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1. Exploratory Data Analysis 

1.1. EDA Introduction

Summary What is exploratory data analysis? How did it begin? How
and where did it originate? How is it differentiated from other
data analysis approaches, such as classical and Bayesian? Is
EDA the same as statistical graphics? What role does
statistical graphics play in EDA? Is statistical graphics
identical to EDA?

These questions and related questions are dealt with in this
section. This section answers these questions and provides the
necessary frame of reference for EDA assumptions, principles,
and techniques.

Table of
Contents
for Section
1

1. What is EDA?
2. EDA versus Classical and Bayesian

1. Models
2. Focus
3. Techniques
4. Rigor
5. Data Treatment
6. Assumptions

3. EDA vs Summary
4. EDA Goals
5. The Role of Graphics
6. An EDA/Graphics Example
7. General Problem Categories
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1. Exploratory Data Analysis 
1.1. EDA Introduction 

1.1.1. What is EDA?

Approach Exploratory Data Analysis (EDA) is an approach/philosophy
for data analysis that employs a variety of techniques (mostly
graphical) to

1. maximize insight into a data set;
2. uncover underlying structure;
3. extract important variables;
4. detect outliers and anomalies;
5. test underlying assumptions;
6. develop parsimonious models; and
7. determine optimal factor settings.

Focus The EDA approach is precisely that--an approach--not a set of
techniques, but an attitude/philosophy about how a data
analysis should be carried out.

Philosophy EDA is not identical to statistical graphics although the two
terms are used almost interchangeably. Statistical graphics is a
collection of techniques--all graphically based and all
focusing on one data characterization aspect. EDA
encompasses a larger venue; EDA is an approach to data
analysis that postpones the usual assumptions about what kind
of model the data follow with the more direct approach of
allowing the data itself to reveal its underlying structure and
model. EDA is not a mere collection of techniques; EDA is a
philosophy as to how we dissect a data set; what we look for;
how we look; and how we interpret. It is true that EDA
heavily uses the collection of techniques that we call
"statistical graphics", but it is not identical to statistical
graphics per se.

History The seminal work in EDA is Exploratory Data Analysis,
Tukey, (1977). Over the years it has benefitted from other
noteworthy publications such as Data Analysis and
Regression, Mosteller and Tukey (1977), Interactive Data
Analysis, Hoaglin (1977), The ABC's of EDA, Velleman and
Hoaglin (1981) and has gained a large following as "the" way
to analyze a data set.

Techniques Most EDA techniques are graphical in nature with a few
quantitative techniques. The reason for the heavy reliance on
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graphics is that by its very nature the main role of EDA is to
open-mindedly explore, and graphics gives the analysts
unparalleled power to do so, enticing the data to reveal its
structural secrets, and being always ready to gain some new,
often unsuspected, insight into the data. In combination with
the natural pattern-recognition capabilities that we all possess,
graphics provides, of course, unparalleled power to carry this
out.

The particular graphical techniques employed in EDA are
often quite simple, consisting of various techniques of:

1. Plotting the raw data (such as data traces, histograms,
bihistograms, probability plots, lag plots, block plots,
and Youden plots.

2. Plotting simple statistics such as mean plots, standard
deviation plots, box plots, and main effects plots of the
raw data.

3. Positioning such plots so as to maximize our natural
pattern-recognition abilities, such as using multiple
plots per page.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 

1.1.2. How Does Exploratory Data Analysis
differ from Classical Data Analysis?

Data
Analysis
Approaches

EDA is a data analysis approach. What other data analysis
approaches exist and how does EDA differ from these other
approaches? Three popular data analysis approaches are:

1. Classical
2. Exploratory (EDA)
3. Bayesian

Paradigms
for Analysis
Techniques

These three approaches are similar in that they all start with
a general science/engineering problem and all yield
science/engineering conclusions. The difference is the
sequence and focus of the intermediate steps.

For classical analysis, the sequence is

Problem => Data => Model => Analysis =>
Conclusions

For EDA, the sequence is

Problem => Data => Analysis => Model =>
Conclusions

For Bayesian, the sequence is

Problem => Data => Model => Prior Distribution =>
Analysis => Conclusions

Method of
dealing with
underlying
model for
the data
distinguishes
the 3
approaches

Thus for classical analysis, the data collection is followed by
the imposition of a model (normality, linearity, etc.) and the
analysis, estimation, and testing that follows are focused on
the parameters of that model. For EDA, the data collection is
not followed by a model imposition; rather it is followed
immediately by analysis with a goal of inferring what model
would be appropriate. Finally, for a Bayesian analysis, the
analyst attempts to incorporate scientific/engineering
knowledge/expertise into the analysis by imposing a data-
independent distribution on the parameters of the selected
model; the analysis thus consists of formally combining both
the prior distribution on the parameters and the collected
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data to jointly make inferences and/or test assumptions about
the model parameters.

In the real world, data analysts freely mix elements of all of
the above three approaches (and other approaches). The
above distinctions were made to emphasize the major
differences among the three approaches.

Further
discussion of
the
distinction
between the
classical and
EDA
approaches

Focusing on EDA versus classical, these two approaches
differ as follows:

1. Models
2. Focus
3. Techniques
4. Rigor
5. Data Treatment
6. Assumptions
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1. Exploratory Data Analysis 
1.1. EDA Introduction 
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis? 

1.1.2.1. Model

Classical The classical approach imposes models (both deterministic
and probabilistic) on the data. Deterministic models include,
for example, regression models and analysis of variance
(ANOVA) models. The most common probabilistic model
assumes that the errors about the deterministic model are
normally distributed--this assumption affects the validity of
the ANOVA F tests.

Exploratory The Exploratory Data Analysis approach does not impose
deterministic or probabilistic models on the data. On the
contrary, the EDA approach allows the data to suggest
admissible models that best fit the data.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis? 

1.1.2.2. Focus

Classical The two approaches differ substantially in focus. For classical
analysis, the focus is on the model--estimating parameters of
the model and generating predicted values from the model.

Exploratory For exploratory data analysis, the focus is on the data--its
structure, outliers, and models suggested by the data.
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1.1. EDA Introduction 
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis? 

1.1.2.3. Techniques

Classical Classical techniques are generally quantitative in nature. They
include ANOVA, t tests, chi-squared tests, and F tests.

Exploratory EDA techniques are generally graphical. They include scatter
plots, character plots, box plots, histograms, bihistograms,
probability plots, residual plots, and mean plots.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis? 

1.1.2.4. Rigor

Classical Classical techniques serve as the probabilistic foundation of
science and engineering; the most important characteristic of
classical techniques is that they are rigorous, formal, and
"objective".

Exploratory EDA techniques do not share in that rigor or formality. EDA
techniques make up for that lack of rigor by being very
suggestive, indicative, and insightful about what the
appropriate model should be.

EDA techniques are subjective and depend on interpretation
which may differ from analyst to analyst, although
experienced analysts commonly arrive at identical
conclusions.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis? 

1.1.2.5. Data Treatment

Classical Classical estimation techniques have the characteristic of
taking all of the data and mapping the data into a few
numbers ("estimates"). This is both a virtue and a vice. The
virtue is that these few numbers focus on important
characteristics (location, variation, etc.) of the population. The
vice is that concentrating on these few characteristics can
filter out other characteristics (skewness, tail length,
autocorrelation, etc.) of the same population. In this sense
there is a loss of information due to this "filtering" process.

Exploratory The EDA approach, on the other hand, often makes use of
(and shows) all of the available data. In this sense there is no
corresponding loss of information.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 
1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis? 

1.1.2.6. Assumptions

Classical The "good news" of the classical approach is that tests based
on classical techniques are usually very sensitive--that is, if a
true shift in location, say, has occurred, such tests frequently
have the power to detect such a shift and to conclude that
such a shift is "statistically significant". The "bad news" is
that classical tests depend on underlying assumptions (e.g.,
normality), and hence the validity of the test conclusions
becomes dependent on the validity of the underlying
assumptions. Worse yet, the exact underlying assumptions
may be unknown to the analyst, or if known, untested. Thus
the validity of the scientific conclusions becomes intrinsically
linked to the validity of the underlying assumptions. In
practice, if such assumptions are unknown or untested, the
validity of the scientific conclusions becomes suspect.

Exploratory Many EDA techniques make little or no assumptions--they
present and show the data--all of the data--as is, with fewer
encumbering assumptions.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 

1.1.3. How Does Exploratory Data Analysis
Differ from Summary Analysis?

Summary A summary analysis is simply a numeric reduction of a
historical data set. It is quite passive. Its focus is in the past.
Quite commonly, its purpose is to simply arrive at a few key
statistics (for example, mean and standard deviation) which
may then either replace the data set or be added to the data
set in the form of a summary table.

