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ABSTRACT e Soundness: The criterion should optimize some well-
understood information-theoretic measure of language

A criterion for pruning parameters from N-gram backoff language model quality.

models is developed, based on the relative entropy between the orig-

inal and the pruned model. It is shown that the relative entropy - . . .
resulting from pruning a single N-gram can be computed exactly e Efficiency: An N-gram selection algorithm should be

and efficiently for backoff models. The relative entropy measure fast, i.e., take tlm'e proportlonal to the number of N-
can be expressed as a relative change in training set perplexity. This ~grams under consideration.

leads to a simple pruning criterion whereby all N-grams that change

perplexity by less than a threshold are removed from the model. Ex- ® Self-containedness:As a practical consideration, we
periments show that a production-diiaHub4 LM can be reduced want to be able to prune N-grams from existing language
to 26% its original size without increasing recdtipm error. We also models. This means a pruning criterion should be based
compare the approach to a heuristic pruning criterion by Seymore  only on information contained in the model itself.

and Rosenfeld [9], and show that their approach can be interpreted

as an approximation to the rela_tiv_e entropy criterion. Experimeny, the remainder of this paper we describe our pruning al-
tally, both approaches select similar sets of N-grams (about 850/{3]0rithm based on relative entropy distance between N-gram
overlap), with the exact relative entropy criterion giving marginally

better performance. digtributions (Sectiqn 2), 'inv.estigate how thg quantiti'es re-
quired for the pruning criterion can be obtained efficiently
) and exactly (Section 3), show that the criterion is highly ef-
1. Introduction fective in reducing the size of state-of-the-art language models
jwith negligible performance penalties (Section 4), investigate
{he relation between our pruning criterion and that of Sey-
more and Rosenfeld (Section 5), and draw some conclusions

N-gram backoff models [5], despite their shortcomings, stil
dominate as the technology of choice for state-of-the-ar
speech remgnizers [4]. Two sources of performance improve- )
ments are the use of higher-order models (several DARPA(SECtiON 6).
Hub4 sites now use 4-gram or 5-gram models) and the inclu- . :
sion of more training d%ta from n?ore sources)(Hub4 models 2. N-gram Pruning Based on Relative

typically include Broadcast News, NABN and WSJ data). Entropy

Both of these approaches lead to model sizes that are inixn N-gram language model represents a probability distribu-
practical unless some sort of parameter selection techniguon over wordse, conditioned orf N — 1)-tuples of preceding

is used. In the case of N-gram models, the goal of paramewords, or histories. Only a finite set of N-gram@w, ) have

ter selection is to chose which N-grams should have explicitonditional probabilities explicitly represented in the model.
conditional probability estimates assigned by the model, sdThe remaining N-grams are assigned a probability by the re-
as to maximize performance (i.e., minimize perplexity and/orcursive backoff rule

recognition error) while minimizing model size. As pointed

out in [6], pruning (selecting parameters from) a full N-gram p(wlh) = a(h)p(w|h")

model of higher order amounts to buildingariable-length

N-gram model, i.e., one in which training set contexts are notvhere’.’ is the historyh truncated by the first word (the one
uniformly represented by N-grams of the same length. most distant fromw), anda(h) is abackoff weighissociated

Seymore and Rosenfeld [9] showed that selecting N-gram@ith historyh, determined so thgt; , p(wlh) = 1.

based on their conditional probability estimates and frequencyhe goal of N-gram pruning is to remove explicit estimates
of use is more effective than the traditional absolute frequency(w|h) from the model, thereby reducing the number of pa-
thresholding. In this paper we revisit the problem of N-gramrameters, while minimizing the performance loss. Note that
parameter selection by deriving a criterion that satisfies thafter pruning, the retained explicit N-gram probabilities are
following desiderata. unchanged, but backoff weights will have to be recomputed,



thereby changing the values of implicit (backed-off) probabil- 3. Remove all N-grams that raise the perplexity by less than
ity estimates. Thus, the pruning approach chosen is concep- ¢, and recompute backoff weights.

tually independent of the estimator chosen to determine the ) )
explicit N-gram estimates. Relation to Other Work Our choice of relative entropy as

