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ABSTRACT

In this paperwe describehe useof a powverful machine
learning scheme, Support Vector Machines (SVM),
within the framework of hidden Markov model (HMM)
based speech recognition. The hybrid SYM/HMM
system has been developed based on our public domain
toolkit. The hybrid system has been evaluated on the
OGI Alphadigits corpus and performs at 11.6% WER,

ascomparedo 12.7%with atriphonemixture-Gaussian

HMM system, while using only afifth of the training
data used by triphone system. Several important issues
thatariseout of the natureof SVM classifiershave been
addressed. We are in the process of migrating this
technology to large vocabulary recognition tasks like
SWITCHBQARD.

1. INTRODUCTION

Speech recognition can be viewed as a pattern
recognitionproblemwherewe desireeachuniquesound
to be distinguishable from all other sounds.

Traditionally statistical models, such as Gaussian
mixture models, have been used to “represent” the
various modalities for a given speech sound. The
parameters of the Gaussians are estimated using a
Maximum Likelihood (ML) criterion [1]. The ML

formulation for the representation of the acoustic space
does not necessarily translate to better recognition
performance since most of the optimization effort is
spent in learning the intricacies of the training
distributions.

Extensions of the HMM learning paradigm involving
discriminative training techniques such as Maximum
Mutual Information (MMI) and Minimum
Classification Error (MCE) attempt to estimate
parameters using both positive and negative
examples[2]. Though they give consistent
improvements in recognition performance, these
techniques are computationally very expensive and are,
thus, limited to small ecatulary tasks.

2. SUPPORT VECTOR MACHINES

Classifiers are typically optimized based on some form
of risk minimization.Empiricalrisk minimizationis one
of themostcommonlyusedtechniquewvherethe goalis
to find a parameter setting that minimizes the risk:

I
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Remp(a) il > |yi - f(x, G)| , )
=1

where a isthe set of adjustable parametersand y; , X;
are the expected output and given input, respectively.
However, minimizing Remp doesnotnecessarilymply
the bestclassifierpossible For example,Figurel showvs
a two-class problem and the corresponding decision
regions in the form of hyperplanes. All the hyperplanes
CO0, C1 and C2 achieve perfect classification and,
hence, zero empirical risk. However, CO isthe optimal
hyperplane because it maximizes the distance between
the margins H1 and H2, thereby offering better
generalization [4]. This form of learning is an example
of Structural Risk Minimization (SRM) where the aim
isto learn a classifier that minimizes a bound on the
expected risk, rather than the empirical risk [4]. SVM
learning is based on this SRM principle.
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Figure 1: 2-class hyperplane classifier example
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The power of SVMs lies in their ability to transform
datato a high dimensionakpacewvherethedatacanbe
separatedisinga linear hyperplane The optimization
processfor SVM learning thereforebegins with the
definition of a functionalthatneedgo be optimizedin
terms of the parametersof a hyperplane. The
functional is defined such that it guaranteesgood
classification (if not perfect classification) on the
training dataand also maximizesthe maygin (e.g.the
distancebetweenH1 andH2 in Figurel). The points
that lie on the yperplane satisfy

wX+b =0 (2

wherew is the normalto the hyperplaneandb is the
bias of the hyperplanefrom the origin. Let the N

training examples be represented as tuples
{Xi’yi}’i =1,..,N where y = +1 aretheclass
labels. Thg satisfy the follaving constraints,

yi(X; (w+b)-1=0 i (3)

The distancebetweenthe mamgins canbe shavn to be

2/|wl| [4]. The goal of the optimization process
should be to maximize the margin. Posingthis as a

guadraticoptimizationproblemhasseveraladvantages
and the functional can be compactly written as,

1 2 N N
z”W” - > O(iyi(Xi [+ b) + > Q (4)
i=1 i=1

Lp =

where thea; ‘s are Lagrange multipliers.

As obsened previously, only a few training examples
hase an impact on the functional and the optimal
decisionsurface.This translatego the factthat, at the
end of the optimizationprocesspnly a small percent
of the training exampleshave non-zeromultipliers.
Theseexamplesare called SupportVectors.Note that
we have assumedhatthe dataare perfectlyseparable.
This is not the casein mostreal data.This problemis

handled by introducing sladk variables into
Equation3:
yi(x; w+b)-1+¢&,;>0 Oi . (5)

Note that the number of training errors can be
characterized by?_zi .

We now have to addressthe need for learning
classifiers that define non-linear decision regions.

Notice that the linearity in the SVM design is
manifestedn the dot products.Supposeave transform
the datainto a higherdimensionspacewherethe data
is linearly separableThe theory we have developed
thus far holds in this case.So one could ervision

replacingall x; ‘s with X; ‘s in the above formulation

wherethe X's arein the high dimensionakpaceThe
theory of Kernel functionsis usedto avoid dealing
directly with the high dimensional space and the
excessve computations that result from such
transformation$4,5].

Some of the commonly useérkels include,

K(x,y) = (xOy+ 1)d (polynomial) (6)

K(x,y) = exp{-YIx—y|’} (RBF). (7)
The final classifier tads the form,
L
f(x)= Z aiyiK(x, X)+Db (8)

i=1
whereL is thenumberof supportvectors.Theclassto
which a sample belongs is decided by the sigh of

3. HYBRID ASR SYSTEM

One significantdravback in SVMs is that, they are
inherently static classifiers— they do not implicitly

model temporal evolution of data. HMMs have the
advantageof beingableto handledynamicdatawith

certain assumptions about stationarity and
independencgB]. Taking adwantageof the relative

strengthsof thesetwo classificationparadigmswe

have developeda hybrid SVM/HMM systenusingour

public domain speechrecognition toolkit [9]. The
toolkit includesa cepstraffront-end,a Viterbi decoder
capableof generatingandrescoringvord-graphsanda
Baum-Welch training module. This systemprovided
all componentdor the HMM portion of the hybrid

systemarchitecture For estimatingSVMs we useda
publicly available toolkit, SVMLight[6].

