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ABSTRACT
We present a study of data simulated using acoustic models
trained on Switchboard data, and then recognized using various
Switchboard-trained acoustic models. The Switchboard-trained
models yield word error rates of about 47 percent, on real Switch-
board conversations. When data is simulated using the acoustic
models, but in a way that insures that the pronunciations in our
recognition dictionary are “perfect”, the WER drops by nearly a fac-
tor of five. If instead we use hand-labeled phonetic transcriptions to
fabricate data that more realistically represents the way words are
pronounced – rendering our recognition pronunciations imperfect –
we obtain WERs in the low 40’s, rates that are fairly similar to those
seen in actual speech data.

Taken as a whole, these and other experiments we describe in the pa-
per suggest that there is a substantial mismatch between real speech
data and our speech models. The use of simulation in speech recog-
nition research appears to be a promising tool in our efforts to un-
derstand and reduce the size of this mismatch.

1. MOTIVATION
Why is the error rate so high on conversational speech? How much
can it be improved? For example, is a 10% error rate on conversa-
tional speech achievable? In this paper, we seek to shed some light
on these matters through the vehicle of simulating speech data from
speech models, and then exploring the performance of our standard
speech recognition algorithms when applied to this data. The great
merit of simulated data lies in the fact that the underlying probabil-
ity mechanism that produced it is known and, indeed, controllable.
The use of simulated data in probing the strengths and weaknesses
of pattern recognition algorithms is common, even standard, prac-
tice in the mainstream statistical literature and is, perhaps, not so
common in speech recognition circles as it should be. A subsidiary
goal of this paper, therefore, is to provide an example of the fruitful
use of this sort of technique.

Our focus in the experiments we report here is on acoustic modeling
and on pronunciations. All experiments will be based on Dragon’s
standard front end, which involves 24 IMELDA parameters derived
from an original set of 44 parameters (spectral and cepstral param-
eters together with first and second cepstral differences), and on the
use of a standard bigram language model. We note that it has been
notoriously difficult to make substantial improvements in the lan-
guage model in speech recognition, and, on the other hand, that
standard signal processing techniques are good enough that it has
been possible to achieve error rates around 10% [1] on some large
vocabulary recognition tasks. It therefore appears that the greatest
prospects for improvement must lie in the area of acoustic and pro-
nunciation modeling, and we focus our attention there.

A primary source of concern with our present modeling techniques
is simply that real speech data may not be adequately described by
our acoustic models. By simulating data from the acoustic models,
we can, in essence, eliminate the problem of “mismatch”. What will
happen when we try to recognize such data? Will the error rate be
near zero, or instead, will it turn out that the error rate will still be
high? The latter consequence would suggest that the acoustic states
are not well separated in acoustic space, while the former would
suggest that there is a serious problem of mismatch between model
and data. The experiments we have done will suggest that the mis-
match problem is a sizable one, and that, in particular, the mismatch
between the pronunciations in our standard lexicons and those that
are actually used by people in conversation may be the key to the
puzzle.

In this paper, Section 2 gives an overview of our two main schemes
for simulating data, along with a description of the test set, and the
acoustic and language models to be used. Section 3 goes on to dis-
cuss a series of experiments with simulated and real data, and Sec-
tion 4 draws some conclusions.

2. SIMULATING DATA
In our experiments we use two data simulation schemes. In the first,
we generate data using our recognition dictionary, while the sec-
ond makes use of hand-labeled phonetic transcriptions as the starting
point.

All the results presented in this paper are based on the “test-
ws96dev-i” devtest, used in the 1996 and 1997 summer workshops
at Johns Hopkins [2], whether it be real data or simulated. This test
is rather small: 6 two-sided conversations, lasting 23 minutes, and
composed of 4700 words, but ICSI (the International Computer Sci-
ence Institute at the University of California at Berkeley) has made
hand-labeled and time-marked word and phonetic transcriptions of
it [3]. We use these invaluable transcriptions in the experiments de-
scribed below.