. . ) an optimization criterion is by no means new. Relative en-
Since one of our goe}ls IS to prune N-g'ram models V,V'thou‘iropy minimization (sometimes in the guise of likelihood max-
access to' any st.atlstlcs.npt .contamed' in the model itself, ﬂnization)isthe basis of many model optimizationtechniques
natural criterion is to minimize the ‘distance’ between theproposed in the past, e.g., for text compression [1], Markov
distribution embodied by the original modgl and that of themodel induction [10, 7]. Kneser [6] first suggested applying
p'run.ed T“°d¢'- A 'standard measure of dlvgrgenge betweelpto backoff N-gram models, although, as shown in Section 5,
distributions isrelative entropyor Kullback-Leibler distance o hayristic pruning algorithm of Seymore and Rosenfeld
(see, eq., [2])' Althpugh not St”.C“y a dl'stance.metnc, It I?‘[9] amounts to an approximate relative entropy minimization.
a non-negative, 'contlnuo.usfu.ncnon thatis zero if and only ifp, algorithm described in the next section is novel in that
the two distributions are identical. it removes some of the approximations employed in previous
Let p(-|-) denote the conditional probabilities assigned byapproaches. Specifically, the algorithm of [6] assumes that
the original model, ang’(-|-) the probabilities in the pruned backoff weights are unchanged by the pruning, and [9] does
model. Then, the relative entropy between the two models isot consider the effect that a changed backoff weight has on

, , N-gram probabilities other than the pruned one (this effect is
D(pllp’) = - Z p(wi, hj)logp'(wilh;) — logp(wi|h;)] discussed in more detail in Section 5).
wq,hy
1)

The main approximation that remains in our algorithm is the
where the summation is over all words and histories (con- greedy aspect: we do not consider possible interactions be-
texts)h; . tween selected N-grams, and prune based solely on relative

. . entropy due to removing a single N-gram, so as to avoid
Our goal will be to select N-grams for pruning such that Py 9 9 9
D(p||p’) is minimized. However, it would not be feasible

searching the exponential space of N-gram subsets.
to maximize over all possible subsets of N-grams. Instead,
we will assume that the N-grams affect the relative entrop
roughly independently, and compuf&(p||p’) due to each
individual N-gram. We can then rank the N-grams by their

effect on the model entropy, and prune those that Increasﬁsting of historyh and wordw. This entails two changes to

relative entropy the least. the probability estimates.
To choose pruning thresholds, it is helpful to look at a more

3. Computing Relative Entropy

XWe now show how the relative entro@¥(p||p’) due to prun-
ing a single N-gram parameter can be computed exactly and
efficiently. Consider the effect of removing an N-gram con-

intuitive interpretation ofD(p||p’) in terms ofperplexity the
average branching factor of the language model. The per-
plexity of the original model (evaluated on the distribution it

e The backoff weightx (k) associated with history is
changed, affecting all backed-off estimates involving his-
tory h. We use the notation B@;, ») to denote this

case, i.e., that the original model does not contain an
explicit N-gram estimate fofw;, k). Let «(h) be the
original backoff weight, and’( %) the backoff weight in
the pruned model.

embodies) is given by

PP — 6_ Zh)wp(hvw)mgp(wlh) ,
whereas the perplexity of the pruned model on the original
distribution is e The explicit estimate(w|h) is replaced by a backoff
, estimate
PP = ¢ Lo PR o0r o) P (w]h) = o (h)p(w|h')
where/’ is the history obtained by dropping the first

The relative change in model perplexity can now be expressed -
word inh.

in terms of relative entropy:
pPp' — pP
PP

All estimates not involving history: remain unchanged, as
do all estimates for which B@y;, k) is not true.

This suggests a simple thresholding algorithm for N-gramSUbsmu“ng in (1), we get
— > plwi, h)[logp' (wilh) — logp(w;|h)]

— Plllp) _q

pruning: D(p|lp) (2)

. | hresh
1. Select a threshold —p(w, h)[logp' (w|h) — logp(w|h)]

— > p(wi, h)[logp' (wil k) — logp(wi |h)]

w; 1 BO(w;, h)

2. Compute the relative perplexity increase due to pruning
each N-gram individually.



= —p(h) {p(uln)llogp (uw|k) - logp(u|n)]

S0 bigrams| trigrams| 4-grams| PP | WER

+_ p(wilh)llogy (wilh) — logp(w:|h)TF0 | 11093357| 14929826] 3266900| 163.0| 32.6

w; 1 BO(w,, h) 1079 | 7751596 9634165| 1938343| 163.9| 32.6

o , , , 1078 | 3186359| 3651747| 687742| 172.3| 32.6

At first it seems as if computing(p||p’) for a given N- 10-7 820827 510646| 62481| 202.3| 33.9

gram requires a summation over the vocabulary, something 0 11093357| 14929826 01 1725 32.9
that would be infeasible for large vocabularies and/or models:

However, by plugging in the terms for the backed-off esti-
mates, we see that the sum can be factored so as to allowTable 1: Perplexity (PP) and word error rate (WER) as a
more efficient computation. function of pruning threshold and language model sizes.