Exploratory In contrast, EDA has as its broadest goal the desire to gain
insight into the engineering/scientific process behind the data.
Whereas summary statistics are passive and historical, EDA
is active and futuristic. In an attempt to "understand" the
process and improve it in the future, EDA uses the data as a
"window" to peer into the heart of the process that generated
the data. There is an archival role in the research and
manufacturing world for summary statistics, but there is an
enormously larger role for the EDA approach.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 

1.1.4. What are the EDA Goals?

Primary
and
Secondary
Goals

The primary goal of EDA is to maximize the analyst's insight
into a data set and into the underlying structure of a data set,
while providing all of the specific items that an analyst would
want to extract from a data set, such as:

1. a good-fitting, parsimonious model
2. a list of outliers
3. a sense of robustness of conclusions
4. estimates for parameters
5. uncertainties for those estimates
6. a ranked list of important factors
7. conclusions as to whether individual factors are

statistically significant
8. optimal settings

Insight
into the
Data

Insight implies detecting and uncovering underlying structure
in the data. Such underlying structure may not be encapsulated
in the list of items above; such items serve as the specific
targets of an analysis, but the real insight and "feel" for a data
set comes as the analyst judiciously probes and explores the
various subtleties of the data. The "feel" for the data comes
almost exclusively from the application of various graphical
techniques, the collection of which serves as the window into
the essence of the data. Graphics are irreplaceable--there are
no quantitative analogues that will give the same insight as
well-chosen graphics.

To get a "feel" for the data, it is not enough for the analyst to
know what is in the data; the analyst also must know what is
not in the data, and the only way to do that is to draw on our
own human pattern-recognition and comparative abilities in
the context of a series of judicious graphical techniques
applied to the data.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 

1.1.5. The Role of Graphics

Quantitative/
Graphical

Statistics and data analysis procedures can broadly be split
into two parts:

quantitative
graphical

Quantitative Quantitative techniques are the set of statistical procedures
that yield numeric or tabular output. Examples of
quantitative techniques include:

hypothesis testing
analysis of variance
point estimates and confidence intervals
least squares regression

These and similar techniques are all valuable and are
mainstream in terms of classical analysis.

Graphical On the other hand, there is a large collection of statistical
tools that we generally refer to as graphical techniques.
These include:

scatter plots
histograms
probability plots
residual plots
box plots
block plots

EDA
Approach
Relies
Heavily on
Graphical
Techniques

The EDA approach relies heavily on these and similar
graphical techniques. Graphical procedures are not just tools
that we could use in an EDA context, they are tools that we
must use. Such graphical tools are the shortest path to
gaining insight into a data set in terms of

testing assumptions
model selection
model validation
estimator selection
relationship identification
factor effect determination
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outlier detection

If one is not using statistical graphics, then one is forfeiting
insight into one or more aspects of the underlying structure
of the data.
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1. Exploratory Data Analysis 
1.1. EDA Introduction 

1.1.6. An EDA/Graphics Example

Anscombe
Example

A simple, classic (Anscombe) example of the central role
that graphics play in terms of providing insight into a data
set starts with the following data set:

Data   X              Y
10.00           8.04
 8.00           6.95
13.00           7.58
 9.00           8.81
11.00           8.33
14.00           9.96
 6.00           7.24
 4.00           4.26
12.00          10.84
 7.00           4.82
 5.00           5.68

Summary
Statistics

If the goal of the analysis is to compute summary statistics
plus determine the best linear fit for Y as a function of X,
the results might be given as:

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

The above quantitative analysis, although valuable, gives us
only limited insight into the data.

Scatter Plot In contrast, the following simple scatter plot of the data
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suggests the following:

1. The data set "behaves like" a linear curve with some
scatter;

2. there is no justification for a more complicated model
(e.g., quadratic);

3. there are no outliers;
4. the vertical spread of the data appears to be of equal

height irrespective of the X-value; this indicates that
the data are equally-precise throughout and so a
"regular" (that is, equi-weighted) fit is appropriate.

Three
Additional
Data Sets

This kind of characterization for the data serves as the core
for getting insight/feel for the data. Such insight/feel does
not come from the quantitative statistics; on the contrary,
calculations of quantitative statistics such as intercept and
slope should be subsequent to the characterization and will
make sense only if the characterization is true. To illustrate
the loss of information that results when the graphics
insight step is skipped, consider the following three data
sets [Anscombe data sets 2, 3, and 4]:

 X2     Y2       X3     Y3       X4     Y4
10.00   9.14    10.00   7.46     8.00   6.58
 8.00   8.14     8.00   6.77     8.00   5.76
13.00   8.74    13.00  12.74     8.00   7.71
 9.00   8.77     9.00   7.11     8.00   8.84
11.00   9.26    11.00   7.81     8.00   8.47
14.00   8.10    14.00   8.84     8.00   7.04
 6.00   6.13     6.00   6.08     8.00   5.25
 4.00   3.10     4.00   5.39    19.00  12.50
12.00   9.13    12.00   8.15     8.00   5.56
 7.00   7.26     7.00   6.42     8.00   7.91
 5.00   4.74     5.00   5.73     8.00   6.89

Quantitative
Statistics for
Data Set 2

A quantitative analysis on data set 2 yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
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Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

which is identical to the analysis for data set 1. One might
naively assume that the two data sets are "equivalent" since
that is what the statistics tell us; but what do the statistics
not tell us?

Quantitative
Statistics for
Data Sets 3
and 4

Remarkably, a quantitative analysis on data sets 3 and 4
also yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.236
Correlation = 0.816 (0.817 for data set 4)

which implies that in some quantitative sense, all four of
the data sets are "equivalent". In fact, the four data sets are
far from "equivalent" and a scatter plot of each data set,
which would be step 1 of any EDA approach, would tell us
that immediately.

Scatter Plots

Interpretation
of Scatter
Plots

Conclusions from the scatter plots are:

1. data set 1 is clearly linear with some scatter.
2. data set 2 is clearly quadratic.
3. data set 3 clearly has an outlier.
4. data set 4 is obviously the victim of a poor

experimental design with a single point far removed
from the bulk of the data "wagging the dog".

Importance These points are exactly the substance that provide and
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of
Exploratory
Analysis

define "insight" and "feel" for a data set. They are the goals
and the fruits of an open exploratory data analysis (EDA)
approach to the data. Quantitative statistics are not wrong
per se, but they are incomplete. They are incomplete
because they are numeric summaries which in the
summarization operation do a good job of focusing on a
particular aspect of the data (e.g., location, intercept, slope,
degree of relatedness, etc.) by judiciously reducing the data
to a few numbers. Doing so also filters the data, necessarily
omitting and screening out other sometimes crucial
information in the focusing operation. Quantitative statistics
focus but also filter; and filtering is exactly what makes the
quantitative approach incomplete at best and misleading at
worst.

The estimated intercepts (= 3) and slopes (= 0.5) for data
sets 2, 3, and 4 are misleading because the estimation is
done in the context of an assumed linear model and that
linearity assumption is the fatal flaw in this analysis.

The EDA approach of deliberately postponing the model
selection until further along in the analysis has many
rewards, not the least of which is the ultimate convergence
to a much-improved model and the formulation of valid
and supportable scientific and engineering conclusions.
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1.1. EDA Introduction 

1.1.7. General Problem Categories

Problem
Classification

The following table is a convenient way to classify EDA
problems.

Univariate
and Control UNIVARIATE

Data:

A single column of
numbers, Y.

Model:

y = constant + error

Output:

1. A number (the
estimated constant in
the model).

2. An estimate of
uncertainty for the
constant.

3. An estimate of the
distribution for the
error.

Techniques:

4-Plot
Probability Plot
PPCC Plot

CONTROL

Data:

A single column of
numbers, Y.

Model:

y = constant + error

Output:

A "yes" or "no" to the
question "Is the
system out of control?
".

Techniques:

Control Charts

Comparative
and
Screening

COMPARATIVE

Data:

A single response
variable and k
independent variables
(Y, X1, X2, ... , Xk),
primary focus is on

SCREENING

Data:

A single response
variable and k
independent variables
(Y, X1, X2, ... , Xk).
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one (the primary
factor) of these
independent variables.

Model:

y = f(x1, x2, ..., xk) +
error

Output:

A "yes" or "no" to the
question "Is the
primary factor
significant?".

