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ABSTRACT
We describe the developmentof the SRI systemevaluated in the 1996
DARPA continuous speech recognition (CSR) Hub4 partitioned eval-
uation (PE). The task for the Hub4 evaluation was to recognize speech
from broadcast television and radio shows. Recognizingsuch speech
by machines poses many challenges. First, the segments to be rec-
ognized could be very long. This introduces a problem in training
and recognition becauseof the consequentincreased system memory
requirement. A simple segmentation technique is used to break long
segments into shorter, more manageable lengths. The speech from
broadcast news sources exhibits a variety of difficult acoustic condi-
tions, such as spontaneous speech, band-limited speech, and speech
in the presence of noise, music, or background speakers. Such back-
ground conditions lead to significant degradation in performance.
We describe techniques, based on acoustic adaptation, that adapt
recognition models to the different acoustic background conditions,
so as to improve recognition performance. We also present a novel
algorithm that clusters the test data segments so that the resulting
clusters are homogeneous with respect to speakers. This is fol-
lowed by acoustic adaptation to the individual clusters, resulting in
a significant performance improvement. Finally, we briefly describe
our studies in language modeling for the Hub4 evaluation which is
detailed further in another paper in these proceedings.

1. Introduction
The test paradigm for the 1996 DARPA-sponsored Hub4 con-
tinuous speech recognition (CSR) evaluation was broadcast
television and radio speech. Speech from these sources is
natural, and exhibits a variety of qualities that, taken as a
whole, makes recognizing it by machine an interesting chal-
lenge. First, the segments to be recognized are sometimes
very long (on the order of a few minutes), making the train-
ing and recognition task harder because of increased memory
burdens on the system. Second, the speech exhibits a vari-
ety of acoustic background conditions, such as degraded or
music-corrupted speech, and different speaking styles, such as
planned or spontaneous. It is hoped that research directed to-
ward this task will result in robust speech recognition systems
that will perform well across a variety of acoustic conditions.

In this paper, we present the system developed at SRI for the
1996 Hub4 PE. In Section 2, we briefly describe the Hub4
partitioned evaluation (PE) task, and present the individual
components of the SRI system (see also Figure 1), which are
detailed in later sections. In Section 3, we present an algo-

rithm to automatically segment long sentences into nominally
10 second segments for further processing. This is necessary
in order to minimize the memory burden caused by very long
data segments. In Section 4, we describe the application of
our previously developed acoustic adaptation algorithms to
train recognition models that are specific to different acous-
tic focus conditions observed in the data. These condition-
specific models are then used to recognize test segments that
are classified as belonging to those acoustic conditions. In
Section 5, we present a novel clustering and adaptation al-
gorithm that is used to adapt the condition-specific models
to the test data. The idea is to cluster the test segments into
speaker-homogeneous clusters and then to adapt the recogni-
tion models to these clusters. These models are then used to
recognize the data in these clusters. In Section 7, we briefly
describe our language model (LM) techniques for this eval-
uation. Our language modeling work is presented in greater
detail in another paper in these proceedings [1]. We conclude
in Section 8 with a summary of our work.

2. A high-level description of the SRI Hub4 PE
system

For 1996, the Hub4 evaluation was divided into two individ-
ual problems. In the unpartitioned evaluation (UE), the test
data consisted of a set of television and radio shows in their
entirety. However, commercials and sports reports were not
included in the data to be recognized, as these were consid-
ered to be very different in type of language as compared to
the rest of the data. In the UE, it is necessary to automatically
excise the speech segments from the test data before recog-
nizing them. In the PE, each test show was partitioned into
segments of speech. Thus, pure music or noise segments were
removed by hand, and only speech segments remained. Each
segment contained speech from a single speaker. In addition,
the segments were homogeneous with respect to the acoustic
background condition or speech style. The segments were
classified into seven different acoustic focus conditions, F0,
F1, F2, F3, F4, F5, FX, as described in [2], and the labels
were provided for use in the evaluation.

The SRI Hub4 PE system used in the 1996 DARPA CSR
evaluations involved the following stages in processing the
recognition data:



1. The long segments in each of the focus conditions was
broken into nominally 10 second segments by using an
automatic segmentation algorithm (see Section 3). The
segments were then processed differently, depending on
the acoustic focus condition.

