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ABSTRACT

This paper describes the year 2000 BBN Byblos Mandarin large
vocabulary conversational speech recognition (LVCSR) system,
the winning (and only) Mandarin system from the Spring 2000
Hub-5 evaluation sponsored by NIST.  We first outline the
training and decoding procedures used in the system, and
describe the performance of the system used in the evaluation.
We then describe the effect of several features that were not in
the evaluation system but have been added since, including
Jacobian compensated Vocal Tract Length Normalization
(VTLN), system combination, a higher number of system
parameters, and additional training data.  Together these give an
additional 5.4% relative improvement on character error rate
(CER) from the evaluation system.

1. INTRODUCTION

This paper describes the BBN Byblos Mandarin system that was
entered in the Spring 2000 NIST LVCSR evaluation.  The
evaluation test consisted of twenty 5-minute conversations of
fluent Mandarin taken from the CallHome database.  The BBN
system was the only system entered in the Mandarin evaluation
and achieved a character error rate (CER) of 57.1% on the
Eval2000 test set.

BBN’s Mandarin system was developed for this evaluation in the
relatively short time of about 7 weeks.  In the last Hub-5
Mandarin evaluation in 1997, the Department of Defense
submitted the winning system [1], which was a version of BBN’s
Byblos recognition system that included a number of refinements
introduced by DOD researchers.  These refinements included an
optimized phoneme set, a better phonetic dictionary with tone
specifications, and more language modeling data.  Although built
using Byblos, this system was unfortunately unavailable to us in
the time we had to develop this year’s system.  This year’s system
was developed from a significantly older baseline system, run by
BBN five years ago for the 1995 Hub-5 Mandarin evaluation,
which lacked a number of features we have introduced into
Byblos recognition system since then.

Fortunately, the development of this year’s system was simpli fied
by the general philosophy of using language-independent
technologies wherever possible.  Specifically, most of the
development was focused on integrating and testing the features
that have proven most successful in BBN’s English version of the
Byblos system.  We have found that this approach not only saves

development time but that most improvements to our speech
recognizer are useful across languages.

There were a number of features that were not incorporated in the
evaluation system because of a lack of time but that were added
to the system after the evaluation.  These changes yielded an
additional 5.4% relative improvement from the submitted
system’s CER.

The outline of this paper is as follows. We first give an overview
of the task, including a review of the properties of the Mandarin
language and a description of the evaluation data set. We then
describe the Byblos recognition system and the specific
configuration of the system at the time of the evaluation.  Finally,
we describe experiments involving a number of improvements
made to the system after the evaluation.

2. TASK DESCRIPTION

2.1. Fundamentals of Mandarin
Mandarin is the standard dialect of Chinese.  Unlike English,
Chinese is character-based and words are not well -defined units.
Chinese words consist of either one character alone or compound
words consisting of two or more characters.  The word
boundaries are ambiguous, and the word boundaries are not
customarily marked in written Chinese text.

Each character’s pronunciation consists of a single syllable and
each syllable in turn consists of an initial consonant, a medial
vowel, a central vowel, and a syllabic ending, where the initial
consonant, the medial vowel, and the syllabic ending are optional.
There are 24 initial consonants, 4 medial vowels, 13 central
vowels, and 4 syllabic endings in total.  Tone, the movement of
pitch, also plays a major role in Chinese.  Each character can
have one of five tones and there are sets of characters that can be
distinguished from each other only by their tone.  With more than
6,000 frequently used characters, and only approximately 1,300
tone-specific syllables (approximately 400 non-tone-specific
syllables), each character can have many homophones.

2.2. Challenges of the Task

In addition to the usual challenges of recognizing fluent
conversational speech, and the unique characteristics of Mandarin



described in the last section, several other factors contribute to the
diff iculty of this task.  First, the amount of the acoustic training
data is small , consisting of 100 CallHome conversations, or about
15 hours of speech.  Second, the amount of language model
training data is also small , consisting of the same 100 CallHome
conversations used for acoustic model training plus 42 CallFriend
transcriptions.  An n-gram grammar on the character level would
have a much higher perplexity than a n-gram grammar on the
word level.  The higher perplexity along with the high number of
homophones on the character level would result in a much higher
CER.  Thus, we have chosen to use a grammar that is on the word
level.  The 100 CallHome conversation transcriptions are
segmented on the word level.  Because of the ambiguous nature
of word boundaries in Chinese, it was diff icult to obtain
additional transcriptions similarly segmented on the word level
for training the language model.  Third, the CallHome
conversations are international telephone calls recorded over the
telephone line.  Crosstalk and background noises such as babies
crying and car noises can be heard in the recording.  Lastly, the
telephone callers vary significantly in their background, the
pronunciation variation and the different accents of the callers all
increase the diff iculty of this Mandarin task.