Techniques:

Block Plot
Scatter Plot
Box Plot

Model:

y = f(x1, x2, ..., xk) +
error

Output:

1. A ranked list (from
most important to
least important) of
factors.

2. Best settings for the
factors.

3. A good
model/prediction
equation relating Y to
the factors.

Techniques:

Block Plot
Probability Plot
Bihistogram

Optimization
and
Regression

OPTIMIZATION

Data:

A single response
variable and k
independent variables
(Y, X1, X2, ... , Xk).

Model:

y = f(x1, x2, ..., xk) +
error

Output:

Best settings for the
factor variables.

Techniques:

Block Plot
Least Squares Fitting
Contour Plot

REGRESSION

Data:

A single response
variable and k
independent variables
(Y, X1, X2, ... , Xk).
The independent
variables can be
continuous.

Model:

y = f(x1, x2, ..., xk) +
error

Output:

A good
model/prediction
equation relating Y to
the factors.

Techniques:

Least Squares Fitting
Scatter Plot
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6-Plot

Time Series
and
Multivariate

TIME SERIES

Data:

A column of
time dependent
numbers, Y. In
addition, time is
an indpendent
variable. The
time variable
can be either
explicit or
implied. If the
data are not
equi-spaced, the
time variable
should be
explicitly
provided.

Model:

yt = f(t) + error 
The model can
be either a time
domain based or
frequency
domain based.

Output:

A good
model/prediction
equation relating
Y to previous
values of Y.

Techniques:

Autocorrelation
Plot
Spectrum
Complex
Demodulation
Amplitude Plot
Complex
Demodulation
Phase Plot
ARIMA Models

MULTIVARIATE

Data:

k factor variables (X1, X2, ...
, Xk).

Model:

The model is not explicit.

Output:

Identify underlying
correlation structure in the
data.

Techniques:

Star Plot
Scatter Plot Matrix
Conditioning Plot
Profile Plot
Principal Components
Clustering
Discrimination/Classification

Note that multivarate analysis is
only covered lightly in this
Handbook.
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1.2. EDA Assumptions

Summary The gamut of scientific and engineering experimentation is
virtually limitless. In this sea of diversity is there any common
basis that allows the analyst to systematically and validly
arrive at supportable, repeatable research conclusions?

Fortunately, there is such a basis and it is rooted in the fact
that every measurement process, however complicated, has
certain underlying assumptions. This section deals with what
those assumptions are, why they are important, how to go
about testing them, and what the consequences are if the
assumptions do not hold.
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Contents
for Section
2
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5. Consequences
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1.2.1. Underlying Assumptions

Assumptions
Underlying a
Measurement
Process

There are four assumptions that typically underlie all
measurement processes; namely, that the data from the
process at hand "behave like":

1. random drawings;
2. from a fixed distribution;
3. with the distribution having fixed location; and
4. with the distribution having fixed variation.

Univariate or
Single
Response
Variable

The "fixed location" referred to in item 3 above differs for
different problem types. The simplest problem type is
univariate; that is, a single variable. For the univariate
problem, the general model

response = deterministic component + random
component

becomes

response = constant + error

Assumptions
for
Univariate
Model

For this case, the "fixed location" is simply the unknown
constant. We can thus imagine the process at hand to be
operating under constant conditions that produce a single
column of data with the properties that

the data are uncorrelated with one another;
the random component has a fixed distribution;
the deterministic component consists of only a
constant; and
the random component has fixed variation.

Extrapolation
to a Function
of Many
Variables

The universal power and importance of the univariate model
is that it can easily be extended to the more general case
where the deterministic component is not just a constant,
but is in fact a function of many variables, and the
engineering objective is to characterize and model the
function.

Residuals The key point is that regardless of how many factors there
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Will Behave
According to
Univariate
Assumptions

are, and regardless of how complicated the function is, if
the engineer succeeds in choosing a good model, then the
differences (residuals) between the raw response data and
the predicted values from the fitted model should
themselves behave like a univariate process. Furthermore,
the residuals from this univariate process fit will behave
like:

random drawings;
from a fixed distribution;
with fixed location (namely, 0 in this case); and
with fixed variation.

Validation of
Model

Thus if the residuals from the fitted model do in fact behave
like the ideal, then testing of underlying assumptions
becomes a tool for the validation and quality of fit of the
chosen model. On the other hand, if the residuals from the
chosen fitted model violate one or more of the above
univariate assumptions, then the chosen fitted model is
inadequate and an opportunity exists for arriving at an
improved model.
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1.2.2. Importance

Predictability
and
Statistical
Control

Predictability is an all-important goal in science and
engineering. If the four underlying assumptions hold, then
we have achieved probabilistic predictability--the ability to
make probability statements not only about the process in
the past, but also about the process in the future. In short,
such processes are said to be "in statistical control".

Validity of
Engineering
Conclusions

Moreover, if the four assumptions are valid, then the
process is amenable to the generation of valid scientific and
engineering conclusions. If the four assumptions are not
valid, then the process is drifting (with respect to location,
variation, or distribution), unpredictable, and out of control.
A simple characterization of such processes by a location
estimate, a variation estimate, or a distribution "estimate"
inevitably leads to engineering conclusions that are not
valid, are not supportable (scientifically or legally), and
which are not repeatable in the laboratory.
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1.2.3. Techniques for Testing Assumptions

Testing
Underlying
Assumptions
Helps Assure the
Validity of
Scientific and
Engineering
Conclusions

Because the validity of the final scientific/engineering
conclusions is inextricably linked to the validity of the
underlying univariate assumptions, it naturally follows that
there is a real necessity that each and every one of the
above four assumptions be routinely tested.

Four Techniques
to Test
Underlying
Assumptions

The following EDA techniques are simple, efficient, and
powerful for the routine testing of underlying
assumptions:

1. run sequence plot (Yi versus i)
2. lag plot (Yi versus Yi-1)
3. histogram (counts versus subgroups of Y)
4. normal probability plot (ordered Y versus theoretical

ordered Y)

Plot on a Single
Page for a
Quick
Characterization
of the Data

The four EDA plots can be juxtaposed for a quick look at
the characteristics of the data. The plots below are ordered
as follows:

1. Run sequence plot - upper left
2. Lag plot - upper right
3. Histogram - lower left
4. Normal probability plot - lower right

Sample Plot:
Assumptions
Hold
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This 4-plot reveals a process that has fixed location, fixed
variation, is random, apparently has a fixed approximately
normal distribution, and has no outliers.

Sample Plot:
Assumptions Do
Not Hold

If one or more of the four underlying assumptions do not
hold, then it will show up in the various plots as
demonstrated in the following example.

This 4-plot reveals a process that has fixed location, fixed
variation, is non-random (oscillatory), has a non-normal,
U-shaped distribution, and has several outliers.
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Interpretation
of EDA
Plots:
Flat and
Equi-Banded,
Random,
Bell-Shaped,
and Linear

The four EDA plots discussed on the previous page are
used to test the underlying assumptions:

1. Fixed Location:
If the fixed location assumption holds, then the run
sequence plot will be flat and non-drifting.

2. Fixed Variation:
If the fixed variation assumption holds, then the
vertical spread in the run sequence plot will be the
approximately the same over the entire horizontal
axis.

3. Randomness:
If the randomness assumption holds, then the lag plot
will be structureless and random.

4. Fixed Distribution:
If the fixed distribution assumption holds, in
particular if the fixed normal distribution holds, then

1. the histogram will be bell-shaped, and
2. the normal probability plot will be linear.

Plots Utilized
to Test the
Assumptions

Conversely, the underlying assumptions are tested using the
EDA plots:

Run Sequence Plot:
If the run sequence plot is flat and non-drifting, the
fixed-location assumption holds. If the run sequence
plot has a vertical spread that is about the same over
the entire plot, then the fixed-variation assumption
holds.

Lag Plot:
If the lag plot is structureless, then the randomness
assumption holds.

Histogram:
If the histogram is bell-shaped, the underlying
distribution is symmetric and perhaps approximately
normal.
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Normal Probability Plot:
If the normal probability plot is linear, the underlying
distribution is approximately normal.

If all four of the assumptions hold, then the process is said
definitionally to be "in statistical control".
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1.2.5. Consequences

What If
Assumptions
Do Not Hold?

If some of the underlying assumptions do not hold, what
can be done about it? What corrective actions can be
taken? The positive way of approaching this is to view the
testing of underlying assumptions as a framework for
learning about the process. Assumption-testing promotes
insight into important aspects of the process that may not
have surfaced otherwise.