2. The front-end feature extraction was based on mel-
frequency cepstrum processing. The original speech data
was sampled at 16,000 samples per second. For the F2
(telephone) segments, the speech was bandlimited, and
downsampled to 8,000 samples per second. To extract
features, the speech was then hamming-windowed with
a 25.6 ms window, and the window was advanced every
10 ms. Each frame was represented by 12 mel-frequency
cepstrum coefficients, the log energy, and their first- and
second-order time derivatives (delta and delta-delta fea-
tures), for a resulting 39-dimensional feature vector.

3. For each focus condition, we generated word lattices for
each segment by using the lattice generation algorithm
described in [3]. We used condition-specific acoustic
models estimated with the training data for each focus
condition, using maximum-likelihood transformation-
based adaptation techniques [4, 5, 6]. The condition-
specific models were estimated by adapting seed models
that were trained using either the Wall Street Journal
(WSJ) SI-284 database, or the Switchboard and Macro-
phone databases (see Section 4). For this stage, we used
a 20,000-wordbigram LM trained on the Hub4 LM train-
ing data and the transcripts of the Hub4 acoustic training
data. The condition-adapted acoustic models and the bi-
gram LMs were used to generate recognition hypotheses
for each test segment with these lattices. These recogni-
tion hypotheses were later used to adapt the condition-
adapted models to the test conditions.

4. The test segments for each focus condition wereclustered
by using an agglomerative clustering algorithm [7]. The
condition-adapted models were then separately adapted
to each test cluster (see Section 5).

5. N-best lists were generated using the models adapted to
each test cluster. These lists were then rescored with
larger trigram and fourgram LMs [1] as described in
Section 6.

Figure 1 schematically describes the system for the F0 test
data. The data from other focus conditions were similarly
processed, except that the seed models used for adaptation
to the F2 data were trained on Switchboard and Macrophone
databases.
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Figure 1: Schematic of the SRI Hub4 PE system

3. Automatic Segmentation of Long
Segments

LDC transcribed about 35 hours of acoustic material collected
from different television and radio shows to serve as training
material for the evaluations. These segments, as well as the
segments to be recognized in the H4-PE evaluation, were an-
notated as being in one of the seven acoustic focus conditions.

The acoustic segments derived from the show episodes var-
ied in length. Many of the segments were quite long. Since
handling longer segments placed an increased memory re-
quirement on our system, we further segmented these long
segments into smaller segments, which were nominally 10
seconds in duration. This wasaccomplished by using a
gender-independent phonetically tied mixture (PTM) hidden
Markov model (HMM) system with low pruning thresholds
to run a continuous backtrace search on the long segments.
If all hypotheses pass through a grammar node at the same
time, then the continuous backtrace search would output the
hypothesis at that node and reset the backtrace memory. The
result of this step was a hypothesis along with the word-level
backtrace information giving word start and end times.

This backtrace was then processed by looking for silence or
pause regions that fall at nominally 10 second intervals. Such
silence or pause regions were marked as sentence bound-
aries. We then broke up the long segments at these sentence
boundaries to create nominally 10-second segments for fur-
ther processing.

During trainingwe used a slight variation of this procedure for
breaking up the segments. Since we have access to the correct
transcriptions for the training data, we used this procedure



but instead of running a continuous backtrace recognizer to
get the word-level backtrace information, we simply force-
aligned the correct transcription against the PTM models to
produce a word-level backtrace from which pause information
was extracted to break up the segments. These segments along
with their corresponding transcriptionswere used for training.
Since the original transcribed data contained some annotation
and transcription errors, we further verified the training data
segments by looking for obvious inconsistencies between the
acoustics and the transcripts. As a result of this procedure,
we eliminated about 5% of the data.