2.1. Simulation from Dictionary
One data simulation method begins with word transcriptions of the
test data. We took these transcriptions, and looked up pronuncia-
tions for the words in our recognition dictionary. If the dictionary
had multiple pronunciations for the word, we chose one randomly.
We decomposed the selected pronunciations for the words into a
sequence of triphones, and then for each state in each triphone, ran-
domly chose a component (based on the mixture weights) from the
state’s mixture model. We then generated a sequence of frames for
the triphone state, taking into account the component’s mean and
variance, and determining the number of frames generated with the



mean and variance of the state’s duration model. In these exper-
iments, the recognition dictionary is perfect, since our test data is
generated via the pronunciations in the dictionary: the words are
constrained to be “pronounced” (by the simulation) exactly as the
dictionary says.

2.2. Simulation from Phonetic Transcription
Our other data simulation scheme determined the triphone sequence
differently. Rather than starting with the word transcription and our
recognition dictionary, we instead began with ICSI’s phonetic tran-
scriptions of the same conversations. We stripped the diacritical
marks from the transcriptions, and transliterated each of the ICSI
phonemes to one or two of the phonemes used in Dragon’s Switch-
board work. The resulting triphones were fed into the simulation
process as above. This set of experiments results in more realistic
data than the first set, as the triphones that are used for simulation are
the ones that were actually used by the speakers (up to transcription
and transliteration errors), and not merely the ones which happened
to appear in the dictionary pronunciations for the words that were
uttered. As in the first set of experiments, we also used the duration
model for the triphone state to determine how many frames of data
to use; we did not use the time marks in the phonetic transcriptions
for this purpose.

2.3. Acoustic and Language Models
Our initial acoustic models are trained on 60 hours of Switchboard
data. We divide the data into two 30 hour sets, such that the two sets
are gender-balanced, and share no speaker; we do a Viterbi time-
alignment of the two sets, using the initial 60 hour models. The two
time-aligned 30 hour data sets are then used to train two sets of in-
dependent acoustic models (although, to make the signal-processing
consistent, they do share the parent models’ IMELDA transform).

In the experiments presented here, we fabricate data using one of
the 30 hour models, and recognize with the other model. For com-
parison, we also do two cheating experiments, recognizing with the
same 30 hour model that generated the data, as well as the parent 60
hour model [4].

The vocabulary is constructed by taking all the words in the allow-
able Callhome and Switchboard training sets; there are about 28000
distinct words in this three million word training set, of which 3500
are given more than one pronunciation. All alternate pronunciations
for a word are considered equally probable by the recognizer.

The language model is constructed with all the bigrams and uni-
grams in the Callhome and Switchboard training sets, applying ab-
solute discounting.

3. EXPERIMENTS
We present two series of experiments: comparing recognition of real
and simulated data, and simpleminded attempts to improve recogni-
tion of real data by augmenting the pronunciations in the recognition
dictionary.

3.1. Comparing Simulated and Real Data
In this experiment, we generate data in two different ways: first,
using the word transcriptions for the test conversations along with
our recognition dictionary (simulating from dictionary, as above),
and second, using the phonetic transcriptions for the conversation

(simulating from phonetic transcription). In all cases, we use the first
of the 30 hour acoustic models to generate the data from the triphone
models. We see in Table 1 that for real data, the two 30 hour trained
models produce more or less equivalent word error rates, while the
60 hour trained models are about 2 percentage points better. This is
a typical result; it shows that the two 30 hour sets, while yielding
comparable recognition results, contain different, and at least partly
complementary, information.

30hr AM1 30hr AM2 60hr AM
Test Set WER (%) WER (%) WER (%)

Real Data 48.2 48.8 46.3
Data simulated
from dictionary 4.3 10.8 8.4
Data simulated
from phonetic 41.3 43.9 41.4
transcription

Table 1: Baseline WER and WERs when recognizing data simulated
with AM1, along with either a dictionary, or with phonetic transcrip-
tions. AM means acoustic model.