Primary Goal
is Correct
and Valid
Scientific
Conclusions

The primary goal is to have correct, validated, and
complete scientific/engineering conclusions flowing from
the analysis. This usually includes intermediate goals such
as the derivation of a good-fitting model and the
computation of realistic parameter estimates. It should
always include the ultimate goal of an understanding and a
"feel" for "what makes the process tick". There is no more
powerful catalyst for discovery than the bringing together
of an experienced/expert scientist/engineer and a data set
ripe with intriguing "anomalies" and characteristics.

Consequences
of Invalid
Assumptions

The following sections discuss in more detail the
consequences of invalid assumptions:

1. Consequences of non-randomness
2. Consequences of non-fixed location parameter
3. Consequences of non-fixed variation
4. Consequences related to distributional assumptions
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1.2.5.1. Consequences of Non-Randomness

Randomness
Assumption

There are four underlying assumptions:

1. randomness;
2. fixed location;
3. fixed variation; and
4. fixed distribution.

The randomness assumption is the most critical but the
least tested.

Consequeces of
Non-
Randomness

If the randomness assumption does not hold, then

1. All of the usual statistical tests are invalid.
2. The calculated uncertainties for commonly used

statistics become meaningless.
3. The calculated minimal sample size required for a

pre-specified tolerance becomes meaningless.
4. The simple model: y = constant + error becomes

invalid.
5. The parameter estimates become suspect and non-

supportable.

Non-
Randomness
Due to
Autocorrelation

One specific and common type of non-randomness is
autocorrelation. Autocorrelation is the correlation
between Yt and Yt-k, where k is an integer that defines the
lag for the autocorrelation. That is, autocorrelation is a
time dependent non-randomness. This means that the
value of the current point is highly dependent on the
previous point if k = 1 (or k points ago if k is not 1).
Autocorrelation is typically detected via an
autocorrelation plot or a lag plot.

If the data are not random due to autocorrelation, then

1. Adjacent data values may be related.
2. There may not be n independent snapshots of the

phenomenon under study.
3. There may be undetected "junk"-outliers.
4. There may be undetected "information-rich"-

outliers.
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1.2.5.2. Consequences of Non-Fixed Location
Parameter

Location
Estimate

The usual estimate of location is the mean

from N measurements Y1, Y2, ... , YN.

Consequences
of Non-Fixed
Location

If the run sequence plot does not support the assumption of
fixed location, then

1. The location may be drifting.

2. The single location estimate may be meaningless (if
the process is drifting).

3. The choice of location estimator (e.g., the sample
mean) may be sub-optimal.

4. The usual formula for the uncertainty of the mean:

may be invalid and the numerical value optimistically
small.

5. The location estimate may be poor.

6. The location estimate may be biased.
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1.2.5.3. Consequences of Non-Fixed Variation
Parameter

Variation
Estimate

The usual estimate of variation is the standard deviation

from N measurements Y1, Y2, ... , YN.

Consequences
of Non-Fixed
Variation

If the run sequence plot does not support the assumption of
fixed variation, then

1. The variation may be drifting.

2. The single variation estimate may be meaningless (if
the process variation is drifting).

3. The variation estimate may be poor.

4. The variation estimate may be biased.
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1.2.5.4. Consequences Related to Distributional
Assumptions

Distributional
Analysis

Scientists and engineers routinely use the mean (average) to
estimate the "middle" of a distribution. It is not so well
known that the variability and the noisiness of the mean as
a location estimator are intrinsically linked with the
underlying distribution of the data. For certain distributions,
the mean is a poor choice. For any given distribution, there
exists an optimal choice-- that is, the estimator with
minimum variability/noisiness. This optimal choice may be,
for example, the median, the midrange, the midmean, the
mean, or something else. The implication of this is to
"estimate" the distribution first, and then--based on the
distribution--choose the optimal estimator. The resulting
engineering parameter estimators will have less variability
than if this approach is not followed.

Case Studies The airplane glass failure case study gives an example of
determining an appropriate distribution and estimating the
parameters of that distribution. The uniform random
numbers case study gives an example of determining a
more appropriate centrality parameter for a non-normal
distribution.

Other consequences that flow from problems with
distributional assumptions are:

Distribution 1. The distribution may be changing.
2. The single distribution estimate may be meaningless

(if the process distribution is changing).
3. The distribution may be markedly non-normal.
4. The distribution may be unknown.
5. The true probability distribution for the error may

remain unknown.

Model 1. The model may be changing.
2. The single model estimate may be meaningless.
3. The default model

Y = constant + error
may be invalid.

4. If the default model is insufficient, information about
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a better model may remain undetected.
5. A poor deterministic model may be fit.
6. Information about an improved model may go

undetected.

Process 1. The process may be out-of-control.
2. The process may be unpredictable.
3. The process may be un-modelable.
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Summary After you have collected a set of data, how do you do an
exploratory data analysis? What techniques do you employ?
What do the various techniques focus on? What conclusions
can you expect to reach?

This section provides answers to these kinds of questions via a
gallery of EDA techniques and a detailed description of each
technique. The techniques are divided into graphical and
quantitative techniques. For exploratory data analysis, the
emphasis is primarily on the graphical techniques.

Table of
Contents
for Section
3

1. Introduction
2. Analysis Questions
3. Graphical Techniques: Alphabetical
4. Graphical Techniques: By Problem Category
5. Quantitative Techniques: Alphabetical
6. Probability Distributions
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1.3.1. Introduction

Graphical
and
Quantitative
Techniques

This section describes many techniques that are commonly
used in exploratory and classical data analysis. This list is by
no means meant to be exhaustive. Additional techniques
(both graphical and quantitative) are discussed in the other
chapters. Specifically, the product comparisons chapter has a
much more detailed description of many classical statistical
techniques.

EDA emphasizes graphical techniques while classical
techniques emphasize quantitative techniques. In practice, an
analyst typically uses a mixture of graphical and quantitative
techniques. In this section, we have divided the descriptions
into graphical and quantitative techniques. This is for
organizational clarity and is not meant to discourage the use
of both graphical and quantitiative techniques when
analyzing data.

Use of
Techniques
Shown in
Case
Studies

This section emphasizes the techniques themselves; how the
graph or test is defined, published references, and sample
output. The use of the techniques to answer engineering
questions is demonstrated in the case studies section. The
case studies do not demonstrate all of the techniques.

Availability
in Software

The sample plots and output in this section were generated
with the Dataplot software program. Other general purpose
statistical data analysis programs can generate most of the
plots, intervals, and tests discussed here, or macros can be
written to acheive the same result.
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EDA
Questions

Some common questions that exploratory data analysis is
used to answer are:

1. What is a typical value?
2. What is the uncertainty for a typical value?
3. What is a good distributional fit for a set of numbers?
4. What is a percentile?
5. Does an engineering modification have an effect?
6. Does a factor have an effect?
7. What are the most important factors?
8. Are measurements coming from different laboratories

equivalent?
9. What is the best function for relating a response

variable to a set of factor variables?
10. What are the best settings for factors?
11. Can we separate signal from noise in time dependent

data?
12. Can we extract any structure from multivariate data?
13. Does the data have outliers?

Analyst
Should
Identify
Relevant
Questions
for his
Engineering
Problem

A critical early step in any analysis is to identify (for the
engineering problem at hand) which of the above questions
are relevant. That is, we need to identify which questions we
want answered and which questions have no bearing on the
problem at hand. After collecting such a set of questions, an
equally important step, which is invaluable for maintaining
focus, is to prioritize those questions in decreasing order of
importance. EDA techniques are tied in with each of the
questions. There are some EDA techniques (e.g., the scatter
plot) that are broad-brushed and apply almost universally. On
the other hand, there are a large number of EDA techniques
that are specific and whose specificity is tied in with one of
the above questions. Clearly if one chooses not to explicitly
identify relevant questions, then one cannot take advantage of
these question-specific EDA technqiues.

EDA
Approach
Emphasizes
Graphics

Most of these questions can be addressed by techniques
discussed in this chapter. The process modeling and process
improvement chapters also address many of the questions
above. These questions are also relevant for the classical
approach to statistics. What distinguishes the EDA approach
is an emphasis on graphical techniques to gain insight as
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opposed to the classical approach of quantitative tests. Most
data analysts will use a mix of graphical and classical
quantitative techniques to address these problems.
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1.3.3. Graphical Techniques: Alphabetic

This section provides a gallery of some useful graphical
techniques. The techniques are ordered alphabetically, so this
section is not intended to be read in a sequential fashion. The
use of most of these graphical techniques is demonstrated in
the case studies in this chapter. A few of these graphical
techniques are demonstrated in later chapters.

