-
sians are not. The challenge of rapid speaker adaptation
is to determine how to adjust the unobserved Gaussians.

In the MLLR approach, Gaussians are usually tied
into classes. Each class contains some observed Gaussians,
based on which a rotation and a shift is computed for that

class; then every Gaussian in that class is transformed by
that rotation and that shift.

In our approach, we exploit the intrinsic correlations

among speech units to update those unobserved Gaus-
sians: for each unobserved Gaussian, a shift is computed
by linear regression on the shifts of the observed Gaus-
sians.

We comment that the correlations between speech
units has been used to construct tying structures for
speaker adaptation [8]. We have recently learned that our
approach is closely related to the quasi-Bayesian learning
scheme of correlated continuous density HMMS proposed
by Huo and Lee [4].

This paper goes as follows: section 2 explains correla-
tions among speech units; section 3 describes our formu-
lation; in section 4, we present experiments with the Wall
Street Journal task and 1996 Hub4 task.

2. CORRELATIONS AMONG SPEECH

UNITS

Certain speech units are intrinsically correlated, since
they are produced by similar positionings of the articu-
lators. This can be veri�ed by examing the correlations
among the cepstral values of speech units. In the IBM

speech recognition systems, there are 52 phones. Each
phone is decomposed into a sequence of 3 sub-phones
corresponding to the beginning, middle and end of the
phone. Thus the phone AA is replaced as a concatena-
tion of the models AA 1, AA 2 and AA 3. There are
thus 156 subphonetic units. Each subphonetic unit is fur-
ther decomposed into context-dependent allophones. For
our experiments, we used IBM systems which have 5471
allophones. Acoustic features are generated by perform-
ing Mel-cepstral analysis and linear discriminant analysis.
The Wall Street Journal corpus is used to compute the
correlations. The training set consists of M = 309 speak-
ers, including 284 short-term speakers and 25 long-term
speakers. For simplicity, we show here the correlations
among the subphonetic units. First, counts are obtained
for each speaker by running the forward-backward algo-
rithm on the training data. A single Gaussian is computed
for each subphonetic unit. For each acoustic dimension,
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Figure 1. Correlations among subphonetic units

subphonetic units correlation

AO 2 : AO 3 0.970

AE 2 : AE 3 0.964

N 2 : M 2 0.937

NG 2 : N 2 0.934

AY 2 : AE 2 0.932

EH 2 : AE 2 0.927

IX 2 : AX 2 0.914

Table 1. Correlated subphonetic units

the correlation between unit i and j is obtained in the
conventional way:
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is the Gaussian mean of unit i of speaker m.

Figure 1 plots the correlation matrix in acoustic di-
mension 1, which corresponds to the biggest eigen value
in the linear discriminant analysis; it shows the negative
correlation in gray scale, i.e. black corresponds to +1
and white correspond to �1. Table 1 lists some of the
top correlated units. Clearly we observe that the same
subphonetic units from the same phone are often highly
correlated, such as AO 2 and AO 3; similar phones, such
as N 2 and M 2, are also highly correlated.

3. ABC FORMULATION

We exploit the correlations among speech units for
speaker adaptation through linear regression. For each
dimension of the feature space, the algorithm goes as fol-
lows.

For simplicity of discussion, we assume each HMM
state l has only one Gaussian N(�l; �l); l = 1; : : : ; L. Let
(cl; �xl) be the counts by running the forward-backward
algorithm on the adaptation data (cl is the total count

of state l and �xl is the mean). The correlation structure
among the Gaussian means is modeled as

�L�1 � N(aL�1;SL�L): (1)

Denote o (observed) the subscripts of the Gaussians are
observed and m (missing) otherwise; the mean vector a
and the covariance matrix S are partitioned accordingly:

a =

�
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�
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�

Then from the theory of least squares [1],

E(�j(c; �x)) = a+ S(Soo + �o)
�1(�xo � ao): (2)
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The mean vector a in (1) can be considered as the mean
vector associated to a canonical speaker. It is intuitively
reasonable to use the mean vector of the speaker indepen-
dent system. That leads to:

��m = Smo(Soo + �o)
�1��o: (3)

Clearly the shifts on the missing Gaussians are computed
via linear regression with the shifts on the observed Gaus-
sians.

Equation (3) is a weighted least square scheme. Note
that �o is a diagonal matrix of the speaker independent
variances �2 scaled by the counts c; thus the shift on a
observed Gaussian receives more weight when the count
associated to that Gaussian is high.

The covariance matrix S among the means of HMM
states can be computed in similar fashion as in section 2.
However, in big speech systems, there are thousands of
HMM states; many speakers in the training corpus, such
as WSJ corpus, would have many states which are not
observed in the training data. To fully utilize the training
corpus, �rst, the variances Sii of �i can be computed from
all the training speakers who have observations on state
i; then the correlation rij can be computed from all the
training speakers who have observations on both state i

and j, and the covariance can then be obtained by

Sij = Rij �
p
SiiSjj :

It is necessary to repeat the above process for every di-
mension of the feature space, because di�erent dimensions
can have very di�erent correlation structures.

The ABC algorithm is summarized as follows:
� Estimate the covariances S from the WSJ corpus.
� Obtain counts by running forward-backward algo-
rithm on the adaptation data.



� For every dimension of the feature space:

{ For observed states, compute shifts.

{ For missing states, estimate shifts by ABC(3).

{ For each state, equally shift all Gaussians in the
mixture.

4. EXPERIMENTS

In this section, we present adaptation experiments on two
test sets; we compare ABC adaptation, in particular, with
MLLR adaptation. Unsupervised adaptation was used in
all cases.