4. Adaptation during training
Since only 35 hours of transcribed training data was avail-
able for all the focus conditions, we decided that the best
strategy to train models for each condition would be to use
maximum-likelihood (ML) transformation-based adaptation
techniques [4,5,6] to adapt seed models to each condition. We
have previouslydeveloped algorithms for ML transformation-
based acousticadaptation [4,5,6]. Thegeneral idea is to trans-
form the test domain acoustic features or the trained HMM
parameters to reduce the mismatch between them. The param-
eters of the transformation are estimated by maximizing the
likelihood of adaptation data available from the test domain.
We have developed techniques to adapt both the HMM means
using a block-diagonal affine transformation [6] and the vari-
ances using a variance scaling transform [5, 6]. Other feature-
and model-space transformations have also been detailed in
our earlier work [4, 5, 6]. Full matrix affine transformations
of the HMM mean vector have been previously studied [8].
However, we found that the block-diagonal approach was
more robust. In this approach, a separate matrix affine trans-
form is used to transform the cepstrum, delta cepstrum, and
delta-delta cepstrum. Thus, a particular Gaussian mean vector
� is transformed according to

�
0

cep = Acep�cep+ bcep; (1)

�
0

∆cep = A∆cep�∆cep+ b∆cep; (2)

�
0

∆2cep = A∆2cep�∆2cep+ b∆2cep; (3)

where�
0

is the transformed mean vector,� is the original
mean vector,A is a transformation matrix, andb is a bias vec-
tor. The subscripts refer to the cepstrum, delta and delta-delta
cepstrum features. Since a separate transformation is used for
the cepstrum, delta cepstrum, and delta-delta cepstrum, this
is a block-diagonal transformation of the full feature vector.
The number of parameters that need to be estimated is much
less than in a full matrix transformation, and is hence more
robust. Since we use diagonal covariance matrices, the vari-
ance scaling transform scales each component of the variance
vector by a scale factor,

�2
0

= ��2; (4)

where�2
0

and�2 refer to a component of the transformed and
untransformed variance vector, respectively, and� is the scale
factor to be estimated.

As described in previous work [4, 5, 6], the parameters of
the transformations are estimated by maximizing the likeli-
hood of adaptation data from the new acoustic environment.
Separate transforms are used for different Gaussian clusters
as in [4], including a separate transform for the Gaussians
corresponding to the silence model. We have made use of the
transforms in Equations 1 through 3, and 4, for the Hub4 PE
evaluation system.

Condition-specificHMMs were trained by adapting seed mod-
els to the individual acoustic focus conditions by using the 35
hours of transcribed Hub4 training data provided by LDC.
For the condition-specific adapted models, we used only the
block-diagonal mean adaptation technique. The seed models
were gender-dependent and trained using Switchboard and
Macrophone data for the F2 focus condition, and using the
Wall Street Journal WSJ SI-284 database for all the other fo-
cus conditions. This choice was based on the results of an
initial recognition experiment using both sets of models for
all the focus conditions.

We used a portion of the 1996 H4 development test data to
run recognition experiments, with the lattices generated with
the condition-specific HMMs and the 20,000-word bigram
LM. This portion of the development data corresponded to
all segments that were originally longer than 10 seconds and
had to be broken up by the acoustic segmentation algorithm
described in Section 3.

Table 1 shows the word-error rates obtained for each of the
focus conditions by using the seed models and the condition-
adapted models. In the table, NT stands for the number of
transforms used. As can be seen, a 9.9% relative improvement
over the seed model was achieved with our adaptation tech-
niques. For further processing, we chose to use 11 transforms,
which gave slightly better performance than 3 transforms, as
shown by the table.

5. Test-cluster-based adaptation

Condition-specific models are estimated using adaptation al-
gorithms and the training data for each focus condition. How-
ever, there may still be a mismatch between these condition-
specific models and test data from the same acoustic condition.
Such mismatches are largely due to different speakers between
training and testing. In addition, there may be small differ-
ences in the training and test acoustical conditions, leading
to a mismatch. Since the main source of variability between
the training and test conditions is the different speakers, we
used an unsupervised bottom-up agglomerative clustering al-
gorithm to cluster acoustic segments that were similar to each



Condition Seed Models Condition-adapted models
NT = 3 NT = 11

F0 25.7 22.2 22.1
F1 46.2 41.0 41.1
F2 47.8 46.9 46.9
F3 49.4 44.9 43.7
F4 44.9 37.0 36.4
F5 37.2 35.7 34.5
FX 68.8 62.9 63.0

All 44.5 40.3 40.1

Table 1: Performance of condition-adapted models

other. Since acoustic segments of the same speaker are sim-
ilar, the resulting clusters are homogeneous with respect to
speakers.

