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ABSTRACT
In this paper, we describe the BBN BYBLOS system used for the
1998 Hub-4E primary and Hub-4Sp evaluation benchmarks, and dis-
cuss the improvements made to the system in 1998. We focus on
the techniques that were new in this year’s system, including pro-
cessing of the acoustic training data, test segmentation, revised cep-
stral normalization and Vocal Tract Length Normalization (VTLN),
band-specific models, Diagonal transform Speaker Adaptive Train-
ing (DSAT), and a modified ROVER method for system combi-
nation. We show that by combining all the above techniques, we
were able to improve the recognition accuracy on the 1997 Hub-4E
evaluation test by 27% relative to our 1997 system (from 20.4% to
14.8%). We also present our results on the 1998 Hub-4E and Hub-
4Sp benchmarks, and discuss the differences between the English
and Spanish transcription systems.

1. INTRODUCTION
The 1997 BBN BYBLOS system [1] was focused on improving the
recognition accuracy of the F0 and F1 focus conditions (high fidelity
prepared and spontaneous speech, respectively). Therefore, it con-
sisted of a single set of gender-dependent acoustic models, and used
a very simple segmentation procedure, based on silence detection
alone. This approach gave us good performance on the F0/F1 condi-
tions, but poor accuracy on the telephone data (F2 condition). That
hampered our overall performance on the 1997 Hub-4E evaluation,
since 16% of the test set consisted of telephone speech.

In the 1998 system we followed a more elaborate segmentation strat-
egy that resulted in sizeable gains across all focus conditions, but es-
pecially on F2. Band-specific models, VTLN and DSAT adaptation
gave us additional gains. In short, our effort this year was targeted to
a clean and careful system design, using refined speech recognition
technology from the 1997 BYBLOS system.

The paper is organized as follows. Section 2 gives an overview of the
BYBLOS system used for the 1998 Hub-4E evaluation. In section
3 we discuss the improvements made to the system since the 1997
benchmark, along with experimental results. This is followed by a
description of our 1998 Hub-4E evaluation results, and the compu-
tational resources used during the evaluation. We end with section
5, in which we give a brief discussion of the Spanish system.

2. SYSTEM DESCRIPTION
The monolithic broadcast news input is segmented into two band-
specific episodes using a dual-band gender-independent phoneme
decoder. Each channel episode is then segmented and gender-
classified in one step with a dual-gender context-dependent word
decoder. Speaker change detection and clustering is applied within

each channel-gender sub-episode to define speaker turns and speaker
clusters for unsupervised adaptation. Analysis is performed with
a 36-pole LPC model, and Vocal Tract Length Normalization
(VTLN). The spectrum mean and variance is normalized over each
speaker turn, with speech and non-speech frames normalized sep-
arately. Speaker-Independent (SI), Gender-Dependent (GD) band-
specific models are estimated from the training data, and are refined
by Diagonal transform Speaker Adaptive Training (DSAT), a ver-
sion of maximum likelihood SAT that uses many diagonal transfor-
mations [2, 3].

For each channel and gender we create three models: a triphone
within-word Phoneme-Tied Mixture (PTM) model with 50 phonetic
codebooks, 256 Gaussians per phone, and approximately 29K mix-
ture weight vectors associated with the codebooks; a quinphone
within-word State-Clustered-Tied Mixture (SCTM) model with ap-
proximately 3500 states, 64 Gaussians per state, and 30K mixture
weight vectors; and a quinphone between-word SCTM model with
a similar number of parameters.

SI decoding is done in two passes [4] – a forward PTM fast-match
and a backward SCTM pass producing a scored word lattice that is
then converted into an N-best, including trigram probabilities. The
N-best is rescored with the between-word SCTM model and a tri-
gram LM. The best hypothesis is used for unsupervised adaptation
to each speaker cluster. Only the DSAT SCTM within-word model
is adapted at this stage with two iterations of MLLR [5] adaptation.
We also re-normalize the test spectrum for speech and non-speech
based on the best hypothesis. The backward-pass decode is then re-
peated using the DSAT adapted model. The best hypotheses in the
resulting N-best are used to adapt the DSAT between-word model.
Finally, we rescore the N-best with the between-word DSAT adapted
model to find the top choice.