Autocorrelation
Plot: 1.3.3.1

Bihistogram:
1.3.3.2

Block Plot:
1.3.3.3

Bootstrap Plot:
1.3.3.4

Box-Cox
Linearity Plot:

1.3.3.5

Box-Cox
Normality Plot:

1.3.3.6

Box Plot: 1.3.3.7 Complex
Demodulation

Amplitude Plot:
1.3.3.8

Complex
Demodulation

Phase Plot:
1.3.3.9

Contour Plot:
1.3.3.10

DOE Scatter
Plot: 1.3.3.11

DOE Mean Plot:
1.3.3.12

DOE Standard
Deviation Plot:

1.3.3.13

Histogram:
1.3.3.14

Lag Plot:
1.3.3.15

Linear
Correlation Plot:

1.3.3.16
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Linear Intercept
Plot: 1.3.3.17

Linear Slope
Plot: 1.3.3.18

Linear Residual
Standard

Deviation Plot:
1.3.3.19

Mean Plot:
1.3.3.20

Normal
Probability Plot:

1.3.3.21

Probability Plot:
1.3.3.22

Probability Plot
Correlation

Coefficient Plot:
1.3.3.23

Quantile-
Quantile Plot:

1.3.3.24

Run Sequence
Plot: 1.3.3.25

Scatter Plot:
1.3.3.26

Spectrum:
1.3.3.27

Standard
Deviation Plot:

1.3.3.28

Star Plot:
1.3.3.29

Weibull Plot:
1.3.3.30

Youden Plot:
1.3.3.31

4-Plot: 1.3.3.32

6-Plot: 1.3.3.33
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1.3.3.1. Autocorrelation Plot

Purpose: 
Check
Randomness

Autocorrelation plots (Box and Jenkins, pp. 28-32) are a
commonly-used tool for checking randomness in a data
set. This randomness is ascertained by computing
autocorrelations for data values at varying time lags. If
random, such autocorrelations should be near zero for any
and all time-lag separations. If non-random, then one or
more of the autocorrelations will be significantly non-
zero.

In addition, autocorrelation plots are used in the model
identification stage for Box-Jenkins autoregressive,
moving average time series models.

Sample Plot:
Autocorrelations
should be near-
zero for
randomness.
Such is not the
case in this
example and
thus the
randomness
assumption fails

This sample autocorrelation plot shows that the time series
is not random, but rather has a high degree of
autocorrelation between adjacent and near-adjacent
observations.

Definition: 
r(h) versus h

Autocorrelation plots are formed by

Vertical axis: Autocorrelation coefficient

where Ch is the autocovariance function

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
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and C0 is the variance function

Note--Rh is between -1 and +1.

Note--Some sources may use the following formula
for the autocovariance function

Although this definition has less bias, the (1/N)
formulation has some desirable statistical properties
and is the form most commonly used in the
statistics literature. See pages 20 and 49-50 in
Chatfield for details.

Horizontal axis: Time lag h (h = 1, 2, 3, ...)

The above line also contains several horizontal
reference lines. The middle line is at zero. The other
four lines are 95 % and 99 % confidence bands.
Note that there are two distinct formulas for
generating the confidence bands.

1. If the autocorrelation plot is being used to test
for randomness (i.e., there is no time
dependence in the data), the following
formula is recommended:

where N is the sample size, z is the
cumulative distribution function of the
standard normal distribution and  is the
significance level. In this case, the confidence
bands have fixed width that depends on the
sample size. This is the formula that was used
to generate the confidence bands in the above
plot.

2. Autocorrelation plots are also used in the
model identification stage for fitting ARIMA
models. In this case, a moving average model
is assumed for the data and the following
confidence bands should be generated:

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm
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where k is the lag, N is the sample size, z is
the cumulative distribution function of the
standard normal distribution and  is the
significance level. In this case, the confidence
bands increase as the lag increases.

Questions The autocorrelation plot can provide answers to the
following questions:

1. Are the data random?
2. Is an observation related to an adjacent

observation?
3. Is an observation related to an observation twice-

removed? (etc.)
4. Is the observed time series white noise?
5. Is the observed time series sinusoidal?
6. Is the observed time series autoregressive?
7. What is an appropriate model for the observed time

series?
8. Is the model

Y = constant + error

valid and sufficient?

9. Is the formula  valid?

Importance: 
Ensure validity
of engineering
conclusions

Randomness (along with fixed model, fixed variation, and
fixed distribution) is one of the four assumptions that
typically underlie all measurement processes. The
randomness assumption is critically important for the
following three reasons:

1. Most standard statistical tests depend on
randomness. The validity of the test conclusions is
directly linked to the validity of the randomness
assumption.

2. Many commonly-used statistical formulae depend
on the randomness assumption, the most common
formula being the formula for determining the
standard deviation of the sample mean:

where  is the standard deviation of the data.
Although heavily used, the results from using this
formula are of no value unless the randomness
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assumption holds.

3. For univariate data, the default model is

Y = constant + error

If the data are not random, this model is incorrect
and invalid, and the estimates for the parameters
(such as the constant) become nonsensical and
invalid.

In short, if the analyst does not check for randomness,
then the validity of many of the statistical conclusions
becomes suspect. The autocorrelation plot is an excellent
way of checking for such randomness.

Examples Examples of the autocorrelation plot for several common
situations are given in the following pages.

1. Random (= White Noise)
2. Weak autocorrelation
3. Strong autocorrelation and autoregressive model 
4. Sinusoidal model

Related
Techniques

Partial Autocorrelation Plot 
Lag Plot 
Spectral Plot 
Seasonal Subseries Plot 

Case Study The autocorrelation plot is demonstrated in the beam
deflection data case study.

Software Autocorrelation plots are available in most general
purpose statistical software programs.
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1.3.3.1.1. Autocorrelation Plot: Random Data

Autocorrelation
Plot

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from this plot.

1. There are no significant autocorrelations.
2. The data are random.

Discussion Note that with the exception of lag 0, which is always 1 by
definition, almost all of the autocorrelations fall within the
95% confidence limits. In addition, there is no apparent
pattern (such as the first twenty-five being positive and the
second twenty-five being negative). This is the abscence
of a pattern we expect to see if the data are in fact random.

A few lags slightly outside the 95% and 99% confidence
limits do not neccessarily indicate non-randomness. For a
95% confidence interval, we might expect about one out
of twenty lags to be statistically significant due to random
fluctuations.

There is no associative ability to infer from a current value
Yi as to what the next value Yi+1 will be. Such non-
association is the essense of randomness. In short, adjacent

http://www.itl.nist.gov/div898/handbook/index.htm
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observations do not "co-relate", so we call this the "no
autocorrelation" case.
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1.3.3.1.2. Autocorrelation Plot: Moderate
Autocorrelation

Autocorrelation
Plot

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from this plot.

1. The data come from an underlying autoregressive
model with moderate positive autocorrelation.

Discussion The plot starts with a moderately high autocorrelation at
lag 1 (approximately 0.75) that gradually decreases. The
decreasing autocorrelation is generally linear, but with
significant noise. Such a pattern is the autocorrelation plot
signature of "moderate autocorrelation", which in turn
provides moderate predictability if modeled properly.

Recommended
Next Step

The next step would be to estimate the parameters for the
autoregressive model:

Such estimation can be performed by using least squares
linear regression or by fitting a Box-Jenkins autoregressive
(AR) model.
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The randomness assumption for least squares fitting
applies to the residuals of the model. That is, even though
the original data exhibit non-randomness, the residuals
after fitting Yi against Yi-1 should result in random
residuals. Assessing whether or not the proposed model in
fact sufficiently removed the randomness is discussed in
detail in the Process Modeling chapter.

The residual standard deviation for this autoregressive
model will be much smaller than the residual standard
deviation for the default model
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1.3.3.1.3. Autocorrelation Plot: Strong
Autocorrelation and Autoregressive
Model

Autocorrelation
Plot for Strong
Autocorrelation

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from the above
plot.

1. The data come from an underlying autoregressive
model with strong positive autocorrelation.

Discussion The plot starts with a high autocorrelation at lag 1 (only
slightly less than 1) that slowly declines. It continues
decreasing until it becomes negative and starts showing an
incresing negative autocorrelation. The decreasing
autocorrelation is generally linear with little noise. Such a
pattern is the autocorrelation plot signature of "strong
autocorrelation", which in turn provides high
predictability if modeled properly.

