Six Month Report • June, 2003

QUARK: The SRI/ISI AQUAINT Project

Covering the period: December, 2002 through May, 2003

Prepared by:

Doug Appelt, SRI International

John Fry, SRI International

Jerry Hobbs, USC/ISI

David J. Israel, SRI International

David Martin, SRI International

Peter Jarvis, SRI International

Susanne Riehemann, SRI International

Mabry Tyson, SRI International

Richard Waldinger, SRI Internationa

We report on our progress over the past 6 months in the development of the QUARK system. We focus on research in four main areas: Question Interpretation and Dialogue, Reasoning for Answer Decomposition and Information Resource Planning, the Incorporation of External Information Resources, and finally, the Incorporation of Information Extraction.

1. Question Interpretation and Dialogue

Our efforts in this area have focused first on providing the grammar coverage needed to produce reliable and usable interpretations of individual queries and second, on developing techniques to handle information-seeking dialogues.

With respect to the first, we begin from a very strong foundation: Gemini, which serves as the natural language interface to the analyst, is a mature, robust natural language parsing and interpretation system that has been successfully deployed in a large number of projects at SRI and elsewhere over the last ten years. Gemini accepts a typed query from the analyst, parses the query and produces a logical form that represents the meaning of the query. This logical form is then converted into a form that is usable by the SNARK theorem-prover. SNARK then transforms and decomposes the query and answers to the subqueries from various sources. Currently Gemini is only used to interpret the user's query. In the future, Gemini may also be used to generate sentences that answer the query, based on the results obtained by SNARK.

We accomplished the following Gemini-related tasks in this period:

We have compiled a broad-coverage English grammar and lexicon for use in the Aquaint project. With respect to the grammar, we have been able to leverage results from earlier projects such CommandTalk and ATIS. In addition, we have implemented new parse preference mechanisms based on specific

lexical categories and specific lexical items. This new feature

complements the two earlier parse preference features in Gemini: (i)

rule-based preferences, and (ii) Pereira-Shieber shift-reduce

preferences. The purpose of all these parse preference mechanisms is to allow grammar writers to specify rules and heuristics that help Gemini rank potential parses or interpretations of an utterance and select the best one. In practice, these parse preference strategies have proved essential in the Aquaint project, where the queries are syntactically and semantically complex and therefore give rise to multiple potential interpretations.

With respect to the lexicon, the open-ended nature of Aquaint queries required a much larger vocabulary than previous Gemini projects. We have therefore made significant additions to the already large Gemini lexicon. These additions have come from the following sources:

 (i) WordNet: 6,000 adjectives, 45,000 nouns

(ii) Alexandria Digital Library Gazetteer and NASA GLOBE databases: 4,000 geographical terms.

The resulting Gemini system is capable of parsing and interpreting

complex, open-ended queries of the kind required by Aquaint.

We also developed an unknown word handler in Gemini that guesses the part of speech of the out-of-vocabulary words in a query and adds those words to a temporary (cached) lexicon. The guesses as to parts of speech are based on (i) the morphology (form) of the word itself, (ii) bigram statistics for the word plus the preceding word, and (iii) the bigram of the word plus the following word. This feature proved necessary as Aquaint queries tend to contain many novel words, mostly proper nouns, that cannot in principle be catalogued in advance (e.g., "Mohammed Atta", "ATGW-3LR missile").

Finally, we developed automated testing facilities for evaluating Gemini against a corpus of English sentences. The testing software helps us to detect problems with the Aquaint grammar and lexicon and allows us to measure our improvements quantitatively in terms of success rates at word recognition, parsing, and interpretation against the corpus. Over the course of the project we have continued to fix specific grammar and lexicon problems in Gemini as they have arisen. These bugs are discovered regularly both manually and by our testing software, and our automatic regression testing features help ensure that our new Gemini "fixes" don't do more harm than good.

Our current test corpus is 739 sentences. Running the Aquaint grammar on this corpus, we successfully parsed and interpreted 550 sentences. Of the 189 sentences we failed to interpret, 102 failed, some due to unknown words. Such errors due to omission can be fixed relatively straightforwardly by adding the words to the lexicon and we continue to add words to the Gemini lexicon.

In the area of dialogue, the aim is to enable the analyst both to ask follow-up questions and to convey new information to the system in the process of extended interactions, rather than merely asking isolated questions. To this end, we analyzed the TREC dialogue track data, to determine the optimal design for the dialogue component of our question-answering system. We focused primarily on creating a classification of the moves in the dialogue, and how they influence the context against which queries have to be interpreted and answered.

Our findings can be summarized as follows. In terms of dialogue intent, there are six main types of dialogue acts.