2.3 Data Set

All the systems described in this paper were trained on the
CallHome training set or a combination of the CallHome and
CallFriend training sets.  The CallHome training set consists of
100 CallHome conversations, or a total of 15 hours of speech; the
CallFriend training set consists of 42 CallFriend conversations, or
a total of 20 hours of speech (CallFriend conversation segments
are typically longer than CallHome).

The systems were tested on the 1995 (Eval95), 1997 (Eval97),
and 2000 (Eval2000) CallHome Mandarin evaluation sets.  These
test sets each contain 20 different telephone conversations, with
each conversation containing about five minutes of speech.

3. EVALUATION SYSTEM DESCRIPTION

3.1. Signal Processing

The 2000 BBN Mandarin LVCSR system uses a single, 45-
dimensional feature stream. Features are extracted from
overlapping frames of audio data, each 25ms long, at a rate of
100 frames per second.  Each frame is windowed with a
Hamming window, and then an LPC-smoothed, Vocal Tract
Length Normalization (VTLN) warped log power spectrum is
computed for the frequency band 125-3750 Hz.  From this
spectrum, 14 Mel-warped cepstral coeff icients are computed.  We
use a gender-independent, 128 term Gaussian mixture model to
compute a maximum-likelihood VTLN warp parameter [2,3]. (In
the evaluation system, the VTLN warp was estimated using an
older method that did not compensate for the Jacobian of the
VTLN transformation; the effect of adding this compensation is
investigated in Section 4.)  The Mandarin evaluation system was
gender-independent so no gender detection calculation is
performed. The mean cepstrum and peak energy of each

conversation is removed non-causally from the appropriate sub-
vectors.  In addition, the feature vectors are scaled and translated
so that, for each conversation side, each cepstral feature has zero
mean and unit variance. These 14 base cepstral features and the
frame energy, together with their first and second derivatives,
compose the final 45-dimensional feature vector.  We have not
yet incorporated pitch in our signal processing, although we
expect this to help performance given the tonal nature of
Mandarin.

3.2. Acoustic and Language Model
Training

The acoustic training for the BBN Mandarin system builds two
sets of gender-independent models, phoneme tied mixture (PTM)
and state clustered tied mixture (SCTM) models, which are used
in the different passes of the Byblos recognizer.  The training set
used for the evaluation was the 15-hour CallHome training set
(section 4 describes the effect of training with a larger data set).
The training data is first labeled using a forced phonetic
alignment to simple bootstrapped models (64-Gaussian, PTM
models trained from flat initial estimates).  The labels are then
used to grow separate decision tree for both the Gaussian clusters

and their mixture weights clusters.∗  The five state Hidden
Markov Model (HMM) transition probabiliti es are unclustered.

Following clustering, the Gaussians for the final models are
initialized via the k-means algorithm, and finally, all the
parameters of the models are trained with three passes of the EM
algorithm.  This process is done for both the crossword SCTM
and the non-crossword PTM.  For English recognition, where
larger training sets are available, we typically model contexts
using quinphones (i.e. the preceding and following two phonetic
contexts of a phone), but with this relatively small Mandarin
training set, both SCTM and PTM models use triphone context
only.  The coarse PTM models use approximately 22,800
Gaussians (89 phonemes with 256 Gaussians each) and 6,000
mixture weight clusters, while the fine SCTM models use 32,000
Gaussians (1000 state clusters with 32 Gaussians each) and
12,000 mixture weight clusters.

The phoneme set consists of 89 tone-specific phones, and the
dictionary contains 11,600 words composed from 2191 individual
characters.  The trigram language model is trained on
transcriptions from 100 CallHome and 42 CallFriend
conversations, approximately 632,000 words in total.