Recommended
Next Step

The next step would be to estimate the parameters for the
autoregressive model:

http://www.itl.nist.gov/div898/handbook/index.htm
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Such estimation can be performed by using least squares
linear regression or by fitting a Box-Jenkins
autoregressive (AR) model.

The randomness assumption for least squares fitting
applies to the residuals of the model. That is, even though
the original data exhibit non-randomness, the residuals
after fitting Yi against Yi-1 should result in random
residuals. Assessing whether or not the proposed model in
fact sufficiently removed the randomness is discussed in
detail in the Process Modeling chapter.

The residual standard deviation for this autoregressive
model will be much smaller than the residual standard
deviation for the default model
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1.3.3.1.4. Autocorrelation Plot: Sinusoidal
Model

Autocorrelation
Plot for
Sinusoidal
Model

The following is a sample autocorrelation plot.

Conclusions We can make the following conclusions from the above
plot.

1. The data come from an underlying sinusoidal
model.

Discussion The plot exhibits an alternating sequence of positive and
negative spikes. These spikes are not decaying to zero.
Such a pattern is the autocorrelation plot signature of a
sinusoidal model.

Recommended
Next Step

The beam deflection case study gives an example of
modeling a sinusoidal model.
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1.3.3.2. Bihistogram

Purpose: 
Check for a
change in
location,
variation, or
distribution

The bihistogram is an EDA tool for assessing whether a
before-versus-after engineering modification has caused a
change in

location;
variation; or
distribution.

It is a graphical alternative to the two-sample t-test. The
bihistogram can be more powerful than the t-test in that all
of the distributional features (location, scale, skewness,
outliers) are evident on a single plot. It is also based on the
common and well-understood histogram.

Sample Plot:
This
bihistogram
reveals that
there is a
significant
difference in
ceramic
breaking
strength
between
batch 1
(above) and
batch 2
(below)

From the above bihistogram, we can see that batch 1 is
centered at a ceramic strength value of approximately 725
while batch 2 is centered at a ceramic strength value of
approximately 625. That indicates that these batches are
displaced by about 100 strength units. Thus the batch factor
has a significant effect on the location (typical value) for
strength and hence batch is said to be "significant" or to
"have an effect". We thus see graphically and convincingly
what a t-test or analysis of variance would indicate
quantitatively.

http://www.itl.nist.gov/div898/handbook/index.htm
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With respect to variation, note that the spread (variation) of
the above-axis batch 1 histogram does not appear to be that
much different from the below-axis batch 2 histogram. With
respect to distributional shape, note that the batch 1
histogram is skewed left while the batch 2 histogram is more
symmetric with even a hint of a slight skewness to the right.

Thus the bihistogram reveals that there is a clear difference
between the batches with respect to location and
distribution, but not in regard to variation. Comparing batch
1 and batch 2, we also note that batch 1 is the "better batch"
due to its 100-unit higher average strength (around 725).

Definition:
Two
adjoined
histograms

Bihistograms are formed by vertically juxtaposing two
histograms:

Above the axis: Histogram of the response variable
for condition 1
Below the axis: Histogram of the response variable for
condition 2

Questions The bihistogram can provide answers to the following
questions:

1. Is a (2-level) factor significant?
2. Does a (2-level) factor have an effect?
3. Does the location change between the 2 subgroups?
4. Does the variation change between the 2 subgroups?
5. Does the distributional shape change between

subgroups?
6. Are there any outliers?

Importance: 
Checks 3 out
of the 4
underlying
assumptions
of a
measurement
process

The bihistogram is an important EDA tool for determining if
a factor "has an effect". Since the bihistogram provides
insight into the validity of three (location, variation, and
distribution) out of the four (missing only randomness)
underlying assumptions in a measurement process, it is an
especially valuable tool. Because of the dual (above/below)
nature of the plot, the bihistogram is restricted to assessing
factors that have only two levels. However, this is very
common in the before-versus-after character of many
scientific and engineering experiments.

Related
Techniques

t test (for shift in location) 
F test (for shift in variation) 
Kolmogorov-Smirnov test (for shift in distribution) 
Quantile-quantile plot (for shift in location and distribution) 

Case Study The bihistogram is demonstrated in the ceramic strength
data case study.

Software The bihistogram is not widely available in general purpose
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statistical software programs. Bihistograms can be generated
using Dataplot and R software.
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1.3.3.3. Block Plot

Purpose: 
Check to
determine if
a factor of
interest has
an effect
robust over
all other
factors

The block plot (Filliben 1993) is an EDA tool for assessing
whether the factor of interest (the primary factor) has a
statistically significant effect on the response, and whether
that conclusion about the primary factor effect is valid
robustly over all other nuisance or secondary factors in the
experiment.

It replaces the analysis of variance test with a less
assumption-dependent binomial test and should be routinely
used whenever we are trying to robustly decide whether a
primary factor has an effect.

Sample
Plot:
Weld
method 2 is
lower
(better)
than weld
method 1 in
10 of 12
cases

This block plot reveals that in 10 of the 12 cases (bars), weld
method 2 is lower (better) than weld method 1. From a
binomial point of view, weld method is statistically
significant.

Definition Block Plots are formed as follows:

Vertical axis: Response variable Y
Horizontal axis: All combinations of all levels of all
nuisance (secondary) factors X1, X2, ...
Plot Character: Levels of the primary factor XP

http://www.itl.nist.gov/div898/handbook/index.htm
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Discussion:
Primary
factor is
denoted by
plot
character:
within-bar
plot
character.

Average number of defective lead wires per hour from a
study with four factors,

1. weld strength (2 levels)
2. plant (2 levels)
3. speed (2 levels)
4. shift (3 levels)

are shown in the plot above. Weld strength is the primary
factor and the other three factors are nuisance factors. The 12
distinct positions along the horizontal axis correspond to all
possible combinations of the three nuisance factors, i.e., 12 =
2 plants x 2 speeds x 3 shifts. These 12 conditions provide the
framework for assessing whether any conclusions about the 2
levels of the primary factor (weld method) can truly be
called "general conclusions". If we find that one weld method
setting does better (smaller average defects per hour) than the
other weld method setting for all or most of these 12 nuisance
factor combinations, then the conclusion is in fact general
and robust.

Ordering
along the
horizontal
axis

In the above chart, the ordering along the horizontal axis is as
follows:

The left 6 bars are from plant 1 and the right 6 bars are
from plant 2.
The first 3 bars are from speed 1, the next 3 bars are
from speed 2, the next 3 bars are from speed 1, and the
last 3 bars are from speed 2.
Bars 1, 4, 7, and 10 are from the first shift, bars 2, 5, 8,
and 11 are from the second shift, and bars 3, 6, 9, and
12 are from the third shift.

Setting 2 is
better than
setting 1 in
10 out of 12
cases

In the block plot for the first bar (plant 1, speed 1, shift 1),
weld method 1 yields about 28 defects per hour while weld
method 2 yields about 22 defects per hour--hence the
difference for this combination is about 6 defects per hour
and weld method 2 is seen to be better (smaller number of
defects per hour).

Is "weld method 2 is better than weld method 1" a general
conclusion?

For the second bar (plant 1, speed 1, shift 2), weld method 1
is about 37 while weld method 2 is only about 18. Thus weld
method 2 is again seen to be better than weld method 1.
Similarly for bar 3 (plant 1, speed 1, shift 3), we see weld
method 2 is smaller than weld method 1. Scanning over all of
the 12 bars, we see that weld method 2 is smaller than weld
method 1 in 10 of the 12 cases, which is highly suggestive of
a robust weld method effect.

An event What is the chance of 10 out of 12 happening by chance?
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with chance
probability
of only 2%

This is probabilistically equivalent to testing whether a coin
is fair by flipping it and getting 10 heads in 12 tosses. The
chance (from the binomial distribution) of getting 10 (or
more extreme: 11, 12) heads in 12 flips of a fair coin is about
2%. Such low-probability events are usually rejected as
untenable and in practice we would conclude that there is a
difference in weld methods.

Advantage:
Graphical
and
binomial

The advantages of the block plot are as follows:

A quantitative procedure (analysis of variance) is
replaced by a graphical procedure.
An F-test (analysis of variance) is replaced with a
binomial test, which requires fewer assumptions.

Questions The block plot can provide answers to the following
questions:

1. Is the factor of interest significant?
2. Does the factor of interest have an effect?
3. Does the location change between levels of the primary

factor?
4. Has the process improved?
5. What is the best setting (= level) of the primary factor?
6. How much of an average improvement can we expect

with this best setting of the primary factor?
7. Is there an interaction between the primary factor and

one or more nuisance factors?
8. Does the effect of the primary factor change depending

on the setting of some nuisance factor?
9. Are there any outliers?

