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ABSTRACT

Variations in rate of speed (ROS) produce danges in bah
spedral feaures and word pronunciations that affed automatic
speedt recognition (ASR) systems. To ded with these ROS
effeds, we propose to use pardlel, rate-spedfic, aooustic
models. one for fast speed, the other for slow speed. Rate
switching is permitted at word bourdaries, to alow modeling
within-sentence speed rate variation, which is common in
conversational speedi. Due to the paralel structure of rate-
spedfic models and the maximum likelihood dkcoding
method, we do not need high-quality ROS estimation before
recognition, which is usualy hard to achieve. In this paper, we
evaluate our approach on a large-vocabulary conversational
speed recognition (LVCSR) task over the telephore, with
several minimal pair comparisons based on dfferent baseline
systems. Experiments ow that on a development set for the
2000 Hub-5 evaluation, introducing word-level ROS-
dependent models results in a 1.9% absolute win ower a
baseline system withou multiword pronurciation modeling,
and a 0.7% absolute win ower a baseline system that
incorporates a 4.0% absolute win from multiword
pronunciation modeling.

1. INTRODUCTION

Rate of speed (ROS) is an important fador that affeds the
performance of atranscription system [1],[2]. Possble reasons
are that some features commonly used in recognition systems
are duration related and clealy influenced by speed rate, such
as delta and delta delta feaures, and that some pronurciation
phenomena such as coarticulation and reduction are dso
speed rate related. Thus, using rate-dependent aocoustic
models eams to be a promising way to improve robustness
against speed rate variation.

In previous reseach work, rate-dependent acoustic models
were often used at the sentence level. In the typical framework,
an inpu utterance was first classfied as fast or slow using a
ROS estimator, and then fed to a rate-spedfic system that was
tuned to fast or slow speed [2]. This method hes two

drawbadks. First, it presumes that the speed rate within an
utterance is uniform, which is often nd the cae in
conversational speedr. In our earlier research work on
broadcast news [3], we fourd that speed rate variation within
sentences is common, and thus we proposed to use a more
locd rate dependency for the amustic models. Seocond, this
approach is based onsequentia classficaion, so errors on the
first ROS clasdfication will most likely trigger errors in the
recogrition step. This paper proposes a new approach of word-
level rate-dependent acoustic modeling. Under this approad,
eadh typicd word is given two perald rate-spedfic
pronunciations. a fast-version pronurciation and a sow-
version pronunciation, ead consisting of rate-spedfic phones.
The remgrizer is adlowed to seled the fast or the sow
pronunciation for eath word automaticadly during seach,
based onthe maximum likelihood criterion. This way, we can
model the within-sentence speed rate variation, and avoid the
requirement of pre-recognition ROS clasdfication. To train the
rate-spedfic phone models, we use a duration-based ROS
meaure to partition the training data into rate-spedfic
caegories. Due to the availability of training transcriptions,
robuwst and acarate ROS estimation for training data can be
adchieved.

In Sedion 2 we first introduce the ROS measure used for
partitioning the training data. In Sedion 3 we show the
experimental results of rate-dependent acoustic modeling
based onSRI’s 1998 evaluation system, and compare different
training approades. In Sedion 4we describe the work for the
LVCSR 2000 (Hub 5) evaluation system, and spedficdly
address the effed of multiwords in rate-dependent acoustic
modeling. Findly, in Sedion 5,we summarize our results.

2. ROSMEASURE

Two methods are typicdly used to estimate ROS of an inpu
utterance. One is based on plone durations, which are often
obtained from phone-level segmentations by using forced
alignments. When the utterance transcription is known, this



duration-based method can provide robust ROS estimation [2];
however, when the transcription is unknown, we can only use
the hypahesis from a prior recogrition run, whaose quality is
hard to guarantee The secnd method involves estimating
ROS directly from the waveform or acoustic feaures of the
inpu utterance [4]. To adhieve robust ROS estimation, the
computation is often based on a data window with sufficient
length.

Under our proposed approad, to train the rate-spedfic models
we neeal to partition the training data into rate-spedfic
caegories at the word level, and we therefore need the ROS
for each word to be esimated locdly. The output of this
process $oud give eab word in the training transcription a
rate dasslabel. Asour first step to ROS modeling, we dedded
to use only two ROS classes: fast or slow. Sincewe only need
to compute ROS for the training data that have transcriptions,
it is relatively straightforward to dbtain the duration o each
word and its comporent phores by computing forced Viterbi
alignments, and then applying duration-based ROS estimation
methods.

