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ABSTRACT

In thispaper, wedescribetheuseof apowerful machine
learning scheme, Support Vector Machines (SVM),
within the framework of hidden Markov model (HMM)
based speech recogni tion. The hybrid SVM/HMM
system has been developed based on our public domain
toolkit. The hybrid system has been evaluated on the
OGI Alphadigits corpus and performs at 11.6% WER,
ascomparedto 12.7%with a triphonemixture-Gaussian
HMM system, while using only a fifth of the training
data used by triphone system. Several important issues
thatariseout of thenatureof SVM classifiershave been
addressed. We are in the process of migrating this
technology to large vocabulary recognition tasks like
SWITCHBOARD.

1. INTRODUCTION

Speech recogni t i on can be vi ewed as a pattern
recognitionproblemwherewedesireeachuniquesound
to be di st i ngui shabl e f rom al l other sounds.
Tradi tional ly statistical models, such as Gaussian
mixture models, have been used to “ represent” the
various modal i ties for a given speech sound. The
parameters of the Gaussians are estimated using a
Maximum Likel ihood (ML) cri terion [1] . The ML
formulation for the representation of the acoustic space
does not necessari ly translate to better recogni tion
performance since most of the optimization effort is
spent i n l earning the intri cacies of the trai ni ng
distributions.

Extensions of the HMM learning paradigm involving
discriminative training techniques such as Maximum
M utual I nf ormat i on (M M I ) and M i ni mum
Classi fi cati on Error (MCE) attempt to estimate
parameters usi ng both posi t i ve and negat i ve
exampl es [ 2] . Though they gi ve consi stent
improvements in recogni tion performance, these
techniques are computationally very expensive and are,
thus, limited to small vocabulary tasks.

2. SUPPORT VECTOR MACHINES

Classifiers are typically optimized based on some form
of risk minimization.Empiricalrisk minimizationis one
of themostcommonlyusedtechniquewherethegoal is
to find a parameter setting that minimizes the risk:

, (1)

where is the set of adjustable parameters and ,
are the expected output and given input, respectively.
However, minimizing doesnotnecessarilyimply
thebestclassifierpossible.For example,Figure1 shows
a two-class problem and the corresponding decision
regions in the form of hyperplanes. All the hyperplanes

, and achieve perfect classification and,
hence, zero empirical risk. However, is the optimal
hyperplane because it maximizes the distance between
the margins and , thereby offering better
generalization [4]. This form of learning is an example
of Structural Risk Minimization (SRM) where the aim
is to learn a classifier that minimizes a bound on the
expected risk, rather than the empirical risk [4]. SVM
learning is based on this SRM principle.
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Figure 1: 2-class hyperplane classifier example
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The power of SVMs lies in their ability to transform
datato ahighdimensionalspacewherethedatacanbe
separatedusinga linearhyperplane.The optimization
processfor SVM learning thereforebegins with the
definitionof a functionalthatneedsto beoptimizedin
terms of the parametersof a hyperplane. The
functional is defined such that it guaranteesgood
classification (if not perfect classification) on the
training dataandalsomaximizesthe margin (e.g. the
distancebetweenH1 andH2 in Figure1). The points
that lie on the hyperplane satisfy,

(2)

where is thenormalto thehyperplaneand is the

bias of the hyperplanefrom the origin. Let the
training examples be represented as tuples

where are the class

labels. They satisfy the following constraints,

(3)

Thedistancebetweenthemarginscanbeshown to be
[4]. The goal of the optimization process

shouldbe to maximize the margin. Posingthis as a
quadraticoptimizationproblemhasseveraladvantages
and the functional can be compactly written as,

(4)

where the ‘s are Lagrange multipliers.

As observed previously, only a few trainingexamples
have an impact on the functional and the optimal
decisionsurface.This translatesto the fact that,at the
endof the optimizationprocess,only a small percent
of the training exampleshave non-zeromultipliers.
TheseexamplesarecalledSupportVectors.Note that
we have assumedthatthedataareperfectlyseparable.
This is not thecasein mostrealdata.This problemis
handled by introducing slack variables into
Equation3:

. (5)

Note that the number of training errors can be

characterized by .

We now have to address the need for learning
classifiers that define non-linear decision regions.
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Notice that the linearity in the SVM design is
manifestedin thedot products.Supposewe transform
thedatainto a higherdimensionspacewherethedata
is linearly separable.The theory we have developed
thus far holds in this case.So one could envision
replacingall ‘s with ‘s in the above formulation

wherethe ‘s arein thehigh dimensionalspace.The
theory of Kernel functions is usedto avoid dealing
directly with the high dimensional space and the
excessive computations that result from such
transformations[4,5].

Some of the commonly used kernels include,

(polynomial) (6)

(RBF). (7)

The final classifier takes the form,

(8)

where is thenumberof supportvectors.Theclassto

which a sample belongs is decided by the sign of.

3. HYBRID ASR SYSTEM

One significant drawback in SVMs is that, they are
inherentlystatic classifiers— they do not implicitly
model temporalevolution of data. HMMs have the
advantageof beingable to handledynamicdatawith
certain assumptions about stationarity and
independence[3]. Taking advantageof the relative
strengthsof these two classificationparadigmswe
havedevelopedahybrid SVM/HMM systemusingour
public domain speechrecognition toolkit [9]. The
toolkit includesa cepstralfront-end,a Viterbi decoder
capableof generatingandrescoringword-graphsanda
Baum-Welch training module.This systemprovided
all componentsfor the HMM portion of the hybrid
systemarchitecture.For estimatingSVMs we useda
publicly available toolkit, SVMLight[6].