An importantissuethat had to be addressedn this
hybrid systemis the factthat SVMs outputa distance
measure, while the Viterbi decoding algorithm
typically useslikelihoods or posterior probabilities.
We thereforeestimatea warping function that maps
SVM distancesto posterior probabilities. There are
seseralwaysonecould do this. Oneway would be to



estimatethe class-conditionablensitiesbasedon the
histogram of the SVM distancesfor positve and
negative examples.A posteriorcanthenbe estimated
usingtheBayesrule. A simplerapproacho estimating
the posterioris to assumehatposteriortakesthe form
of a sigmoid, and directly estimate the sigmdid].

1
1+ exp(Af +B)

In orderto avoid severe biasin the distancedor the
training data, the free parameters,A and B are
estimatedon a cross-alidationset.Oncewe have the
posteriors,we replacethe Gaussiansn the HMM
system with the SVM classifiers.

p(y[f) = 9)

4. EXPERIMENTAL SETUP

Figure 3 shaws the hybrid architectureusedfor the
recognition experiments.Given the SVM classifiers
andan HMM systemonewould first attemptto train
the classifierson framelevel dataandusethemasthe
classifiersin each state of the HMM. Since each
classifier is trained as a one-vs-all classifier the
amount of training data is significant. To avoid
burdeningthe quadraticoptimizet we choseto use
seggment-level datafor our initial experiments.Using
seggment-lerel dataalsomeanghatthe HMMs we use
are simple one state HMMs, though one could train
classifiers for multi-state HMMas well [7].

The HMM systemis usedto generatealignmentsat
the phonelevel and eachphoneinstanceis treatedas
one segment. Since each seggment could span a
variable duration, we need to use some form of
sampling to arrive at a fixed length vector for
classificationSeveralmethodshave beenattemptedn
this regard basedon fixed and variable sampling
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Figure 2: Example of a composite vector construction
using a 3-4-3 proportion

techniquegll, 12]. One approachis to divide the
segmentinto threeregionsin asetratioandconstructa
compositevector from the meanvectorsof the three
regions. In our experiments we chose to follow
empirical evidence and divide the frames in the
segment into three regions in a 3-4-3 proportion.
Figure 2 shavs an example for constructing a
composite vector for a phone sggment. SVM
classifiersin our hybrid system operate on such
composite ectors.

At decodetime, we get the sggmentationinformation

using a baseline HMM system— a cross-vord

triphone systemwith 8 Gaussianmixtures per state.
Composite vectors are generatedfor each of the

seggmentsand posteriorprobabilitiesare hypothesized
thatareusedto find the bestword sequenceaisingthe

Viterbi decoder A better methodology to follow

would beto generatessegmentationgor the hypothesis
in an N-best listand reorder the list using the

likelihoods generated by the SVIVR.

5. RESULTS

The hybrid architecturehasbeenbenchmarkd on the
OGI alphadigit corpusthat has a vocalulary of 36
words[8]. We used 29 phonesto representthe
pronunciationof the words, andthereforetrained29
SVM classifiers. The baseline HMM system was
trained on 39-dimensionafeaturevectorscomprised
of 12 cepstral coeficients, enegy, delta and
acceleratiorcoeficients. The training set had 50,000
sentenceswveraging6 words a sentence.The SVM
classifierswere trained using the compositefeature
vectors generatedfor only 9000 training sentences.

HMM
mel-cepstral data o
+ - recognition
convert to
segmental data - segment
information

| hybrid decoder

hypothesis

o

Figure 3: Hybrid system architecture




Thetestsetwasan open-loopspealer independenset
with 1000 sentencesThe compositevectorsare also
normalizedto the range(-1,1) to avoid corvergence
problems with the quadratic optimizer

Tablel shovsthe performancef the hybrid systemin

its variousconfigurationsThe systemperformsbetter
than the baselinecross-vord triphone HMM system
with 8 Gaussiarmixture componentger statewhich
gives 12.7% WER on this dataset. The best
performanceis achiased when the ratio of the
sgmentsin the compositefeature vector is 3-4-3
whichis in agreementvith our notionthatmostof the
information in a 3-state HMM is provided by the
central state. From the resultswe also note that the
RBF kernelis typically betterat classificatiorthanthe
polynomial kernels owing to its ability to model
decisionregionswhereoneclassenclosetheother In

termsof resourceusagethe SVM systemshave about
13000 unique supportvectors. This is an order of

magnitudelessthanthe numberof free parametersn

the cross-wrd triphone HMM system.

6. SUMMARY

In this work we have developed a paradigm for
integrating SVMs into anHMM framework. The goal
of this work was to augmentHMMs with powerful
classifiers,SVMs, that are trained discriminatizely.
Resultson the OGI Alphadigits data shov that the
hybrid systemgives a significantimprovement(10%
relative) over the baselineHMM systemwhile using
only a fifth of the training data. We expect that
extending this approachto processN-best lists will

give us further gains, especiallyin large vocahulary
taskslike SWITCHBQARD. We arein the processof
developinga methodto cornvertvariablelengthfeature
vectors into a fixed length vector based on the
sufficient statisticsgeneratedusing the Baum-Welch
algorithm.

segment polynomial kernel RBE
ratio order-4 | order-6 | €Me!
1-1-1 13.2 13.6 12.8
3-4-3 121 13.4 11.6
2-4-2 13.1 135 125

Table 1: Performance of the hybrid system on OGI
alphadigits (numbers show percent word error rate)
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