Absolute ROS measures, such as phonres per seacond (PPS) and
inverse mean duration (IMD) [2], were often used in previous
work. However, we felt that these measures are not
informative enowgh since they did not consider the fad that
different types of phores have different duration dstributions.
Fig. lillustrates the duration distributions of 46 categories of
monoplones estimated from the training corpus. As we can
see the duration distribution across different phone types
differs substantially. When taking PPS or IMD as the ROS
measure, words compased of short phores are more eaily
treded as fast than those composed of long phores, even
thoughthey are not adually spoken faster than the normal rate.
In our approach, we use arelative ROS measure, R (D) ,
defined as a percentil e of aword’s ROS distribution:

R/(D)=Ry(@>D)=1-Y'R, (@) @

where W is a given word, D is the duration of W, and P,(d) is
the probabil ity of that type of word having durationd. R (D) is
the probability of W having a duration longer than D. The
measure R,(D) aways falls within the range [0,1], and can be
compared between dfferent word categories. However in
pradice P,(d) is hard to estimate directly due to the data
sparseness problem. To addressthis we asume that in a word
the duration distributions of its comporent subword urits, such
as phores, are independent of eat aher. Thus, a word's
duration distribution equals the mnvolution of its component
subword units' distributions, which are eaier to estimate from
training data. In our recent research, we used triphones as the
subword units for ROS estimation.
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Figure 1: Duration distributions of diff erent phone types

We used this measure to calculate the ROS for all the wordsin
the training data, and found that 80% of sentences with five or
more words have & least one word belonging to the fastest one
third and ore word belonging to the slowest one third of al the
words. This siggests that in conversationa speed, speed rate
isusualy nat uniform within a sentence.

In fact, the measure defined in Eq. (1) can aso be gplied to
subword units, thus allowing us to cdculate the ROS of
phores. Using this measure, we studied the phore’s ROS
variation within words vs. within sentences. Fig. 2 shows a
histogram of the standard deviation of the phone’'s ROS within
words and within sentences for al training data, suggesting
that the word is a better unit than the sentence for ROS
modeling, because the average phore-level ROS variation
within aword is sgnificantly smaller than within a sentence
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Figure 2: Histogram of standard deviation d phone-level
ROS: within words vs. within sentences

3. RATE-DEPENDENT ACOUSTIC
MODELING

In our proposed method, each word is given parallel fast- and
slow-version pronurtiations in the reagrition lexicon. Both



fast- and slow-version gronurciations are initialized from the
original rate-independent version, with the simple replacement
of rate-independent phones by rate-spedfic phones. For
example, the origina rate-independent pronurciation of
“WORD” is /w e d/. Consequently the fast-version
pronunciation is /w, er, d/ and the slow-version /w,_ er_ d/,
consisting o fast and dow phones, respedively. The
recognizer automaticaly finds the best pronurtiations that
maximize the likelihood score during the search, and thus
avoids the need for ROS estimation before recognition. In
addition, the seach algorithm is alowed to seled
pronunciations of different rates acrossword boundaries, thus
coping with the problem of speed rate variation within a
sentence

3.1. Acoustic Training

Our initial experiments were based on SRI's 1998 Hub-5
evaluation system, which uses continuows-density genonic
hidden Markov models (HMMs) [5]. The origina evauation
system used a multipass recognition strategy [6], but for the
sake of simplicity, we ran our experiments with only the first-
pass remgnizer, based on gender-dependent non-crosswvord
genoric HMMs (1730 genores with 64 Gausdans ead for
male, 1458 genores for female) and a bigram grammar with a
33,25-word vocabulary. The recogrition lexicon was derived
from the CMU V0.4 lexicon with stressinformation stripped.
The remgnizer used a two-pass (forward pass and badkward
pasg Viterbi bean seach algorithm; in the first passa lexicd
treewas used in the grammar backoff node to speed upseach.
Below we report results from the backward pass The features
used were 9 cepstral coefficients (C1-C8 plus C0O) with their
first- and second-order derivatives in 10ms time frames. The
aoustic training corpus containing 121,000 male sentences
and 149000 female sentences came from (A) Maaophore
telephore speech, (B) 3,094 conversation sides from the BBN-
segmented Switchboard-1 training set (with some hand-
corrections), and (C) 100 CalHome English training
conversations.

