Next Page Previous Page Home Tools & Aids Search Handbook
4. Process Modeling
4.8. Some Useful Functions for Process Modeling
4.8.1. Univariate Functions
4.8.1.2. Rational Functions

4.8.1.2.5.

Quadratic / Quadratic Rational Function

examples of quadratic/quadratic rational functions
Function: f(x)=β0+β1x+β2x21+β3x+β4x2,  β20, β40
Function
Family:
Rational
Statistical
Type:
Nonlinear
Domain: (,)

with undefined points at

x=β3±β324β42β4

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

β324β4

is negative, zero, or positive.

Range: The range is complicated and depends on the specific values of β1,,β5.
Special
Features:
Horizontal asymptotes at:

y=β2β4

and vertical asymptotes at:

x=β3±β324β42β4

There will be 0, 1, or 2 real solutions to this equation corresponding to whether

β324β4

is negative, zero, or positive.

Additional
Examples:
quadratic/quadratic rational function example 1:
 (1.25 - 0.17*x + 0.003*x**2)/(1 - 0.001*x + 0.000023*x**2);
 -400 < x < 400
quadratic/quadratic rational function example 2:
 (1.4*x + 1.9*x**2)/(1 + 0.7*x + 2*x**2);
 -4 < x < 4
quadratic/quadratic rational function example 3:
 (1.4*x + 1.9*x**2)/(1 + 0.7*x + 2*x**2);
 50 < x < 1000
quadratic/quadratic rational function example 3:
 (1.4*x + 1.9*x**2)/(1 + 0.7*x + 2*x**2);
 40 < x < 50
quadratic/quadratic rational function example 3:
 (1.4*x + 1.9*x**2)/(1 + 0.7*x + 2*x**2);
 -100 < x < 40
Home Tools & Aids Search Handbook Previous Page Next Page