Once the segments are clustered, the condition-specific mod-
els are separately adapted to each cluster by using the block-
diagonal mean transformation (Equation 1 through 3), fol-
lowed by the variance scaling transformation (Equation 4). In
this stage we used three separate transformations, including a
separate transformation for the silence Gaussians. The refer-
ence transcriptions for adaptation were derived by running a
one-pass Viterbi recognition search through the lattices with
the condition-specific models used to generate the lattices.
Once the models are adapted, it is possible to re-recognize
the acoustic segments for each cluster and then re-adapt the
models by using these new hypotheses. However, we did not
observe a significant improvement with multiple iterations of
this kind and hence we used only one iteration.

For clustering, the distance between two acoustic segments
X i = fxi;1; : : : ;xi;Ti

g andXj = fxj;1; : : : ;xj;Tj
g was

computed using a symmetric relative entropy distance,

D(i; j) =
1
Ti

TiX

t=1

log
p(xi;t j �i)

p(xi;t j �j)
+

1
Tj

TjX

t=1

log
p(xj;t j �j)

p(xj;t j �i)
;

(5)
whereΛi andΛj are the underlying statistical models ofXi

andXj . The distance between two clusters was then com-
puted as the maximum distance between segments in the two
clusters [9]. In our work, we used a Gaussian mixture model
(GMM) to model each test segment. This procedure was
previously described by us in [7], but applied to cluster the
training data speakers. In the work reported here, we used it
to cluster the test data segments.

Since a mixture model must be trained for each segment to
compute the relative entropy measure, and many of the seg-
ments were short in duration (some less than 1 second), we
varied the number of Gaussians in the model of each seg-
ment based on a heuristic function of the segment duration
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Figure 2: GMM sizes used to model the test segments

length. This prevented over-fitting of the model to the short
data lengths. Figure 2 shows a histogram of the number of
Gaussians used in the GMMs for each development segment
of the F0 condition. As can be seen, the number of Gaussians
varies from one to more than one-hundred.

A threshold on the minimum distance between any pair of
clusters defines a cut in the agglomerative cluster tree and
hence a set of test segment clusters. This threshold was em-
pirically determined. By examining the clusters on the 1996
H4 development set, we found that the clusters were indeed
quite homogeneous with respect to speakers.

Table 2 shows the improvement in performance obtained by
adapting the condition-specific models to the test data clus-
ters. The table shows the word-error rates with the condition-
specific models described in Section 4 and the models adapted
to the test conditions. As in Table 1, recognition was per-
formed using the word lattices and a 20,000-word bigram
LM. The condition-specific error rates in Tables 1 and 2 do
not match because we used the entire development test set
for the experiments reported in Table 2, whereas only the
segments longer than 10 seconds were used for the previous
experiment. We achieved a significant 9% error-rate improve-
ment by using test-cluster-based adaptation.

To evaluate the advantage of performing the unsupervised
speaker clustering, we also adapted the condition-specific
models to each test condition without doing any clustering.
Thus, in this case, all the data from any test condition was
used to adapt the models as opposed to only the data ineach
of the speaker clusters in the test data. Since using all the
test data allowed us to estimate a larger number of transfor-



Condition Models
Condition- Test-cluster-adapted

specific
Mean Mean and variance

F0 22.6 21.3 20.8
F1 41.2 38.8 38.8
F2 47.2 44.0 42.3
F3 45.6 42.5 42.4
F4 36.9 34.4 33.8
F5 36.3 28.3 28.1
FX 63.8 57.8 57.2

All 41.2 37.8 37.3

Table 2: Performance of test-condition-adapted models

mations, we used 11 transformations, including a separate
transformation for the silence Gaussians, as compared to 3
transformations in the case of adapting to the speaker clus-
ters. Table 3 shows the advantage of using the unsupervised
clustering method over simply adapting to the test conditions.
The second two columns show the word-error rate when the
condition-specific models were adapted to the test conditions,
using all the data in each acoustic focus condition (single clus-
ter). The last two columns are replicated from Table 2 and
show the performance after adaptation to the test data clusters
(multiple clusters). We can see that adapting to the individ-
ual test conditions gave a relative improvement of 3.4% as
compared to the condition-specific models, and adapting to
the test data clusters gave a further 6.0% improvement, re-
sulting in a total relative improvement of 9.2% compared to
the condition-specific models. It is clear that adapting to the
test data clusters gave a consistent improvement compared to
adapting to only the test conditions for all acoustic conditions.