3.3. Recognition
                                                          
∗ For each state in a triphone HMM, there are two levels of
parameter sharing.  The first level specifies the sharing of the
Gaussians among triphones of the same state, the second level
specifies the sharing of mixture weights among triphones of the
same state.  The Gaussian clustering tree is a subtree of the
mixture weight tree so that different distributions can share the
same set of Gaussians using separate weights.  We call the first
level sharing “Gaussian clusters” , and the second level sharing
“mixture weight clusters” .



Decoding is performed in two stages: the first stage uses speaker
independent models, the second stage uses MLLR speaker-
adapted models adapted to the recognition result from the first
stage.  The evaluation system did not use system combination.

Both the unadapted and adapted stages of decoding each use a
multi -pass recognizer [4, 5] that operates as follows: the first pass
is a forward fast match that uses non-crossword PTM models and
a bigram language model.  The second and third passes perform
backward and forward searches respectively, both using the same
PTM acoustic models but with an approximate trigram language
model.  Times and scores for word starts and ends are saved in
these passes and from this information a word lattice is created.
The next pass of the recognizer searches this lattice with
crossword SCTM acoustic models and a trigram language model;
it produces an N-best list of the top 100 ranked possible
transcriptions.  The N-best list is finally reordered using
optimized weights to get a single best hypothesis.  The evaluation
system also computed confidence scores using features generated
on the adapted stage’s N-best output.

3.4. Evaluation System Performance

Table 1 summarizes the unadapted and adapted recognition
performance of the BBN Mandarin system in terms of character
error rate (CER) on a development set (Eval97, originally the test
set for the 1997 CallHome evaluation) and on the 2000 evaluation
data (Eval2000); the evaluation system achieved 54.% CER on
the Eval97 test set and 57.1% on the Eval2000 test set.  For
comparison, the winning system for the last Hub-5 Mandarin
evaluation in 1997 achieved 53.8% on the Eval97 test set.  That
system differed from the BBN 2000 system in that it included
pitch, language model training data from broadcast domain, a
simpler VTLN system, and a larger lexicon with 27,600 words.
Given our limited development time, we were pleased to have
achieved essentially the same performance on that test set.  In the
next section we describe changes to the system made shortly after
the evaluation that significantly improved our Mandarin system
from this point.

Test Set Unadapted Adapted
Eval97 57.1% 54.0%

Eval2000 60.3% 57.1%

Table 1: Performance of the BBN 2000 Evaluation System on
the Eval97 test set and the Eval2000 test set.

4. EXPERIMENTS IN LVCSR

4.1. Increased Number of Parameters

In the evaluation system, the coarse PTM models use
approximately 22,800 Gaussians (89 phonemes with 256
Gaussians each) and 6,000 mixture weight clusters, while the fine
SCTM models use 32,000 Gaussians (1000 state clusters with 32
Gaussians each) and 12,000 mixture weight clusters.  We
suspected that we did not have enough parameters in our system.

The system contains thresholds that control the number of
Gaussian clusters and the number of mixture weight clusters
based on the amount of training data for each triphone.  By
relaxing these thresholds and increasing the number of Gaussians
per cluster, we can add more parameters to the system.  In the
new system, the coarse PTM models use approximately 22,800
Gaussians (89 phonemes with 256 Gaussians each) and 7,800
mixture weight clusters, while the fine SCTM models use 76,800
Gaussians (1,200 state clusters with 64 Gaussians each) and
21,700 mixture weight clusters.  By increasing the number of
parameters in the system, we obtained a 0.8% absolute reduction
in CER.  Table 2 summarizes the effect of increasing the number
of parameters.

Number of Parameters
PTM SCTM

CER

22,800 Gaussians
6,000 mixture weight

clusters

32,000 Gaussians
12,000 mixture weight

clusters
62.6%

22,800 Gaussians
7,800 mixture weight

clusters

76,800 Gaussians
21,700 mixture weight

clusters
61.8%

Table 2: The effect of increasing the number of parameters on
the Eval95 test set.

4.2. Additional Training Data

The training data used in the evaluation system consists of 100
CallHome conversations, roughly 15 hours of speech.  By adding
42 CallFriend conversations, we increased the amount of training
speech to 35 hours.  Table 3 summarizes the effect of adding the
CallFriend conversations: we observe a 1.2% absolute reduction
in error on the Eval95 test set.