D(pllp’)

= _p(h) As noted in Section 2, the pruning algorithm is applicable

irrespective of the particular N-gram estimator used. We used
Good-Turing smoothing [3] throughout and did not investi-
gate possible interactions between smoothing methods and
pruning.

Table 1 shows model size, perplexity and word error results as
determined on the development test set, for various pruning
thresholds. The first and last rows of the table give the per-

The sum in the last line represents the total probability maséormance of the full four-gram and the pure trigram model,
given to backoff (the numerator for computiagh)); itneeds  espectively. Note that perplexity here refers to the indepen-
to be computed only once for eathwhich is done efficiently dent test set, not to the training set perplexity that underlies
by summing over alhon-backofestimates: the pruning criterion.
As shown, pruning is highly effective. Fdr = 1078, we
Z Z obtain a model that is 26% the size of the original model
wi:BO(w;,h) wi=BO(w; h) without degradation in recognition performance and less than
6% perplexity increase. Comparing the pruned four-gram
model to the full trigram model, we see that it is better to
include non-redundant four-grams than to use a much larger
umber of trigrams. The pruned & 10-8) four-gram has
he same perplexity and lower word errpr<{ 0.07) than the
full trigram.

{p(ewlh) logp(w|h’) + loga’ (k) — logp(w|h)]
+ 3 p(wilh)loga(h) — loga(h)] }

w; 1 BO(w;, h)
= —p(h) {p(w|n)llogp(wlh’) +loga’(h) — logp(w|h)]
+loga(h') — loga(m)] > plwilh)}

w; 1 BO(wy, h)

p(wilh) =1 p(wilh)

The marginal history probabilitigg ~) are obtained by mul-
tiplying conditional probabilitiep(h1)p(hz|h1) . . ..

Finally, we need to be able to compute the revised backo
weightsa/(h) efficiently, i.e., in constant time per N-gram.
Recall that

1= 5 g0t P(wilh) 5. Comparison tzpsper)c/)r:;:e and Rosenfeld’s

1- Zw,:—'BO(w,,h) p(wilh') . .
In [9], Seymore and Rosenfeld proposed a different pruning
o/(h) is obtained by dropping the term for the pruned N-gramscheme for backoff models (henceforth called the “SR crite-
(w, h) from the summation in both numerator and denomination,” as opposed to the relative entropy, or “RE criterion”).
tor. Thus, we compute the original numerator and denomiln the SR approach, N-grams are ranked by a weighted differ-
nator once per history, and then adg(w|h) andp(w|h’), ence of the log probability estimate before and after pruning,

respectively, to obtain’(h) for each pruneav.
pectively ) P N (w, h)llogp(wlh) — logp'(w[h)] ©)

4. Experiments where N (w, h) is the discounted frequency with which N-

We evaluated relative entropy-based language model prumgram (w, k) was observed in training. Comparing (3) with
ing in the Broadcast News domain, using SRI's 1996 Hub4the expansion oP(p|[p’) in (2), we see that the two criteria
evaluation system [8]. N-best lists generated with a bigranare related. First, we can assume th&tw, k) is roughly
language model were rescored with various pruned versionsroportional top(w, k), so for ranking purposes the two are
of a large four-gram language model. equivalent. The difference of the log probabilitiesin (3) corre-
- _ _ sponds to the same quantity in (2). Thus, the major difference

We used the 1996 system, partly due to time constraints, partly bebetween the two approaches is that the SR criterion does not
cause the 1997 system generated N-best lists using a large trigram language . .
model, which makes rescoring experiments with smaller language modei1clude the effect on N-grams other t_han theone beln'g consid-
less meaningful. ered, namely, those due to changes in the backoff weight

a(h)




No. Trigrams| SR RE No. Trigrams| No. shared trigrams$
1000 | 238.1| 237.9 1000 883
10000| 225.1| 223.9 10000 8721

100000| 207.3| 205.2 100000 85599
1000000| 186.4 | 184.7 1000000 852016

Table 2: Comparison of Seymore and Rosenfeld (SR) andable 4: Overlap of selected trigrams between SR and RE
Relative Entropy (RE) pruning: perplexities as a function ofmethods.
the number of trigrams.