1. Set background before asking question

2. Ask initial question

3. Request more answers to the previous question

4. Request further information about some aspect of the previous answer

5. Ask a question parallel to the previous question, often elliptically

6. Rephrase the previous question

We have begun work on implementing a treatment of these central dialogue phenomena. Again, in summary form:

1. Set background before asking question:

Assert background information in SNARK and give it high

priority in proofs.

2. Ask initial question:

Treat as in original isolated question system.

3. Requests more answers to the previous question:

Use feature that triggers SNARK to search for additional answers to a given question.

4. Request further information about some aspect of the previous answer:

Instantiate the logical representation of the question and assert that isntantiation into the current context; answer the new question in that context.

5. Ask a question parallel to the previous question, often elliptically:

Analyze the question by replacing either a predicate or an argument in the logical form of the previous question (where the choice is determined by syntactic analysis of new question) and add further constraints as determined by analysis of the question and attempt to prove the resulting conjecture in the context of the previous Q-A pair.

6. Rephrase the previous question:

 Attempt to parse, as if a new question; if failure, apply procedure as in 5.

We note here that we have not yet analyzed the recent (2nd) Aquaint dialogue experiment.

2. Reasoning for Answer Decomposition and Information Resource Planning

The SNARK theorem-prover plays a central role in the architecture of SRI’s QUARK system. The logical form that results from Gemini’s analysis of the user’s questions is passed to SNARK as a conjecture. SNARK then attempts to prove this conjecture in the context of its theory of the application domain. This typically causes a decomposition of the original question into subquestions. SNARK must then determine what information resource to query for answers to those subquestions. These resources are described by assertions in the theory, and those that match the requirements of a subquestion are invoked by the procedural attachment mechanism. This invocation may in turn trigger further subquestions. An answer to the original question is deduced from the answers to the subquestions.

The procedural attachment mechanism that links SNARK, the theorem-prover, to external programs, data, text, and other knowledge sources has been extended to allow nested queries, in which predicate symbols can have compound terms, instead of just constants or variables, as arguments. For instance, a nested query, such as P(a, f(?x)), in which a compound term f(?x) is an argument, is now permissible, as well as a query P(?x, b) whose arguments ?x and b are either constants or variables.

A further extension to the procedural attachment mechanism allows us to send multiple literals to a source and to receive back new literals, which may be partially instantiated versions of the given literals. For instance, we may submit a query

 P(?x) & Q(?x, ?y) & R(?y, ?z)

and receive back a residue

 R(a, f(?u)) & S(?u).

These extensions are necessary to handle the complex queries that are required to take advantage of such information sources as TextPro, the information extraction engine, and ASCS, the DAML search engine. (For further discussion of these, see below.)

3. Incorporation of External Information Sources

 Integration of the ASCS DAML Search Engine

ASCS (the DAML Agent Semantic Communications Service) is a search engine for the semantic web. Developed by Teknowledge, Inc., it searches the entire Web and indexes all DAML-encoded pages. It allows a user to make precise queries for information expressed in any of those pages. ASCS also supports certain kinds of simple inference; for instance, the scope of queries can be broadened or relaxed.

Although it provides a graphical user interface, ASCS can also be used directly by web-based agents to support semantic search and ontology translation. There is, however, a significant barrier to the use of ASCS: users have to be familiar with logic and RDF to use it. In collaboration with Teknowledge, we have integrated ASCS into Quark, so that ASCS can be interrogated by posing natural-language queries.

Quark employs Gemini to translate English queries into a logical form. This form is phrased as a conjecture to SNARK. In the light of the knowledge in its application-domain theory, SNARK transforms the query and decomposes it into subqueries, which are themselves further decomposed into further subqueries, and so on. If an appropriate combination of these subqueries can be answered, the proof is complete. By means of an answer-extraction mechanism, SNARK will deduce or compute an answer to the original query from answers to the solved subqueries.

SNARK’s procedural-attachment mechanism enables us to link

symbols from its theory to external procedures, including web-based knowledge sources such as ASCS. The effect of this is to allow information possessed by the linked source to be provided to SNARK on demand to answer a subquery, while the proof is still in progress, just as if that information were part of SNARK's theory.

We have experimented with using ASCS to query the CIA World Factbook, since much of the Factbook has been translated into DAML and in that form made available on the Web. For example, suppose we have a query "Find the capital of an Islamic country that borders Afghanistan." This is translated into a conjecture, which posits the existence of the capital of such a country. The conjecture is submitted to SNARK's inference procedure. It is transformed and decomposed into subqueries that involve symbols such as "borders", "religion" and "capital". For each of these symbols, we have introduced procedural attachments to ASCS. Thus, from a subquery:

 borders(afghanistan, ?country)

(What is a country that borders Afghanistan?) ASCS returns as one answer

 borders(afghanistan, pakistan),

which tells us that Pakistan is a country that borders Afghanistan.