Four decodings are done for each segment – with 125, 100, and
80 frame/second test set analysis, and a triphone decode with 100
frame/second analysis. System Combination is applied to the out-
puts of the four systems in order to choose the final answers.

3. RECENT IMPROVEMENTS
3.1. Speaker Change Detection
As described in [1], the segmentation procedure that we used in the
1997 Hub-4 evaluation consisted of the following simple steps:

1. Dual-gender phoneme decoding for silence and gender detec-
tion.

2. Smoothing of the recognized hypothesis to eliminate unreli-
able gender changes, and separation of male from female seg-



ments. Also, long silence segments are discarded.

3. Chopping of the hypothesis into small segments, averaging 4
sec. duration, using the silence detection information from step
(1).

4. Clustering of the short segments into speaker clusters [6] for
adaptation.

5. Cepstral mean and variance normalization applied to each seg-
ment, with speech and non-speech frames normalized sepa-
rately (2-level CMS and variance normalization).

Notice that in training, the cepstral normalization is applied to each
speaker turn, so the above procedure results in a mismatch between
training and testing. Ideally, we would like to detect speaker changes
on the test, and normalize the cepstra on speaker turns. We modified
slightly the above procedure to include speaker change detection, as
follows:

� After step (2) above, perform speaker change detection using
the techniques described in [7].

� Apply speaker clustering to refine the speaker turns and merge
short speakers for adaptation.

� Divide each speaker turn into 4-sec. segments based on the
silence detection.

� Perform 2-level CMS and variance normalization on speaker
turns.

This modification gave us a significant gain in recognition accuracy,
as shown in Table 1, primarily because of the better normalization.

Speaker change detection
Condition no yes

F0 13.6 12.5
F1 19.4 18.9
F2 37.7 34.4
F3 28.8 30.3
F4 27.8 24.6
F5 32.3 32.7
FX 47.8 45.5

Overall 22.7 21.4

Table 1: Effect of speaker change detection and speaker turn normal-
ization on the h4e97 test set (SI unadapted results, models trained on
80 hours of broadcast news).

3.2. Processing of Training Data
While we were processing the new 100 hours of training data for in-
clusion in our acoustic training, we noticed that the annotators were
much more accurate in the transcription of non-speech sounds, word
fragments, unclear words and overlapping speech. We decided to
take advantage of the enhanced information by changing our proce-
dure with respect to each of the above characteristics. In addition,
we reprocessed the 1997 Hub-4 training data (first 100 hours) to be
consistent with the new procedure.

Non-speech sounds.The only non-speech event that we used in
the 1997 Hub-4 training data was laughter, denoted by the word

[LAUGH]. This year we added 3 more non-speech words, namely
[BREATH] for breathing, [COUGH] for coughing, and [LIPS-
MACK] for lipsmack sounds. The pronunciation for each of the
above words is based on the specialized phonemes LGH, BRT, COU
and LIP, respectively. We also introduced a new “garbage” phoneme
GRB, to use in the pronunciations of unclear words and word frag-
ments, as described below.

Word fragments. We made pronunciations for all the word frag-
ments transcribed. For those fragments that we could clearly iden-
tify their intended word, we extracted their pronunciation from that
of the intended word. For the ones that were ambiguous, we made
a pronunciation consisting only of the “garbage” phoneme GRB,
based on the length of the fragment.

Unclear speech. Unclear words are marked in the transcriptions in
parentheses, indicating that the annotator was not sure of the spoken
words. Sometimes, the unclear words are marked with an empty
set of parentheses, indicating that the annotator could not identify
any spoken word at all. We processed the transcriptions semi-
automatically so that long segments that contained empty unclear
words were divided into smaller segments, so that we could discard
the segments with the empty unclear words without significant loss
in training data. For each non-empty unclear word, we made a pro-
nunciation using again the “garbage” phoneme GRB based on the
length of the unclear word.

Overlapping speech. In the new 100 hours of training data, over-
lapping speech is clearly marked, so we can easily discard the seg-
ments on the overlapping region. However, the 1997 Hub-4 training
data does not have this markers, so we had to remove the overlapping
regions by using a semi-automatic method.