Training Data for System
Total training

(hours)
CER

100 CallHome conversations 15 61.8%
+ 42 CallFriend conversations 35 60.6%

Table 3: The effect of increasing acoustic training data on the
Eval95 test set.

4.3. Improved VTLN with Jacobian
Compensation

VTLN attempts to normalize the cepstral feature variabilit y due
to different vocal tract lengths among speakers.  In the evaluation
system we used a maximum-likelihood VTLN (ML-VTLN)
procedure that was developed several years ago [2,3]. The ML-
VTLN approach uses a Gaussian mixture model (GMM) against
which speakers are scored at a multiplicity of warps.  The warp
that scores the highest likelihood is then taken to be the VTLN
stretch factor for that speaker.  One deficiency of this approach is
that the GMM shows an inherent li kelihood bias for cepstra at
different warps.  To compensate for this effect, the determinant of



the VTLN transformation is estimated empirically per speaker
and applied to remove this bias.  Table 4 shows the results for
adding this feature: the empirical Jacobian compensation yields a
0.9% absolute reduction in error.

System CER
VTLN without Jacobian compensation 60.6%

VTLN with Jacobian compensation 59.7%

Table 4: CERs for VTLN with and without Jacobian
compensation on the Eval95 test set.

To validate the improvements shown in sections 3.1, 3.2, and 3.3,
we tested a system with all three improvements on a second test
set, the Eval97 test set.  Specifically, we ran a system that
included more parameters, more training data, and the improved
VTLN.  Table 5 shows the improvement due to these changes for
both the unadapted and adapted recognition results.

System on Eval97 Unadapted Adapted
Evaluation System 57.1% 54.0%
+ more parameters

+ additional training data
+ Improved VTLN

54.6% 51.6%

Table 5: Comparison of performance between the baseline
evaluation system and improved system on the Eval97 test set.

4.4. System Combination

Due to lack of time, the evaluation system did not include system
combination.  To run system combination, the lattice scoring and
N-best reordering passes of the recognizer’s adapted stage are run
two additional times after adaptation, using the same adapted
models but taking as input cepstra calculated at different frame
rates, 80 and 125 frames per second.  Character-level confidences
were calculated for each of these systems using a generalized
linear model (GLM).  The major features for confidence selected
by the GLM in training include: frequency of occurrence in the
100-best list, word duration, normalized utterance acoustic score,
and the number of hypothesized silences for the utterance.
Following individual confidence generation, the results from all
three frame rates were combined using a modified ROVER
method [6], in which the vote for a hypothesized character is
weighted using the systems’ input character confidences.
Confidences on the character level for this final combined system
are again calculated using a GLM.  The major features used for
calculating the final combined system confidence include:
ROVER score, individual system confidences, and word duration.

Table 6 summarizes the character error rate and the normalized
cross entropy (NCE) for the three systems at different frame rates
and their combined system.  Using system combination in this
way gives a 0.5% absolute reduction in CER from the baseline
100 frames per second system.  The final combined system
achieved a better NCE score for its character-level confidences as
well .

System CER NCE
80 frames/second system 53.9% 0.168
100 frames/second system 51.6% 0.168
125 frames/second system 51.9% 0.156

Final combined system via
ROVER-voting

51.1% 0.179

Table 6: Performance of system combination with modified
ROVER on the Eval97 test set.

4.5. Summary

This paper has described the BBN Mandarin system that was
used in the NIST 2000 Mandarin evaluation.  We described a
system that was rapidly developed and that relied primarily on
language-independent features.  Improvements from the
evaluation system were obtained by increasing the number of
parameters in the system, adding training data, improving VTLN
with Jacobian compensation, and using system combination.
Together these improvements achieved a 51.1% CER on the
Eval97 test data, a 2.9% absolute or 5.4% relative improvement
from the baseline evaluation system of 54.0% CER.  There are a
number of other possible improvements that we plan to
incorporate in the future, including adding more language
modeling data, adding pitch information, and investigating the
use of character n-gram language models in combination with
word n-grams to help improve the character error rate on out of
vocabulary words.
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