An important issuethat had to be addressedin this
hybrid systemis the fact thatSVMs outputa distance
measure, while the Viterbi decoding algorithm
typically uses likelihoods or posterior probabilities.
We thereforeestimatea warping function that maps
SVM distancesto posteriorprobabilities.There are
severalwaysonecoulddo this. Oneway would be to
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estimatethe class-conditionaldensitiesbasedon the
histogram of the SVM distancesfor positive and
negative examples.A posteriorcanthenbe estimated
usingtheBayesrule.A simplerapproachto estimating
theposterioris to assumethatposteriortakestheform
of a sigmoid, and directly estimate the sigmoid[10].

(9)

In order to avoid severe bias in the distancesfor the
training data, the free parameters, and are
estimatedon a cross-validationset.Oncewe have the
posteriors,we replace the Gaussiansin the HMM
system with the SVM classifiers.

4. EXPERIMENTAL SETUP

Figure 3 shows the hybrid architectureusedfor the
recognition experiments.Given the SVM classifiers
andan HMM systemonewould first attemptto train
theclassifierson framelevel dataandusethemasthe
classifiers in each state of the HMM. Since each
classifier is trained as a one-vs-all classifier, the
amount of training data is significant. To avoid
burdening the quadraticoptimizer, we choseto use
segment-level datafor our initial experiments.Using
segment-level dataalsomeansthat theHMMs we use
are simple one stateHMMs, thoughone could train
classifiers for multi-state HMMsas well [7].

The HMM systemis usedto generatealignmentsat
the phonelevel andeachphoneinstanceis treatedas
one segment. Since each segment could span a
variable duration, we need to use some form of
sampling to arrive at a fixed length vector for
classification.Severalmethodshave beenattemptedin
this regard based on fixed and variable sampling
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techniques[11, 12]. One approachis to divide the
segmentinto threeregionsin asetratioandconstructa
compositevector from the meanvectorsof the three
regions. In our experiments we chose to follow
empirical evidence and divide the frames in the
segment into three regions in a 3-4-3 proportion.
Figure 2 shows an example for constructing a
composite vector for a phone segment. SVM
classifiers in our hybrid system operate on such
composite vectors.

At decodetime, we get the segmentationinformation
using a baseline HMM system— a cross-word
triphonesystemwith 8 Gaussianmixturesper state.
Composite vectors are generatedfor each of the
segmentsandposteriorprobabilitiesarehypothesized
thatareusedto find thebestword sequenceusingthe
Viterbi decoder. A better methodology to follow
would beto generatesegmentationsfor thehypothesis
in an N-best list and reorder the list using the
likelihoods generated by the SVMs[7].

5. RESULTS

Thehybrid architecturehasbeenbenchmarkedon the
OGI alphadigit corpusthat has a vocabulary of 36
words[8]. We used 29 phones to represent the
pronunciationsof the words,andthereforetrained29
SVM classifiers. The baseline HMM system was
trainedon 39-dimensionalfeaturevectorscomprised
of 12 cepstral coefficients, energy, delta and
accelerationcoefficients.The training sethad50,000
sentencesaveraging6 words a sentence.The SVM
classifierswere trained using the compositefeature
vectors generatedfor only 9000 training sentences.

Figure 3: Hybrid system architecture
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Figure 2: Example of a composite vector construction
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Thetestsetwasanopen-loopspeaker independentset
with 1000 sentences.The compositevectorsare also
normalizedto the range(-1,1) to avoid convergence
problems with the quadratic optimizer.

Table1 shows theperformanceof thehybrid systemin
its variousconfigurations.Thesystemperformsbetter
than the baselinecross-word triphone HMM system
with 8 Gaussianmixture componentsper statewhich
gives 12.7% WER on this dataset. The best
performance is achieved when the ratio of the
segments in the composite feature vector is 3-4-3
which is in agreementwith our notionthatmostof the
information in a 3-state HMM is provided by the
central state.From the resultswe also note that the
RBF kernelis typically betterat classificationthanthe
polynomial kernels owing to its ability to model
decisionregionswhereoneclassenclosestheother. In
termsof resourceusagethe SVM systemshave about
13000 unique support vectors. This is an order of
magnitudelessthanthe numberof free parametersin
the cross-word triphone HMM system.

6. SUMMARY

In this work we have developed a paradigm for
integratingSVMs into anHMM framework. Thegoal
of this work was to augmentHMMs with powerful
classifiers,SVMs, that are trained discriminatively.
Resultson the OGI Alphadigits data show that the
hybrid systemgives a significant improvement(10%
relative) over the baselineHMM systemwhile using
only a fifth of the training data. We expect that
extending this approachto processN-best lists will
give us further gains, especiallyin large vocabulary
taskslike SWITCHBOARD. We arein theprocessof
developinga methodto convert variablelengthfeature
vectors into a fixed length vector based on the
sufficient statisticsgeneratedusing the Baum-Welch
algorithm.
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segment
ratio

polynomial kernel
RBF

kernel
order-4 order-6

1-1-1 13.2 13.6 12.8

3-4-3 12.1 13.4 11.6

2-4-2 13.1 13.5 12.5

Table 1: Performance of the hybrid system on OGI
alphadigits (numbers show percent word error rate)
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