Speaker turn boundary adjustment. On many occasions we have
found that the transcribers of the Hub-4 broadcast news training data
mark the beginning or end of a speaker turn to be very close to the
beginning or end of speech, respectively, without leaving any notice-
able silence. This causes a problem in our system, which expects to
find silence frames at the endpoints of each training segment. Also,
in some cases the boundary between two speaker turns is not cor-
rectly marked, resulting in misaligned training segments that corrupt
our acoustic models.

In an attempt to correct most of the annotation errors of the type de-
scribed above, we developed an automatic method for adjusting the
marked boundaries between speaker turns. The method is based on
the assumption that there is always a number of silence frames be-
tween two consecutive speaker turns; if we could detect the location
of this silence, we could re-position the boundary to be at the middle
of the silence, dividing the silence frames equally between succes-
sive speakers. Given the transcription for a speaker turn, we can
run a constrained decode to obtain the most likely word begin/end
times, according to the acoustic model in use. Therefore, we can
apply the same procedure to reposition the boundary between two
speaker turns, as follows:

� For any two consecutive turns A and B, create a “merged” turn
C whose begin time is the begin time of A, and its end time is
the end time of B. The transcription for turn C is the concate-
nation of the A and B transcriptions.

� Rescore each merged turn to obtain word time marks and the
position of silences. Obviously, the acoustic model used for



rescoring needs to be gender-independent (GI), since one male
speaker may be followed by a female, and vice-versa.

� If we detect a silence between the last word of turn A and the
first word of turn B, then we split the merged turn C at the
middle of the silence, adjusting the corresponding boundary.

� If no silence can be detected between the two turns, we use the
word time-stamps to adjust the boundary.

We were surprised to find that among all the above processing tech-
niques, only the segment boundary adjustment and the modeling of
breath gave us a gain, as shown in Table 2.

Type of processing Accuracy
1997 Baseline 21.4
1998 trans. processing 21.3
+ boundary adjustment 20.9
+ breath modeling 20.5

Table 2: Effect of training transcription processing on the h4e97 test
set (SI unadapted results, models trained on 80 hours of broadcast
news).

3.3. Inclusion of More Training Data
By adding the new 100 hours of data into our acoustic training, pro-
cessed as described in the previous section, we achieved a 0.9% ab-
solute gain over the 80 hours baseline. Notice that because of com-
mercials, bad data, etc. the total actual amount of training we used
for the 1998 Hub-4 evaluation was 150 hours. Table 3 shows the
effect of the new training data on each condition of the h4e97 test
set.

Amount of training
Condition 80 hours 150 hours

F0 11.8 11.3
F1 17.8 17.4
F2 34.1 32.7
F3 29.1 27.2
F4 23.9 23.0
F5 28.1 25.1
FX 44.3 41.0

Overall 20.5 19.6

Table 3: Effect of the new 100 hours (70 actually used) of training
on the h4e97 test set (SI unadapted results).

3.4. Test Segmentation
The speaker change detection algorithm that we discussed previ-
ously fails to detect a speaker change when there is no sufficiently
long silence at the boundary. This results often in segments that con-
tain mixed bands and/or genders. The solution is to detect channel
changes first, and then detect gender changes within each channel,
independently. In the 1998 system we used a dual-band gender inde-
pendent, context independent phone-class model for band detection,
trained using the following procedure:

� first, we label all the training data with a regular gender depen-
dent (GD) quinphone SCTM between-word model, to obtain a
phoneme and state alignment for each frame.

� phonemes are clustered into 8 broad classes: voiced continu-
ents, fricatives and sibilants, obstruents, breath, laughter, lips-
mack, music, and silence. The labels are modified so that they
map each frame into one of the above phone classes.

� then, we separate the wideband from the narrow-band seg-
ments. We determine which segments are narrow-band by
computing the ratio of the average energy of the segment that
is above 4 kHz to the energy between 125 Hz and 4 kHz, and
comparing that ratio with a fixed threshold.

� the labels for the narrow band segments are modified again so
that the first five phone classes in the list above are mapped to
a different name, to indicate clearly that these are narrow-band
phones. This results in a set of labels with a total of 13 distinct
phone classes.

� finally, we train a gender independent (GI), context indepen-
dent phone class model, using the above labels. During the
training, we constrain the forward-backward procedure to keep
the state alignment fixed, according to the labels.