We first cdculated the ROS for all the words in the training
corpus based on the &ove-mentioned measure, sorted these
words acordingly, and then split them into two caegories:
fast and slow. The ROS threshdld for splitting was sleded to
adhieve equa amounts of training data for the fast and the slow
speed. The training transcriptions were labeled acordingly.
We then prepared a spedal training lexicon: words with a fast
label were given the fast-version pronunciation, and words
with a slow label the slow-version gronunciation. In this way,
we were able to train the fast and slow models smultaneously.

We used DECIPHER genonic training tools to do standard
MLE (Maximum Likelihood Estimation) gender-dependent
training [5] and oltained rate-dependent models with 3233

genores for male speed and 2501genones for female speed.
The genone dustering for rate-dependent models used the
same information loss threshdd as the training of rate-
independent models.

We mmpared the rate-dependent acoustic model with the rate-
independent aoustic model (baseline system) on a
development data set, which is a subset of the 1998 Hub-5
evaluation data set, consisting of 1143 sentences from 20
spedkers (9 male, 11 female). Table 1 shows the word error
rate (WER) for both models. Note that all the results reported
here ae based on spe&ker-independent within-word triphone
aomustic models and bigram language models, and are
therefore nat comparable with that of the full evauation
system.

male |female| all

rate-independent model 55.3 | 63.4 | 59.8

rate-dependent model from training 529 | 61.9 | 579

Table 1: WER comparison ketween the baseline system with
rate-independent model and the system with rate-dependent
model on the development data set

Rate-dependent modeling brings an absolute WER reduction
of 1.9%, which is gatistically significant. To eliminate the
possble dfed of different numbers of parameters, we adjusted
the information loss threshald for genone dustering to oltain
ancther rate-independent model that had a number of
parameters smilar to that of the rate-dependent model in size
However, we did nd observe aly improvement from the
incressed rumber of parameters. This suggests the win is
indeed dueto the introduction of rate dependency.

3.2. Adaptation vs. Standard Training

In our previous work on the Broadcast News corpus (Hub 4
[3], instead of using the training method described above, we
trained the rate-dependent model based on a modified
Bayesian adaptation scheme [7], by adapting the rate-
independent modd to rate-spedfic data to oktain rate-spedfic
models. This was motivated by the small amount of available
training data relative to the model size In [3], we used a
baseline system with a very large model comprising 256000
Gausdans, and clasdfied the training data into three
caegories: fast, dow, and medium. For this model size the
training data was not sufficient to perform standard training.
However, in the current task of Hub-5 telephore speed
transcription we had significantly more training dita, and we
used a different strategy to partition the data into two classes
instead of three yielding more training cbta for ead rate dass
In addition, the optimal models we started with were smaller.
Thus, we were ale to train the rate-dependent model robustly
with standard training methods. For comparison we tested the
Bayesian adaptation approach that we used in [3] on the
current training set. Similar to [3], even though we used




separate rate-spedfic models for each triphore, we did na
crede separate pies of the genores, but let the fast and slow
models for a given triphone share the same genone. In this
way, we used the same number of Gausdans for the rate-
dependent model as for the rate-independent model.

Table 2 shows the results on the same development data set we
used in the previous edion. We seethat this approach brings a
win of 1.0% over the baseline, lessthan the standard training
scheme. This indicates that the difference between fast and
dow speed in the aoustic space is sgnificant, and that
standard training might be better than the previous adaptation
scheme to capture this difference In fact, standard training
optimizes the parameter tying for the rate-dependent model,
resstimates the HMM transition probabiliti es, and performs
multiple iterations of parameter reestimation; wheress the
adaptation approach does not recompute genonic clustering,
does not change the transition probabilities, and includes only
one iteration of reestimation for the rate-dependent model on
top d the rate-independent model. These differences might
explain why the adaptation scheme did na achieve & much
improvement as the standard training.

handcrafted phoretic pronurciations describing various kinds
of pronurtiation reduction phenomena for these multiwords,
we adieved better modeling of crossword coarticulation. In
SRI's 2000 evauation system, 1389 multiwords were
introduced. Experiments dowed that the multiword
pronunciation modeling brought about a 4.0% absolute win on
top d theimproved baseline system in Table 3, [8].