Similar queries to ASCS tell us that the religion of the people of Pakistan is principally Muslim, which SNARK knows implies Islamic, and that the capital of Pakistan is Islamabad. This is the answer passed back to the user by the answer-extraction mechanism.

Note that the use of SNARK allows us to perform inferences that may go beyond what ASCS could do itself; thus the query refers to Islamic countries, but the Factbook prefers to speak of countries whose religions include Muslim.

Further answers to the question can be obtained by asking "Are there any others?" which reactivates SNARK to produce alternative proofs. Thus, we can get another answer to the same question, Dushanbe, which is the capital of Tajikistan, another Islamic country that borders Afghanistan. By repeated probing we can get all the cities known to the Factbook and other sources that satisfy the condition.

Other Information Sources

The agent that attaches Quark to the Alexandria Digital Library Gazetteer has been revised to take advantage of the new protocol provided by the ADL group at UC Santa Barbara. The new agent allows us to find places referred to by a variety of names, Prague as well as Praha, for instance. The new protocol also addresses problems we had found in accessing subregions of a given region.

An agent has also been introduced to display maps from a new source, Generic Mapping Tools. These maps complement the maps we are already obtaining from NIMA. Once advantage of this source is that it allows us to superimpose vectors, such as routes or boundaries, obtained from other sources onto the displayed map.

Quark users equipped with TerraVision can also see TerraVision visualizations, as before.

Finally, we have introduced a service that allows Quark to display webpages at remote locations; previously we could only display webpages locally and pass a URL to others.

By integrating ASCS into Quark along with the other resources we have mentioned, we have enabled a much richer level of integration of information of differing kinds. For instance, when Quark answers the query "Find a cave within 50 miles of an airport that is south of the capital of Afghanistan," the Factbook (via ASCS) provides the capital, the ADL Gazetteer finds the airport and cave, and another source computes the distances.

4. Incorporation of Information Extraction

The resources mentioned above are all repositories of structured information; but of course most information is still in unstructured, textual form. To allow us to incorporate such information into Quark, and more particularly to enable treatment of the CNS corpus, we have integrated TextPro, SRI’s state of the art Information Extraction system. Our aim was to provide an interface between the SNARK theorem-prover and TextPro that would allow the linguistic information returned from TextPro to interact with the logically encoded information expressed in SNARK.

The basic idea behind this integration can be expressed as follows: We run TextPro over a corpus, both to classify texts and sentences in terms of topic tags (term sets diagnostic of particular topics) and to extract predicate-argument structure (SVO triples). We then build a database of this linguistic information, indexing topics to documents and to sentences within topics and indexing SVO triples to sentences within documents. In this process, a Data Refiner also does cross-document entity (and ultimately event) merging, indexing entities (and ultimately events) to documents and sentences within documents.

When a user enters a query, it is processed by Gemini and the resulting logical form is used by SNARK to query this database. To implement this approach, we designed and implemented the TextPro Data Manager, which translates SNARK queries to SQL queries, mapping the constituent symbols of the logical form into topic tags. We then perform a database search to identify documents and sentences relevant to those tags and search selected sentences for SVO triples that satisfy the query. We score and rank these answers and return both the most relevant documents and sentences, and bind the appropriate SNARK variables to entities in the database, returning unproved residues to SNARK for further query processing.

We developed a database schema designed for the information extracted from the CNS corpus. We implemented code and associated scripts to run TextPro over the entire CNS corpus and designed and developed the necessary TextPro code to output SQL statements to insert extracted information into the database. Finally, we generated a preliminary database for development and testing purposes.

As mentioned above, we also completed the design of an extension of the procedural attachment mechanism of SNARK to support the TextPro integration. The new mechanism allows several conjuncts to be passed to TextPro at once and it allows TextPro to return a residue of unresolved conjuncts. Thus we can send TextPro the conjunction

 President(US, ?person) &

Resides(?person, ?city) &

(population(?city) = ?nonnegative-integer)

and, assuming that TextPro is unable to provide the population of Washington, DC. have ?person bound to george-washington, ?city bound to washington-dc, and return the residue

population(washington-dc) = ?nonnegative-integer.

Finally, we developed a number of efficient heuristics for simplifying the process of entering over 10,000 new words from the CNS data into the TextPro lexicon, and have started doing that entry work. In particular, we created a missile lexicon for TextPro consisting of 1,592 missile names.