The dual-band phone class model is very good in detecting band
changes, but the silence and music detection is not very accurate,
most likely because of the overlap between the small number of
phone classes. We can trust the detected long silences to chop into
relatively long segments (30 sec. on the average), but not shorter
than that. If we use a word decoder to detect silences, we can al-
leviate the problem of recognizing silence in the middle of a word.
Therefore, we decided that we should use a word decoder with a
small vocabulary (5000 words) to detect silences after separating
the channels.

Our system is gender dependent, so in addition to the silence detec-
tion, we need to perform a gender detection as well. Therefore, we
decided to train a dual-gender triphone PTM within-word model and
a dual-gender quinphone SCTM within-word model, to be used in
the forward and backward passes of the word decoder. The training
of the dual-gender models is performed as follows:

� the standard set of phonemes is duplicated (except for the si-
lence phoneme) and for each non-silence phoneme we have a
male and a female version.

� the training dictionary is modified so that each word has two
versions, male and female, and each version has a pronuncia-
tion that consists of the corresponding GD phonemes.

� the training labels are modified so that each phoneme is
mapped to its corresponding GD version.

� the training transcriptions are modified so that each word is
mapped to its corresponding GD version.

� everything else in the training procedure is the same as in the
standard case.

By combining the above two models, we defined the following seg-
mentation strategy:

1. Phone-class decode for band and long silence detection



2. Smooth the recognized hypothesis from step (1), to eliminate
false alarms (unreliable band changes), and separate the wide-
band segments from the narrow-band ones.

3. Perform gender detection and more accurate silence detection
on each band separately, using dual-gender word decoding.
Before recognition, the channel turns are divided into segments
averaging 30 sec. duration, using the silence detection infor-
mation from step (1). For each such segment, we obtain a hy-
pothesis consisting of male and/or female words. Smoothing is
performed on each channel turn to eliminate unreliable gender
changes. Also, long silence segments are discarded.

4. Speaker change detection is applied on each channel-gender
turn.

5. After the speaker changes have been determined, we perform
speaker clustering to reduce the number of speakers and merge
short speaker turns for adaptation.

6. Divide each speaker turn into 4-sec. segments based on the
silence detection from step (3).

7. Perform 2-level CMS and variance normalization on speaker
turns.

Table 4 shows that there is a 0.8% absolute gain from using the above
segmentation procedure. We can see that most of the gain comes
from the improvement on the F2 condition. This indicates that the
band detection using the dual-band phone class decoder does a good
job in separating wideband from narrow-band speech.

Band detection
Condition no yes

F0 11.3 11.5
F1 17.4 17.5
F2 32.7 28.3
F3 27.2 26.2
F4 23.0 23.0
F5 25.1 24.1
FX 41.0 39.3

Overall 19.6 18.8

Table 4: Effect of band detection and more accurate silence detection
on the h4e97 test set (SI unadapted results, models trained on 150
hours of broadcast news).

3.5. Language Modeling
All the results shown so far have been using a 44k recognition lex-
icon, and a language model identical to the one used in the 1997
system. We found that there is a small gain for adding acronyms
into the recognition lexicon as compound words, and using a 60k
lexicon as well. So at this point, we decided to retrain the acoustic
models with the compound acronyms, and also add more training
data to the language model.

We used a total of 600 million words to train the language model.
The data are from the following sources:

� 556 million words selected from the LDC official releases
“North American News Text Corpus”, “North Amerian News
Text Corpus (Supplement) and AP Worldstream English”, and

the previous release in 1997. We excluded data prior to 1994.
Of course, we excluded data in the test epochs (1996/10/15 to
1996/11/15, and after 1998/02/28).

� 40 million words from in-house data obtained through Primary
Source Media

� 4 million words from Hub-4 acoustic training data.

The resulting LM had 13M bigrams and 43M trigrams. The tran-
scriptions for the acoustic data were included 20 times in the LM
training. Coverage of the 60k lexicon on the H4E97 test set was
99.41%.

As shown in Table 5, the overall gain from retraining the acoustic
models with compound acronyms, increased LM training, and 60k
recognition lexicon was 0.5%.