Importance:

Robustly
checks the
significance
of the factor
of interest

The block plot is a graphical technique that pointedly focuses
on whether or not the primary factor conclusions are in fact
robustly general. This question is fundamentally different
from the generic multi-factor experiment question where the
analyst asks, "What factors are important and what factors
are not" (a screening problem)? Global data analysis
techniques, such as analysis of variance, can potentially be
improved by local, focused data analysis techniques that take
advantage of this difference.

Related
Techniques

t test (for shift in location for exactly 2 levels) 
ANOVA (for shift in location for 2 or more levels) 
Bihistogram (for shift in location, variation, and distribution
for exactly 2 levels).

Case Study The block plot is demonstrated in the ceramic strength data
case study.

Software Block plots are not currently available in most general

http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
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purpose statistical software programs. However they can be
generated using Dataplot and, with some programming, R
software.
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1.3.3.4. Bootstrap Plot

Purpose:
Estimate
uncertainty

The bootstrap (Efron and Gong) plot is used to estimate the
uncertainty of a statistic.

Generate
subsamples
with
replacement

To generate a bootstrap uncertainty estimate for a given
statistic from a set of data, a subsample of a size less than or
equal to the size of the data set is generated from the data,
and the statistic is calculated. This subsample is generated
with replacement so that any data point can be sampled
multiple times or not sampled at all. This process is repeated
for many subsamples, typically between 500 and 1000. The
computed values for the statistic form an estimate of the
sampling distribution of the statistic.

For example, to estimate the uncertainty of the median from
a dataset with 50 elements, we generate a subsample of 50
elements and calculate the median. This is repeated at least
500 times so that we have at least 500 values for the median.
Although the number of bootstrap samples to use is
somewhat arbitrary, 500 subsamples is usually sufficient. To
calculate a 90% confidence interval for the median, the
sample medians are sorted into ascending order and the value
of the 25th median (assuming exactly 500 subsamples were
taken) is the lower confidence limit while the value of the
475th median (assuming exactly 500 subsamples were taken)
is the upper confidence limit.

Sample
Plot:

http://www.itl.nist.gov/div898/handbook/index.htm
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This bootstrap plot was generated from 500 uniform random
numbers. Bootstrap plots and corresponding histograms were
generated for the mean, median, and mid-range. The
histograms for the corresponding statistics clearly show that
for uniform random numbers the mid-range has the smallest
variance and is, therefore, a superior location estimator to the
mean or the median.

Definition The bootstrap plot is formed by:

Vertical axis: Computed value of the desired statistic
for a given subsample.
Horizontal axis: Subsample number.

The bootstrap plot is simply the computed value of the
statistic versus the subsample number. That is, the bootstrap
plot generates the values for the desired statistic. This is
usually immediately followed by a histogram or some other
distributional plot to show the location and variation of the
sampling distribution of the statistic.

Questions The bootstrap plot is used to answer the following questions:

What does the sampling distribution for the statistic
look like?
What is a 95% confidence interval for the statistic?
Which statistic has a sampling distribution with the
smallest variance? That is, which statistic generates the
narrowest confidence interval?

Importance The most common uncertainty calculation is generating a
confidence interval for the mean. In this case, the uncertainty
formula can be derived mathematically. However, there are
many situations in which the uncertainty formulas are
mathematically intractable. The bootstrap provides a method
for calculating the uncertainty in these cases.
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Cautuion on
use of the
bootstrap

The bootstrap is not appropriate for all distributions and
statistics (Efron and Tibrashani). For example, because of
the shape of the uniform distribution, the bootstrap is not
appropriate for estimating the distribution of statistics that are
heavily dependent on the tails, such as the range.

Related
Techniques

Histogram
Jackknife

The jacknife is a technique that is closely related to the
bootstrap. The jackknife is beyond the scope of this
handbook. See the Efron and Gong article for a discussion of
the jackknife.

Case Study The bootstrap plot is demonstrated in the uniform random
numbers case study.

Software The bootstrap is becoming more common in general purpose
statistical software programs. However, it is still not
supported in many of these programs. Both R software and
Dataplot support a bootstrap capability.

http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.3.3.5. Box-Cox Linearity Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda335.htm[6/27/2012 2:00:50 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.3. Graphical Techniques: Alphabetic 

1.3.3.5. Box-Cox Linearity Plot

Purpose: 
Find the
transformation
of the X
variable that
maximizes the
correlation
between a Y
and an X
variable

When performing a linear fit of Y against X, an
appropriate transformation of X can often significantly
improve the fit. The Box-Cox transformation (Box and
Cox, 1964) is a particularly useful family of
transformations. It is defined as:

where X is the variable being transformed and  is the
transformation parameter. For  = 0, the natural log of the
data is taken instead of using the above formula.

The Box-Cox linearity plot is a plot of the correlation
between Y and the transformed X for given values of .
That is,  is the coordinate for the horizontal axis variable
and the value of the correlation between Y and the
transformed X is the coordinate for the vertical axis of the
plot. The value of  corresponding to the maximum
correlation (or minimum for negative correlation) on the
plot is then the optimal choice for .

Transforming X is used to improve the fit. The Box-Cox
transformation applied to Y can be used as the basis for
meeting the error assumptions. That case is not covered
here. See page 225 of (Draper and Smith, 1981) or page
77 of (Ryan, 1997) for a discussion of this case.

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
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The plot of the original data with the predicted values from
a linear fit indicate that a quadratic fit might be preferable.
The Box-Cox linearity plot shows a value of  = 2.0. The
plot of the transformed data with the predicted values from
a linear fit with the transformed data shows a better fit
(verified by the significant reduction in the residual
standard deviation).

Definition Box-Cox linearity plots are formed by

Vertical axis: Correlation coefficient from the
transformed X and Y
Horizontal axis: Value for 

Questions The Box-Cox linearity plot can provide answers to the
following questions:

1. Would a suitable transformation improve my fit?
2. What is the optimal value of the transformation

parameter?

Importance: 
Find a
suitable
transformation

Transformations can often significantly improve a fit. The
Box-Cox linearity plot provides a convenient way to find
a suitable transformation without engaging in a lot of trial
and error fitting.

Related
Techniques

Linear Regression 
Box-Cox Normality Plot

Case Study The Box-Cox linearity plot is demonstrated in the Alaska
pipeline data case study.

Software Box-Cox linearity plots are not a standard part of most
general purpose statistical software programs. However,
the underlying technique is based on a transformation and
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computing a correlation coefficient. So if a statistical
program supports these capabilities, writing a macro for a
Box-Cox linearity plot should be feasible.
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1.3.3.6. Box-Cox Normality Plot

Purpose: 
Find
transformation
to normalize
data

Many statistical tests and intervals are based on the
assumption of normality. The assumption of normality
often leads to tests that are simple, mathematically
tractable, and powerful compared to tests that do not make
the normality assumption. Unfortunately, many real data
sets are in fact not approximately normal. However, an
appropriate transformation of a data set can often yield a
data set that does follow approximately a normal
distribution. This increases the applicability and usefulness
of statistical techniques based on the normality
assumption.

The Box-Cox transformation is a particulary useful family
of transformations. It is defined as:

where Y is the response variable and  is the
transformation parameter. For  = 0, the natural log of the
data is taken instead of using the above formula.

Given a particular transformation such as the Box-Cox
transformation defined above, it is helpful to define a
measure of the normality of the resulting transformation.
One measure is to compute the correlation coefficient of a
normal probability plot. The correlation is computed
between the vertical and horizontal axis variables of the
probability plot and is a convenient measure of the
linearity of the probability plot (the more linear the
probability plot, the better a normal distribution fits the
data).

The Box-Cox normality plot is a plot of these correlation
coefficients for various values of the  parameter. The
value of  corresponding to the maximum correlation on
the plot is then the optimal choice for .

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
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The histogram in the upper left-hand corner shows a data
set that has significant right skewness (and so does not
follow a normal distribution). The Box-Cox normality plot
shows that the maximum value of the correlation
coefficient is at  = -0.3. The histogram of the data after
applying the Box-Cox transformation with  = -0.3 shows
a data set for which the normality assumption is
reasonable. This is verified with a normal probability plot
of the transformed data.