Condition Adapt to test conditions
Single Cluster Multiple clusters

Mean Mean and Mean Mean and
variance variance

F0 22.4 22.7 21.3 20.8
F1 40.0 40.3 38.8 38.8
F2 46.9 46.2 44.0 42.3
F3 44.7 44.8 42.5 42.4
F4 35.0 34.5 34.4 33.8
F5 31.4 31.1 28.3 28.1
FX 62.2 62.2 57.8 57.2

All 39.9 39.8 37.8 37.4

Table 3: Effect of clustering

Vocabulary Word-error
Size (words) rate (%)

20,000 33.3
48,000 32.7

Table 4: Effect of vocabulary size

6. Rescoring of N-best lists
The test-cluster-adapted models were used to generate N-
best lists from the word lattices for all segments in a test
cluster. The 20,000-word bigram LMs were used to generate
the N-best lists. These lists were then rescored using the test-
cluster-based acoustic models, word-transition penalty, and a
larger trigram/fourgram interpolated LM, which is described
in Section 7. The different knowledge source scores were
combined using linear weighting, where the weights were
estimated with a grid search to optimize the error rate on the
development test data. We estimated three sets of weights for
the acoustic condition groups F0, F4, and F5; F1, F2, and F3;
and FX. These groups were chosen because the word-error
rates were similar within them.

The word-error rate with the test-cluster-adapted models and
bigram LMs was 37.0%. When the N-best lists were rescored
with the same acoustic models but with larger trigram and
fourgram interpolatedLMs [1], the error rate was 33.1%. This
was the best performance we achieved on our development
test set. Our error rate on the evaluation test data with this
system was 33.3%. In the interest of time, we had decided not
to use cross-word acoustic models and also to use a smaller
vocabulary than usual. Our 20,000-word vocabulary resulted
in a 2.1% out-of-vocabulary rate on the 1996 H4 development
test data. We subsequently ran experiments with a 48,000-
word vocabulary, which resulted in an out-of-vocabulary rate
of 0.9% on the development data. This system gave a 32.7%
word-error rate on the evaluation test set. This is summarized
in Table 4. Thus, the increase in the vocabulary size gave a
small improvement over the system we used for the evaluation.

7. Language models
The lattices used by our system were generated by a 20,000-
word vocabulary, bigram back-off [10] LM trained using the
1996 H4 LM training texts and the transcripts for the H4
acoustic training data provided by LDC and NIST. The vocab-
ulary for the LM was selected by choosing the most frequent
words from the H4 LM training texts and adding all words
that occurred at least twice in the acoustic training transcripts.
A separate LM was trained with the H4 LM texts and the
H4 acoustic training transcripts, and the conditional probabil-
ities were linearly interpolated. The interpolation weight was
roughly optimized to minimize the perplexity on the develop-
ment test data.



The N-best lists were rescored with a larger LM based on four
text sources: the Hub4 LM training texts, the Hub4 acoustic
training transcripts, the NABN 1995 training data, and the
Switchboard corpus training data. A fourgram interpolated
language model was trained using these different databases.

Our language modeling studies for this evaluation are de-
scribed in detail in another paper in these proceedings [1].
That paper also describes our studies of techniques to adapt the
LMs to the acoustic focus conditions (since speaking styles
could be correlated with these conditions), and to different
topics.

8. Summary and conclusions
We have described the SRI system for the 1996 DARPA Hub4
PE. It was found that ML transformation-based adaptation of
seed WSJ or Switchboard and Macrophone models to the
acoustic focus conditions using the 35 hours of transcribed
Hub4 data available from LDC provided a significant 9.9%
improvement in performance. We presented a novel algo-
rithm for adaptation during testing, which used an unsuper-
vised agglomerative clustering algorithm to cluster the test
segments, followed by ML transformation-based adaptation
of the condition-specific models to these clusters. A symmet-
ric relative entropy distance between test segments was used
for clustering. We described a robust method to estimate the
models for each test segment necessary for the computation
of the distance measure. It was shown that adapting to all the
test data in each focus condition gave a 3.4% decrease in error
rate as compared to the condition-specific models. However,
adapting to the individual clusters proved to be even more
important and gave a 9% improvement over the condition-
specific models. This paper focused mainly on the acoustic
modeling components of the system. Our language modeling
work is described in detail in another paper in these proceed-
ings [1].
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