Condition 44k LM 60k LM + acronyms
F0 11.5 11.2
F1 17.5 17.0
F2 28.3 29.1
F3 26.2 24.6
F4 23.0 22.0
F5 24.1 22.4
FX 39.3 36.5

Overall 18.8 18.3

Table 5: Effect of larger recognition lexicon and LM on the h4e97
test set (SI unadapted results, models trained on 150 hours of broad-
cast news).

3.6. Band Specific Models and Vocal Tract
Length Normalization

In a previous section we showed that by performing band detection
during the segmentation stage, we were able to reduce the word error
rate on the telephone data, mainly because of the better cepstral nor-
malization. It is well known that additional gain can be achieved by
using band-specific models for recognition. Therefore, we trained a
second (narrow-band) set of gender dependent models by reducing
the bandwidth data analysis to the range of the telephone data. In
Table 6 we can see that the use of band-specific models gave us a
5% absolute gain on F2, and an overall gain of 0.9%.

In addition, we tried VTLN on the test only, by estimating a stretch
factor for each speaker cluster, using a Gaussian mixture model
(GMM) against which speakers were scored at a multiplicity of
warps. To compensate for the inherent GMM likelihood bias for
cepstra at different warps, the determinant of the VTL transforma-
tion was estimated empirically per speaker and applied [3]. We ob-
served only a 0.4% gain from VTLN on the test, as shown in Table
6. We tried to apply VTLN in training as well, but it didn’t give
us any additional gain. Due to time constraints, we decided to use
VTLN on the test only.

3.7. Adaptation
As we mentioned in section 2, the 1998 system used DSAT models
for adaptation. For each speaker cluster, we estimated a set of 8 full-
matrix MLLR transformations, based on the hypotheses from the SI
unadapted recognition pass. Then, for each speaker we applied the



Band-specific models
Condition W only W + N W + N + VTLN

F0 11.2 11.0 10.8
F1 17.0 17.0 17.2
F2 29.1 24.1 23.2
F3 24.6 24.1 23.3
F4 22.0 23.3 22.8
F5 22.4 23.3 21.0
FX 36.5 35.3 33.7

Overall 18.3 17.4 17.0

Table 6: Effect of band-specific models (W = wide, N = narrow) and
VTLN on the h4e97 test set (SI unadapted results, models trained on
150 hours of broadcast news).

estimated transformation to the DSAT SCTM within-word models
and ran the backward pass. The best hypotheses from the backward
adapted decoding were used to adapt the DSAT SCTM between-
word models for the final N-best rescoring pass. This adaptation
procedure gave us a 9.4% relative overall gain, as shown in Table 7.

We found that we could gain an additional 0.2% by re-normalizing
the cepstra before adaptation, based on the newly detected silence
positions from the SI unadapted recognition pass. In light of this re-
sult, we decided to go one step further and re-segment each speaker
turn based on the newly detected silences, under the hypothesis that
the silence detection from the SI unadapted decoding is better than
the one from the dual-gender word decoding performed during the
segmentation pass. Although re-segmenting the speaker turns gave
a gain on the F2 and FX conditions, the overall effect was slightly
worse, so we didn’t use this approach in the final system.

DSAT Adapted
Condition SI standard re-norm re-seg + re-norm

F0 10.8 9.9 9.8 10.2
F1 17.2 15.1 14.8 15.4
F2 23.2 19.9 19.3 18.8
F3 23.3 22.3 22.2 23.3
F4 22.8 21.4 21.1 20.8
F5 21.0 19.7 18.9 20.5
FX 33.7 31.9 31.7 30.3

Overall 17.0 15.4 15.2 15.3

Table 7: Effect of DSAT MLLR adaptation and cepstral re-
normalization on the h4e97 test set (models trained on 150 hours
of broadcast news).

3.8. System Combination
We applied a modified ROVER [8] algorithm, that uses a weighted
selection procedure which is optimized to reduce word error rate [9].
The above technique was applied to the outputs of four systems:

� The quinphone system with 80 frames/sec. test set analysis

� The quinphone system with 100 frames/sec. test set analysis

� The quinphone system with 120 frames/sec. test set analysis

� The triphone system with 100 frames/sec. test set analysis

Table 8 shows that by combining the above systems we could
achieve a 0.4% reduction in WER.