However, recognition of the speech simulated from dictionary gives
a different picture. When we recognize with the same acoustic mod-
els that we used to generate the data, the error rate drops below 5%.
This is as if we have trained models on an infinite amount of data
(although from a finite number of speakers), in just the right way.
Nothing that the data does is unexpected; the model has seen it all
before. When we recognize with models trained on completely dis-
joint data (AM2), the error rate doubles, but still hovers near 10%.
We see that the 30 hours of data that AM2 was trained on is differ-
ent, in some respects, from AM1’s 30 hours. The 60 hour models
have seen AM1’s training data, but are led in a somewhat different
direction by AM2’s: there is a partial reconciliation, and the result
is an error rate intermediate to the two 30 hour models.

We can take some encouragement from these results. The acoustic
models appear to be sharp enough that simulated data is recognized
incorrectly five to ten times less often than real data. In other words,
while you might assign some of the mistakes in recognition of real
speech to its inherent confuseability, most of the errors appear to be
due to something else!

So if use our recognition dictionary (which has a rather small num-
ber of alternative pronunciations for each word) to choose pronun-
ciations, and generate data from these pronunciations that complies
with the probability assumptions of our acoustic model, we can get
impressively good recognition results. But what happens when we
relax the requirement that data be generated from pronunciations in
our recognition dictionary?

In the third line of Table 1, the data is fabricated using the 30
hour acoustic model 1, along with the ICSI phonetic transcriptions,
without recourse to the pronunciations in the recognition dictionary.
Word error rates are much closer to those obtained when recognizing
real data, than to data simulated from dictionary. Even recognizing
with the same acoustic models that generated the data – in other
words, with acoustic models that perfectly represent the triphones
used – makes only a small difference.

This contrast is striking. When we force words (through the simu-



lation process) to be pronounced according to our recognition dic-
tionary, we get astoundingly good recognition, but when words are
simulated with pronunciations that more fairly represent the diver-
sity of conversational speech, the error rate is nearly as high as for
real speech. Put more provocatively, variant and reduced pronunci-
ations in casual speech account for most of the errors made by this
recognition system.

One explanation for this effect is that by simulating with realistic
pronunciations, we may have rendered our dictionary incomplete,
as incomplete as it is for recognizing real data. In fact, the phonetic
transcriptions match our dictionary less than half the time, leading
us to generate data for strings of phonemes that don’t match the
pronunciation of any word in the dictionary. Previously, when we
generated from the dictionary, all of the phoneme strings matched at
least one of the entries in the dictionary.

This problem may be made more complicated, but less severe, by
the manner in which we train our models. The acoustic models
are trained from alignments, in which each frame of training data is
mapped to a phoneme state. The phonemes that we map to are deter-
mined by the pronunciations in our dictionary, and we know these
pronunciations are woefully incomplete for conversational speech.
The trainer will encounter several dozen pronunciations for com-
mon words in the training data, and try to align them all to the one
or two or three prons for the word in our dictionary. The models are
smeared, mongrelized to a certain extent, each one forced to repre-
sent data for many phonemes, and not just the phoneme they nomi-
nally represent. They do partially compensate for out-of-dictionary
pronunciations by using multiple components, but consequently are
larger, and not as sharp, than they might otherwise be.

3.2. Dictionary Augmentation with Simulated
Data

Perhaps we can try to improve the dictionary by adding pronunci-
ations to our recognition dictionary. Note that others [5] have also
done this with real data; by and large they have not seen improve-
ments in performance. We augment by taking pronunciations for
words from the phonetic transcriptions, and adding them to our dic-
tionary even if they occur only once. To gain a sense of scale, we
should note that there are about 4700 tokens in the test data, amount-
ing to 900 distinct words; they have altogether 2100 pronunciations.
Only 47% of the tokens are pronounced as in our dictionary. About
650 words are pronounced only one way in the test data;the has
36 different pronunciations, according to the transcripts. When we
add all of the pronunciations found in the test data to our dictionary,
only about a quarter are already in our base dictionary, so we end up
adding 1500 new ones.