the two criteria, shown in Table 4. The percentage of common
To evaluate the effect of ignoring backed-off estimates in thdfi9rams ranges from 88.3% to 85.2%, and seems to decrease
pruning criterion we compared the performance of the SR andS the model size increases. We can expect the most frequent
the RE criterion on the Broadcast News development test sehi-9rams to be among those that are shared, making is no
using the same N-best rescoring system as described befofé!Prise that both methods perform so similarly.
To make the methods comparable we adopted Seymore and .
Rosenfeld’s approach of ranking the N-grams according to the 6. Conclusions
criterion in question, and to retain a specified number of N\We developed an algorithm for N-gram selection for backoff
grams from the top of the ranked list. For the sake of simplicityN-gram language models, based on minimizing the relative
we used a trigram-only version of the Hub4 language modegntropy between the full and the pruned model. Experiments
used earlier, and restricted pruning to trigrams. show that the algorithm is highly effective, eliminating all but
We also verified that the discounted frequeréyw, k) in 26% pf the parameters in a Hub4 four-gram'mod(.al vyithout
(3) could be replaced with the model's N-gram protigb significantly affecting performance. The pruning criterion of

p(w, h) without changing the ranking significantly: over 99% Seymore and Rosenfeld is seen to be an approximate version

of the chosen N-grams were the same. This means the S?{the relative entropy criterion; empirically, the two methods

- . . . rform h me.
criterion canalsobebasedentlrelyonmformatlonmthemodeﬁ)e orm about the same

itself, making it more convenient for model post-processing. Acknowledgments

Tables 2 and 3 show model perplexity and word error ratesthis work was sponsored by DARPA through the Naval Com-
respectively, for the two pruning methods as a function of thgand and Control Ocean SuiNence Center under contract

number of trigrams in the model. In terms of perplexity, we Ng6001-94-C-6048. | thank Roni Rosenfeld and Kristie Sey-
see a very small, albeit consistent, advantage for the relativg,ore for clarifications and discussions regarding their paper

entropy method, as expected given the optimized criterion[.g]_ Thanks also to Hermann Ney and Dietrich Klakow for
However, the difference is negligible when it comes to recogyginting out similarities to [6].

nition performance, where results are identical or differ only
non-significantly. We can thus conclude that, for practical References

purposes, the SR criterion is a very good approximationtothe 1. T, c. Bell, J. G. Cleary, and I. H. WitteriText Compressian
RE criterion. Prentice Hall, Englewood Cliffs, N.J., 1990.

Finally, we looked at the overlap of the N-grams chosen by 2. T.M.CoverandJ.A. ThomaElements of Information Theary
John Wiley and Sons, Inc., New York, 1991.

3. I. J. Good. The population frequencies of species and the
estimation of population parameteBiometrikg 40:237-264,

Table 3: Comparison of Seymore and Rosenfeld (SR) and
Relative Entropy (RE) pruning: word error rate as a function

No. Trigrams| SR | RE 1953.
0 35.8 4. F. Jelinek. Up from trigrams! The struggle for improved
1000| 3551 355 language models. IRroc. EUROSPEECHpp. 1037-1040,
10000 34.8| 34.8 Genova, Italy, 1991.
100000| 34.3| 34.2 5. S. M. Katz. Estimation of probabilities from sparse data for
1000000| 33.2 | 33.1 the language model component of a speech recognzEE
: : ASSP35(3):400-401, 1987.
All 32.9 6

of the number of trigrams.

. R. Kneser. Statistical language modeling using a variable con-

text length. InProc. EUROSPEECHvol. 1, pp. 494-497,
Rhodes, Greece, 1997.

7. D. Ron, Y. Singer, and N. Tishby. The power of amnesia. In

J. Cowan, G. Tesauro, and J. Alspector, editdi®S-5 pp.
176-183. Morgan Kaufmann, San Mateo, CA, 1994.



8.

10.

A. Sankar, L. Heck, and A. Stolcke. Acoustic modeling for the
SRIHub4 partitioned evaluation contious speech recoigon
system. IlProceedings DARPA Speech Redtign Workshop
pp. 127-132, Chaifly, VA, 1997.

K. Seymore and R. Rosenfeld. Scalable backofflanguage mod-
els. InProc. ICSLR vol. 1, pp. 232-235, Philadelphia, 1996.

A. Stolcke and S. Omohundro. Hidden Markov model induc-
tion by Bayesian model merging. In S. J. Hanson, J. D. Cowan,
andC. L. Giles, editordyIPS-5 pp. 11-18. Morgan Kaufmann,
San Mateo, CA, 1993.