4.1. ARPA NAB-94 Evaluation

The test data consists of about 15 sentences each, from 20
speakers; this is the Nov'94 evaluation data in the ARPA
Wall Street Journal task. The base system is a scaled
down version of the IBM system used in the Nov'94 evalu-
ation [2]; it had 5471 context-dependent states and� 17K
Gaussians; the o�cial 20K language model that was pro-
vided by NIST for the Nov'94 ARPA evaluation was used.

In this experiment, the base system was adapted using
only 1 sentence; this is to study the stability of adaptation
schemes when the amount of data is very small. For each
speaker, the base system was adapted using the �rst sen-
tence, then all sentences were decoded with the adapted
system; the decoding results are shown in Table 2. We
observe that overall MLLR increased the error rate by ab-
solute 1% while ABC reduced the error rate by absolute
1%; In particular, MLLR performed poorly for speaker
h1c4t402 and speaker h1c4t802, for which the amount of
adaptation is very small (3.9 seconds and 5.3 seconds);
ABC seems relatively more stable, and can sometimes re-
duce the errors, even when the amount of data for adap-
tation is very small.

4.2. ARPA Hub4-96 Evaluation

We applied ABC adaptation on the F0 condition (clean
and prepared speech) of the Hub4 1996 evaluation test
set. This test data consists of 102 sentences, from 16
speakers. The base system is the so-called conglomer-
ate model M96H4 described in [3]; it had 5471 context-
dependent states and � 160K Gaussians; a 65K language
model was used [3]. Auto adaptation was performed on
every test sentences. Table 3 shows the overall decoding
results. ABC performed slightly worse than MLLR, and
the combined scheme of ABC+MLLR gave the most error
reduction.

5. DISCUSSION

We discuss in this section the performance and computa-
tion of various adaptation schemes.

adaptation total

speaker data # base MLLR ABC

in seconds words

h1c4t002 9.1 457 122 94 91

h1c4t102 7.9 543 55 61 57

h1c4t202 11.2 404 55 44 43

h1c4t302 8.0 391 20 19 23

h1c4t402 3.9 334 45 133 41

h1c4t502 11.1 413 36 48 39

h1c4t602 4.9 382 132 135 116

h1c4t702 11.2 476 54 58 52

h1c4t802 5.3 320 41 85 44

h1c4t902 11.8 371 25 25 25

h1c4ta02 7.9 379 31 28 29

h1c4tb02 13.8 322 56 51 51

h1c4tc02 15.7 418 27 27 28

h1c4td02 15.2 519 183 161 176

h1c4te02 5.9 429 53 62 46

h1c4tg02 7.3 336 63 66 68

h1c4th02 9.6 509 42 45 42

h1c4ti02 20.3 454 76 70 68

h1c4tj02 10.6 342 50 50 47

h1c4tk02 9.3 390 43 34 41

total 8189 1209 1296 1127

wer 14.8% 15.8% 13.8%

Table 2. Adaptation on Eval-94 using the �rst sentence

Base MLLR ABC ABC+MLLR

# W.E. Rate 22.9% 21.8% 22.0% 21.6%

Table 3. Auto adaptation on Hub4-96



5.1. Performance

Overall, ABC adaptation seems e�ective in reducing the
decoding error rate, as shown in the above experiments.
Here we make three observations.

First, when the amount of adaptation data is very
small, ABC adaptation seems more stable than MLLR. In
the MLLR adaptation, since only a few Gaussians are ob-
served, all Gaussians were forced to share the same linear
transformation. In this case, it is likely that a bad trans-
formation could be obtained; such a transformation has
to be shared on all the Gaussians, and the adapted system
could perform badly. On the other hand, in ABC adapta-
tion, many Gaussians remain unchanged, since only those
Gaussians which are correlated with the observed Gaus-
sians are updated. Such adjustments are relatively stable,
and can often improve the performance, even though the
amount of adjustment is small.

Second, ABC adaptation seems to enhance MLLR.
The combined scheme of ABC+MLLR gives the most
error reduction in the Hub4-96 task. One possible ex-
planation is that ABC explicitly utilizes the correlations
among HMM states, which is probably not fully exploited
in MLLR adaptation.

Third, ABC adaptation along is worse than MLLR in
both experiments. The reason is that MLLR adaptation
uses the information across di�erent acoustic dimensions,
whereas our current implementation of ABC adaptation
does not. In MLLR adaptation, information across di�er-
ent acoustic dimensions is used to compute the rotations,
and each Gaussian is both rotated and shifted properly.
Conceptually, one can utilize correlations across di�erent
acoustic dimensions in ABC adaptation; however, due to
the limitation of computation and storage requirements,
di�erent dimensions are adapted independently and each
Gaussian is only shifted properly. In our future study,
we would like to investigate strategies of utilizing such
correlations across di�erent acoustic dimensions for ABC
adaptation.

5.2. Computation

At �rst glance, it seems very hard to implement ABC
adaptation. naively, one would like to pre-compute and
store the covariance matrix S for each acoustic dimension.
However, that is not realistic for big systems: the IBM
systems in the previous experiments has 5471 allophones
and uses 60 dimensional features; that would require 8GB
to store the 60 covariance matrices!

However, in rapid speaker adaptation, only small num-
ber of Gaussians are observed. Thus only a small part of
the covariance matrix S is actually used. Our strategy is
to compute the covariances by demand. The resulting im-
plementation of ABC adaptation is very e�cient; it was
as fast as MLLR in the previous experiments.

It is reported [7] that CT adaptation can outperform

MLLR; however it has a much higher computational com-
plexity. In our future study, we would like to compare
ABC with CT and to see if ABC can also enhance CT.
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