We call this the “base + test” dictionary in Table 2. Note that while
all of the acoustic models experience improved recognition, AM1
improves the most; the better the acoustic model matches the data,
the greater the benefit from having an augmented dictionary. In
fact, this is another instance of a “perfect” dictionary, as in Table
1: each word in the data has its pronunciation in the dictionary.
The difference appears to be confuseability: there are many more
homonyms and near homonyms in the “base + test” dictionary than
in the base dictionary alone. For example, in our base dictionary, the
most “homonymical” pronunciation is associated with five different
words: sons, son’s, sons’, suns,andsun’s; no pair of words share
more than two pronunciations. By contrast, the “base + test” dictio-

30hr AM1 30hr AM2 60hr AM
Dictionary WER (%) WER (%) WER (%)

base 41.3 43.9 41.4
base + test 23.9 33.5 29.8
base + train 50.6 50.3 48.2
base + test +

train 30.4 40.2 35.7

Table 2: Simulated data, recognized using baseline and augmented
dictionaries. Data is simulated with the 30hr AM1, using the ICSI
phonetic transcriptions to determine the triphones.

nary has 38 pronunciations associated with 5 or more words, headed
by schwa, which is a pronunciation for 27 different words. Nineteen
word pairs share three or more pronunciations; the most confuseable
pair istheandto, which have 7 pronunciations in common.

This method of improving our dictionary by adding the pronuncia-
tions that occur in the test data is brazen cheating. Suppose we try
not to cheat, and use a different set of phonetically transcribed data
from which to gather pronunciations: the “train-ws96-i” set, also
produced by ICSI and used in the 1996 and 1997 summer work-
shops at Johns Hopkins. This data has about 10000 word tokens, of
which 1500 are distinct, pronounced 3400 ways. About 500 of these
words are shared with the test data; of these shared words, about
700 word/pron pairs are held in common, and 1400 are unique to the
training data. For example,thehas 38 pronunciations in the training
data; only half of these are observed in the test set. In addition, the
training data has 1000 words (with 1300 prons) that don’t occur in
the test data. After adding these training pronunciations to our dic-
tionary, about 71% of the word tokens in the test set are pronounced
as in the dictionary, up from 47% before augmentation.

The “base + train” entry in Table 2 gives recognition results after
we have added the training pronunciations to our base dictionary. It
is noteworthy that all of the acoustic models yield degraded perfor-
mance with this dictionary. We have evidently added too much con-
fuseability, and too few of the pronunciations that do occur in the test
data. It also gives some notion of the futility of simply adding pro-
nunciations en masse: it is all too easy to make recognition worse.

Recognition results when both the test and training pronunciations
are added are listed on the “base + test + train” line of Table 2.
All the acoustic models experience improved results compared to
the “base” recognition, despite the confuseability added by the extra
pronunciations and inevitable homonyms (the now has 55 variant
pronunciations, and the phonemeschwais a pronunciation for 35
different words; 79 pronunciations have 5 or more homonyms). For
the simulated data, it appears that including the correct pronuncia-
tions in the dictionary – even if they are hidden in a haystack of dross
prons – can be a win, and still improve recognition.

We can see the effects of confuseability in these results by exam-
ining the kinds of errors we are making in Table 3. This data is
generated with AM1 along with the phonetic transcriptions, and rec-
ognized using AM2. In general, adding prons decreases the number
of deletions, but increases the insertion rate. Adding the more per-
tinent test pronunciations decreases substitutions, while adding the
training prons tends to increase them.



Dictionary Total Insertions Deletions Substitutions
base 2063 99 710 1254

base + test 1577 184 360 1033
base + train 2364 346 376 1642
base + test + 1891 236 359 1296

train

Table 3: Breakdown of errors by type, for synthetic data recognized
using baseline and augmented dictionaries.

3.3. Dictionary Augmentation with Real Data
Because adding the test pronunciations to the lexicon appeared al-
ways to improve recognition performance, even when many other
misleading prons are also added, we wanted to repeat these exper-
iments with real data instead of phonetically-simulated data. The
results are listed in Table 4.

30hr AM1 30hr AM2 60hr AM
Dictionary WER (%) WER (%) WER (%)

base 48.2 48.8 46.3
base + test 58.6 60.8 58.5
base + train 64.3 65.7 63.1
base + test +

train 65.3 66.8 65.5

Table 4: Real data, recognized using baseline and augmented dictio-
naries.

