AMIDA RT07s speaker diarization system

Matej Konečný and David van Leeuwen
Changes w.r.t. RT06s

- Project, name
 - EU AMI ended, EU AMIDA started
 - DA: Distant Access (not like MDM:)
- Personel
 - Marijn Huijbregts went from AMI to ICSI
 - Matej Konečný AMI/DA trainee from Brno with TNO
- Algorithm
 - Use MDM beamforming
 - signal enhancement
 - delay parameters
 - Cross Likelihood Ratio-based clustering (SID)
 - ‘no more tunable parameters’
 - Minimum duration Viterbi-decoder
- Tasks
 - No lecture room, no more SAD :(
 - Segmentation/clustering for STT, SASST
Overview

- Differences
- This overview
- Overview SPKR approach
- SAD experiments
- Overlap detection experiments
- Conclusions
AMIDA System design (Matej)

Data enhancement

Multiple microphone channels

Delay & Sum

Combined acoustic channel

Wiener filter

Feature extraction

Delay features

Acoustic features

Initialization

Speech Activity Detection

BIC segm. & clustering

Initial clustering

Viterbi & EM algorithm

MAP adaptation

CLR calculation

Merge clusters

Main stage

CLR > 0.0
RT07s system: mix of choices

- Speech activity detection
 - Wiener filter
 - Initial segmentation
 - Re-segmentation / clustering

- Speaker/cluster modeling
 - Segmentation
 - Gaussian Mixture Models, #Gaussians(size data)
 - Cluster criterion
 - UBM-GMM, Cross-Likelihood Ratio
System design: front end processing

- Delay and sum beamforming
 - Use Xavie’s BeamformIt 2.0
 - use only 32 ms window and 16 ms stepsize
 - different from 500 ms / 250 ms default
 - aligned with PLP feature extraction
 - Use Wiener filtering noise reduction
 - after beamforming
 - Qualcomm-ICSI-OGI toolkit
 - SAD from toolkit

- Use SAD trained on
 - 10 AMI meetings from RT05s development, SDM
 - not beamformed/filtered
System design: features and modeling

- 13 PLP features (no derivatives)
 - ICSI / Dan Ellis’ *rasta* tool
- \(N-1 \) delay parameters from delay&sum
 - \(N \) microphones in MDM
- Speaker/cluster modeled by Gaussian Mixture Model
 - 1 Gaussian for delay parameters
 - 1–64 Gaussians for PLP features
 - Cluster complexity ratio ~ 300
 - 4.8 sec speech / Gaussian
- Initialization of GMMs
 - doubling \(N_G \) until power of 2 below desired \(N_G \)
 - Iteratively increasing \(N_G \) by one
Segmentation

• Initialization
 • Generate initial segments using BIC segmenter / clusterer
 • $\lambda_{BIC} = 1$ for both
 • many short segments
 • many small clusters

• Use segmentation for training initial GMMs for diarization

• Viterbi re-segmentation (5x)
 • decode
 • keep track of N_G for each cluster dependent on amount of data
 • 4.8 sec / Gaussian
 • grow N_G by splitting
 • reduce N_G by retraining GMM from scratch
Clustering

- Build 64 Gaussian UBM from entire meeting (once)
- MAP adapt UBM to data found by segmentation
- compute cross likelihood ratio for each pair of clusters
 \[R_{ij} = \frac{1}{n_i} \log \frac{p(x_i | \lambda_j)}{p(x_i | \lambda_{UBM})} + \frac{1}{n_j} \log \frac{p(x_j | \lambda_i)}{p(x_j | \lambda_{UBM})} \]
- Merge clusters \(i \) and \(j \) for which
 - \(R_{ij} \) is largest and
 - positive
- Stop if maximum \(R_{ij} < 0 \)
Progress, effect of delay parameters

<table>
<thead>
<tr>
<th>System</th>
<th>DER RT05s (overlap)</th>
<th>DER RT06s (overlap)</th>
<th>DER RT07s (overlap)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI RT06s</td>
<td>21.7%</td>
<td>32.4%</td>
<td>26.2%</td>
</tr>
<tr>
<td>AMIDA RT07s primary</td>
<td>16.3%</td>
<td>18.1%</td>
<td>22.0%</td>
</tr>
<tr>
<td>AMIDA RT07s no delay params</td>
<td>20.5%</td>
<td>24.3%</td>
<td></td>
</tr>
</tbody>
</table>

- System has become slightly more robust
- But there still is high variability along dataset
- Delay parameters seem to help quite a bit
Another SAD story

• Good history in Speech Activity Detection performance
 • using 10 AMI meetings for modeling non/speech
 • SDM

• This year using Forced Aligned reference non/speech
• Also using Beamforming/MDM

• Two sets of non/speech models
 • (1) original SDM AMI RT05s-dev
 • (2) new RT05/RT06 FA MDM beamformed

• Best results (mixsad)
 • using (1) for BIC segmentation/clustering
 • using (2) for final frame selection
Results 2006/2007, effect of Speech Activity Detection

<table>
<thead>
<tr>
<th>BIC seg/clust SAD</th>
<th>Final SAD</th>
<th>DER RT06s (overlap)</th>
<th>DER RT07s (overlap)</th>
<th>DER RT07s (no overlap)</th>
<th>SAD err</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMI</td>
<td>AMI</td>
<td>18.1%</td>
<td>22.0%</td>
<td>18.9%</td>
<td>6.7%</td>
</tr>
<tr>
<td>AMI</td>
<td>RT forced alignment</td>
<td>20.1%</td>
<td>17.0%</td>
<td>13.4%</td>
<td>2.9%</td>
</tr>
<tr>
<td>RT forced alignment</td>
<td>RT forced alignment</td>
<td>18.6%</td>
<td>15.3%</td>
<td>2.9%</td>
<td></td>
</tr>
</tbody>
</table>

- DER very dependent on SAD
- Still no consistent behaviour between RT years
- Still a lot depends on initialization of GMMs
Overlapping speech approach

- Two steps:
 - overlap detection
 - overlapping speaker attribution

- Cheating experiment:
 - perfect overlap detection
 - assign most talkative speaker as 2nd speaker
 - about 2% reduction in DER

- Overlap detection
 - BeamformIt: 6.65% FA @ 85.7% miss
 - $d' = 0.2$, or EER = 46%
 - not good enough detection
 - Training GMMs with/out overlapping speech, decode
 - Building ‘overlapping’ GMMs from ‘single’ clusters

Figure 2: A DET plot, showing the trade-off between false alarm and miss probabilities. The operating point of the decisions made, the co-ordinates correspond to the surface of the grey areas in Figure 1.

Chapter 2
System description

Figure zvy: General concept of speaker diarization system

Most of the approaches from... and BICu-based initialization take partv Figure zvz depicts the system design. The steps can be described as...
Conclusions

• Front-end processing finally pays off
 • SNR improvement
 • delay&sum
 • Wiener filter
 • Modeling of Delay parameters helps

• Initialization of GMMs seems to be important
 • used deterministic estimation this year

• Hardly any ‘tunable parameters’
 • Cluster complexity ratio

• SAD still very important

• Overlapping speech still is a challenge