Condition Baseline System Combination
F0 9.8 9.6
F1 14.8 14.8
F2 19.3 18.6
F3 22.2 22.4
F4 21.1 21.0
F5 18.9 18.4
FX 31.7 29.5

Overall 15.2 14.8

Table 8: Effect of system combination on the h4e97 test set (DSAT
adapted results, models trained on 150 hours of broadcast news).

4. 1998 HUB-4E RESULTS
Table 9 shows the BBN results on the 1998 Hub-4E benchmark. The
benchmark consisted of two sets; set 1 was recorded in the same
epoch as the H4E97 test set, while set 2 was recorded in a later
period. We can see that the performance on set 1 is comparable to
the one achieved on the H4E97 development test.

Test F0 F1 F2 F3 F4 F5 FX all
set1 7.4 15.6 23.2 24.1 10.5 17.6 23.415.2
set2 9.5 13.9 18.4 16.2 17.0 18.6 38.214.2

Table 9: BBN results in the 1998 Hub-4 primary evaluation bench-
mark

It is also interesting to see the overall improvement of the BBN BY-
BLOS system in 1998. Using the techniques described in the previ-
ous section, we were able to reduce the word error rate on the H4E97
test set by 27% relative to our 1997 system, demonstrated in Table
10 by focus condition.

Condition 1997 system 1998 system Rel. gain (%)
F0 12.3 9.6 22
F1 17.8 14.8 17
F2 32.6 18.6 43
F3 27.9 22.4 20
F4 24.7 21.0 15
F5 28.2 18.4 35
FX 42.8 29.5 31

Overall 20.4 14.8 27

Table 10: Comparison of the BYBLOS 1997 and 1998 systems on
h4e97.

Computational Resources The computation for this evaluation
was done on Intel-based PCs with 450MHz Pentium-II CPUs,
512MB of RAM, and 1.2GB of swap space. The operating sys-
tem was Linux 2.0.3x and the compiler was GNU gcc version egcs-
2.91.6 from the Free Software Foundation. These machines have a



1995 SPEC base rating of 17.2 for the integer test, and 11.8 for the
floating point test.

Table 11 shows timing information for the basic recognition stages
of the 1998 primary system on the H4E98 test sets.

Stage xRT
Segmentation 10
Unadapted decoding (4 systems) 86
Adaptation (4 systems) 44
Adapted decoding (4 systems) 103
System Combination 1
Total 244

Table 11: Timing information of the 1998 BYBLOS system on
the H4E98 test sets (measured on Pentium-II 450MHz PC’s with
512MB RAM, 1.2GB swap, running Linux 2.0.3x OS).

5. SPANISH BROADCAST NEWS
For the 1998 Hub-4Sp benchmarck, we tried to apply the technology
and procedures developed for the English system. However, due to
the different amount of acoustic and language training data between
the Spanish and English Systems, as well as the limited time frame
imposed by the evaluation, we had to simplify the Spanish system
slightly.

In particular, we did not train narrow-band models, neither used
VTLN nor system combination; the wideband quinphone SCTM
models had fewer states, because of the small amount of acoustic
training data available; and the language model had much fewer
estimated bigram and trigram probabilities. These differences are
shown in detail in Table 12.

System Feature English Spanish
Acoustic Training 150 hours 26 hours
Language Training 600M words 157M words
Quinphone SCTM states 3500 2000
LM bigrams 13M 3.0M
LM trigrams 43M 5.5M
H4E97 coverage 99.4% 98.4%
Narrow-band models Yes No
VTLN Yes No
System Combination Yes No

Table 12: Differences between the 1998 English and Spanish sys-
tems

Despite the above differences, the BBN Hub-4 Spanish system at-
tained the best performance on the 1998 Hub-4Sp test set, and the
result is shown in Table 13.

Notice that there was no presence of F2 or F5 data in the test set.
The huge word error rate on FX is because there are only 6 words
in the FX condition, but our system inserted 28 words over several
noisy regions of non-speech events.

Condition WER
F0 14.0
F1 40.1
F2 N/A
F3 25.4
F4 19.8
F5 N/A
FX 566.7

Overall 21.5

Table 13: BBN results in the 1998 Hub-4 Spanish evaluation bench-
mark
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