We see that in all cases, adding more pronunciations to the recog-
nition dictionary seriously degrades performance. Even when we
cheat, and add only the pronunciations that we know will occur in
the test set, recognition still gets worse. This is in sharp contrast to
the situation with simulated data: for example, when we add the test
prons to the dictionary and recognize with AM2, the WER for sim-
ulated data drops from 43.9% to 33.5%, whereas it increases from
48.8% to 60.8% for real data.

Analysis of the errors made (Table 5) shows a pattern similar to
synthetic data, although to a degree less favorable to a low WER.
Adding pronunciations tends to increase insertions and decrease
deletions, just as with synthetic data, but the effect increases in-
sertions more and decreases deletions less. Real data is different,
however, in that the number of substitutions increases whenever pro-
nunciations are added.

Dictionary Total Insertions Deletions Substitutions
base 2296 323 461 1512

base + test 2861 616 334 1911
base + train 3091 729 297 2065

Table 5: Breakdown of errors by type, for real data recognized using
baseline and augmented dictionaries.

This discrepancy may provide more evidence of the mismatch be-
tween real speech and our acoustic models, or, equivalently, the dif-

ference between real and simulated speech. Adding new pronunci-
ations to our recognition dictionary appears to add confuseability,
and not much else, to recognition of real speech: the recognizer
merely has a new sequence of triphones to consider as a hypothesis.
This new sequence has not been seen in training – although, quite
likely, acoustic training data includes the word being pronounced
in that manner, but assigned to a different pronunciation – and the
added pron may not match the speech very well. Simulated speech
is different: the new pronunciations actually are a good match for
words generated from the corresponding phoneme sequence, and so
adding pronunciations may yield some benefit (although they also
suffer from the deleterious effects of confuseability).

We can see this effect at work when we compare the error rate
for words pronounced according to our dictionary with words pro-
nounced differently (Table 6). We consider the non-cheating case,
where we generate data data with one thirty-hour acoustic model,
and recognize with a different 30 hour model. We record, for each
word token in the correct transcript, whether it is pronounced ac-
cording to the recognition dictionary, and whether it was recognized
correctly, thus compiling in-dictionary and out-of-dictionary error
rates. Note that this number is smaller than the word error rate, since
it does not account for errors due to insertion.

Error rate: Error rate: Error rate:
Data prons in prons out of overall

Source dictionary dictionary
real data (base) 35.4 47.4 41.8

data simulated from
phonetic transcript 24.1 57.3 41.7

(base)

real data
(base + train) 46.3 59.6 50.2

data simulated from
phonetic transcript 34.5 63.5 42.9

(base + train)

Table 6: Error rates for words in correct transcripts, broken down by
whether their pronunciations are in the recognition dictionary.

As might be expected, if a word token is pronounced according to
the dictionary, it is more likely to be recognized correctly than a to-
ken pronounced in an unexpected way. But the difference between
the error rates is smaller for real than for synthetic data. It may be
that since the models do not match up so well with real speech as
with simulated, having the just the right pron is less important for
real speech. Having the right pron would be relatively more im-
portant for simulated data in this view, since, by construction, data
generated from a string of phonemes will be a good match for a
dictionary pronunciation consisting of those phonemes. Conversely,
words for which there is no matching pronunciation would have poor
performance, since they do not match well with any of the prons that
are in the dictionary.

4. CONCLUSION
We have outlined an avenue of investigation using data fabricated
from acoustic models. Data simulated from dictionary pronunci-
ations tend to WERs of 5% to 10%. When the data is simulated
from phonetic transcriptions, word error percentage rates rise into



the 40’s; when we attempt to augment the dictionary pronunciations,
we see a decrease in the error rate, so long as “enough” correct prons
(the ones that occur in the test set) are included. This remains true
even when many pronunciations which are not used in the test set are
added. Real data, on the other hand, always gets worse recognition
results when the dictionary is augmented in this way. We believe
this discrepancy is due to a mismatch between real speech and the
models we build from them. At least part of this mismatch is due to
the extremely varied pronunciations found in conversational speech,
and the way which we train our models.
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