We tried applying aur rate-dependent modeling approach to
the multiword-augmented beseline system by treding the
multiwords as ordinary words. In this case, we obtained a
smaller win of 0.5% , as own in Table 4. (Compared to
Table 3, a small part of the baseline WER reduction -- about
1.3% absolute -- comes from other improvements, such as
variance normali zation and pronurciation probabiliti es.)

male |female| all

WER of baseline system 44.3 | 53.3 | 49.3

WER of rate-dependent system 43.6 | 53.0 | 48.8

male |female| all

rate-independent model 55.3 | 63.4 | 59.8

rate-dependent model from adaptation | 54.0 | 62.6 | 58.8

Table 2: WER comparison ketween the baseline system with
rate-independent model and the system with rate-dependent
model from adaptation on the devel opment set

4. EXPERIMENTSIN THE 2000 NI ST
HUB-5 EVALUATION SYSTEM

For the March 2000 NIST Hub-5 benchmark, numerous
improvements were made to SRI’s 1998evauation system [8],
and the baseline system had been enhanced substantialy.
Below we show some minimal pair experiments based on
different baseline systems during the development process
The baseline system in Table 3 used a wider-band front end
(with 13 cepstral coefficients instead of 9), and vocd trad
length (VTL) normalizaion[9] duringtraining. As we can see
the win from introducing word-level rate dependency is dill
1.9%, over abaseline that was itself improved by 50%.

male female| all

WER of baseline system 50.6 | 57.9 | 54.6

WER of rate-dependent system 49.2 | 55.6 | 52.7

Table 3: Minimal pair comparison besed on an improved
baseline system using a wider front end and VTL
normalization on the development set

Ancther major addition to the evaluation system was the
introduction o multiword pronurciations. A multiword is a
high-frequency word bigram or trigram, such as “a lot of”, that
is handed as a singe unit in the vocébulary. By using

Table 4: Minimal pair comparison based on a multiword-
augmented baseli ne system on the devel opment set

The possble reasons for the diminished eff ectiveness of ROS
modeling may lie in the following aspeds. First, ead
multiword is given multiple parallel pronunciations refleding
bath full and reduced forms. This by itself models fast and
sow speed variants to some extent. However, since this
affeds only the 1389multiwords, there should still be room for
improvement from rate-dependent modeling. Second, by
treging multiwords as ordinary words, we fail to model the
rate variation occurring within the multiwords, and thus may
influence the quality of the rate-dependent acoustic models.
Third, dwe to aur current implementation, the introduction o
multiwords made the seach much more expensive than before;
rate-dependent modeling on top d the multiword dctionary
made this problem even worse, and may have produced a loss
in performance due to search pruning.

Based on the @&ove aayss, we tested ancther scheme:
instead of treaing multiwords as ordinary words we trained
them with multiword-specific phore units, that is, using
separate phonetic models to describe the multiwords. Similar
to the origina approad, we trained three d¢asses of phore
models smultaneously: fast models for ordinary words, slow
models for ordinary words, and a separate set of phore models
trained orly on the multiword data. With this approach, we
improved the WER reductionto 0.7%, as shownin Table 5.

male |female| all

WER of baseline system 44.3 | 53.3 | 49.3

WER of rate-dependent system 43.6 | 52.6 | 48.6

Table 5: Minima pair comparison on the development set
between the multiword-augmented baseline system and the
rate-dependent system with multiword-specific phone models




Finally, we replicaed the same experiment on the 2000 Hub-5
evaluation data set, which contains 4466 sentences from 80
spedkers (29 male, 51 female), aso oltaining a win of 0.7%
absolute (which is datistically significant for this data set), as
listedin Table 6.

male female| all

WER of baseline system 40.0 | 41.8 | 41.2

WER of rate-dependent system 39.7 | 41.0 | 40.5

Table 6: Minimal pair comparison on the 2000 NIST Hub-5
evaluation set between the multiword-augmented beseline
system and the rate-dependent system with multiword-spedfic
phore models

5. CONCLUSIONS AND FUTURE WORK

We proposed a rate-dependent acoustic modeling scheme,
which is able to model within-sentence speed rate variation,
and daes not rely on ROS estimation prior to recogntion.
Experiments how that this method resultsin a 1.9% (absolute)
word error rate reduction on a Hub-5 telephore speeth
transcription test set. When combined with multiword
pronunciation modeling, our method led to a win of 0.7% on
the same data set, and a statisticaly significant win of 0.7% on
the LVCSR 2000eval uation set.

Our current approach uses identicd pronunciations but
different phore units to model fast versus dow speed. We are
currently investigating several alternative approadhes, such as
making both phones and pronunciations rate spedfic, and a
more general way to acourt for crossvord pronunciation
variation that does nat require multiwords.
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