Definition Box-Cox normality plots are formed by:

Vertical axis: Correlation coefficient from the
normal probability plot after applying Box-Cox
transformation
Horizontal axis: Value for 

Questions The Box-Cox normality plot can provide answers to the
following questions:

1. Is there a transformation that will normalize my
data?

2. What is the optimal value of the transformation
parameter?

Importance: 
Normalization
Improves
Validity of
Tests

Normality assumptions are critical for many univariate
intervals and hypothesis tests. It is important to test the
normality assumption. If the data are in fact clearly not
normal, the Box-Cox normality plot can often be used to
find a transformation that will approximately normalize the
data.

Related
Techniques

Normal Probability Plot 
Box-Cox Linearity Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Software Box-Cox normality plots are not a standard part of most
general purpose statistical software programs. However,
the underlying technique is based on a normal probability
plot and computing a correlation coefficient. So if a
statistical program supports these capabilities, writing a
macro for a Box-Cox normality plot should be feasible.
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1.3.3.7. Box Plot

Purpose: 
Check
location
and
variation
shifts

Box plots (Chambers 1983) are an excellent tool for
conveying location and variation information in data sets,
particularly for detecting and illustrating location and
variation changes between different groups of data.

Sample
Plot:
This box
plot reveals
that
machine
has a
significant
effect on
energy with
respect to
location
and
possibly
variation

This box plot, comparing four machines for energy output,
shows that machine has a significant effect on energy with
respect to both location and variation. Machine 3 has the
highest energy response (about 72.5); machine 4 has the least
variable energy response with about 50% of its readings
being within 1 energy unit.

Definition Box plots are formed by

Vertical axis: Response variable
Horizontal axis: The factor of interest

More specifically, we

1. Calculate the median and the quartiles (the lower
quartile is the 25th percentile and the upper quartile is
the 75th percentile).

http://www.itl.nist.gov/div898/handbook/index.htm
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2. Plot a symbol at the median (or draw a line) and draw
a box (hence the name--box plot) between the lower
and upper quartiles; this box represents the middle
50% of the data--the "body" of the data.

3. Draw a line from the lower quartile to the minimum
point and another line from the upper quartile to the
maximum point. Typically a symbol is drawn at these
minimum and maximum points, although this is
optional.

Thus the box plot identifies the middle 50% of the data, the
median, and the extreme points.

Single or
multiple
box plots
can be
drawn

A single box plot can be drawn for one batch of data with no
distinct groups. Alternatively, multiple box plots can be
drawn together to compare multiple data sets or to compare
groups in a single data set. For a single box plot, the width of
the box is arbitrary. For multiple box plots, the width of the
box plot can be set proportional to the number of points in
the given group or sample (some software implementations
of the box plot simply set all the boxes to the same width).

Box plots
with fences

There is a useful variation of the box plot that more
specifically identifies outliers. To create this variation:

1. Calculate the median and the lower and upper
quartiles.

2. Plot a symbol at the median and draw a box between
the lower and upper quartiles.

3. Calculate the interquartile range (the difference
between the upper and lower quartile) and call it IQ.

4. Calculate the following points:

L1 = lower quartile - 1.5*IQ
L2 = lower quartile - 3.0*IQ
U1 = upper quartile + 1.5*IQ
U2 = upper quartile + 3.0*IQ

5. The line from the lower quartile to the minimum is
now drawn from the lower quartile to the smallest
point that is greater than L1. Likewise, the line from
the upper quartile to the maximum is now drawn to the
largest point smaller than U1.

6. Points between L1 and L2 or between U1 and U2 are
drawn as small circles. Points less than L2 or greater
than U2 are drawn as large circles.

Questions The box plot can provide answers to the following questions:
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1. Is a factor significant?
2. Does the location differ between subgroups?
3. Does the variation differ between subgroups?
4. Are there any outliers?

Importance:

Check the
significance
of a factor

The box plot is an important EDA tool for determining if a
factor has a significant effect on the response with respect to
either location or variation.

The box plot is also an effective tool for summarizing large
quantities of information.

Related
Techniques

Mean Plot
Analysis of Variance

Case Study The box plot is demonstrated in the ceramic strength data
case study.

Software Box plots are available in most general purpose statistical
software programs.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.8. Complex Demodulation Amplitude Plot

Purpose:
Detect
Changing
Amplitude
in
Sinusoidal
Models

In the frequency analysis of time series models, a common
model is the sinusoidal model:

In this equation,  is the amplitude,  is the phase shift, and 
 is the dominant frequency. In the above model,  and  are

constant, that is they do not vary with time, ti.

The complex demodulation amplitude plot (Granger, 1964) is
used to determine if the assumption of constant amplitude is
justifiable. If the slope of the complex demodulation
amplitude plot is not zero, then the above model is typically
replaced with the model:

where  is some type of linear model fit with standard least
squares. The most common case is a linear fit, that is the
model becomes

Quadratic models are sometimes used. Higher order models
are relatively rare.

Sample
Plot:

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
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This complex demodulation amplitude plot shows that:

the amplitude is fixed at approximately 390;
there is a start-up effect; and
there is a change in amplitude at around x = 160 that
should be investigated for an outlier.

Definition: The complex demodulation amplitude plot is formed by:

Vertical axis: Amplitude
Horizontal axis: Time

The mathematical computations for determining the
amplitude are beyond the scope of the Handbook. Consult
Granger (Granger, 1964) for details.

Questions The complex demodulation amplitude plot answers the
following questions:

1. Does the amplitude change over time?
2. Are there any outliers that need to be investigated?
3. Is the amplitude different at the beginning of the series

(i.e., is there a start-up effect)?

Importance:
Assumption
Checking

As stated previously, in the frequency analysis of time series
models, a common model is the sinusoidal model:

In this equation,  is assumed to be constant, that is it does
not vary with time. It is important to check whether or not
this assumption is reasonable.

The complex demodulation amplitude plot can be used to
verify this assumption. If the slope of this plot is essentially
zero, then the assumption of constant amplitude is justified. If
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it is not,  should be replaced with some type of time-
varying model. The most common cases are linear (B0 +
B1*t) and quadratic (B0 + B1*t + B2*t2).

Related
Techniques

Spectral Plot
Complex Demodulation Phase Plot
Non-Linear Fitting

Case Study The complex demodulation amplitude plot is demonstrated in
the beam deflection data case study.

Software Complex demodulation amplitude plots are available in some,
but not most, general purpose statistical software programs.

http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.9. Complex Demodulation Phase Plot

Purpose:
Improve
the
estimate of
frequency
in
sinusoidal
time series
models

As stated previously, in the frequency analysis of time series
models, a common model is the sinusoidal model:

In this equation,  is the amplitude,  is the phase shift, and 
is the dominant frequency. In the above model,  and  are
constant, that is they do not vary with time ti.

The complex demodulation phase plot (Granger, 1964) is used
to improve the estimate of the frequency (i.e., ) in this
model.

If the complex demodulation phase plot shows lines sloping
from left to right, then the estimate of the frequency should be
increased. If it shows lines sloping right to left, then the
frequency should be decreased. If there is essentially zero
slope, then the frequency estimate does not need to be
modified.

Sample
Plot:

This complex demodulation phase plot shows that:

http://www.itl.nist.gov/div898/handbook/index.htm
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the specified demodulation frequency is incorrect;
the demodulation frequency should be increased.

Definition The complex demodulation phase plot is formed by:

Vertical axis: Phase
Horizontal axis: Time

The mathematical computations for the phase plot are beyond
the scope of the Handbook. Consult Granger (Granger, 1964)
for details.

Questions The complex demodulation phase plot answers the following
question:

Is the specified demodulation frequency correct?

Importance
of a Good
Initial
Estimate
for the
Frequency

The non-linear fitting for the sinusoidal model:

is usually quite sensitive to the choice of good starting values.
The initial estimate of the frequency, , is obtained from a
spectral plot. The complex demodulation phase plot is used to
assess whether this estimate is adequate, and if it is not,
whether it should be increased or decreased. Using the
complex demodulation phase plot with the spectral plot can
significantly improve the quality of the non-linear fits
obtained.

Related
Techniques

Spectral Plot
Complex Demodulation Phase Plot
Non-Linear Fitting

Case Study The complex demodulation amplitude plot is demonstrated in
the beam deflection data case study.

Software Complex demodulation phase plots are available in some, but
not most, general purpose statistical software programs.

http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.10. Contour Plot

Purpose:
Display 3-d
surface on
2-d plot

A contour plot is a graphical technique for representing a 3-
dimensional surface by plotting constant z slices, called
contours, on a 2-dimensional format. That is, given a value
for z, lines are drawn for connecting the (x,y) coordinates
where that z value occurs.

The contour plot is an alternative to a 3-D surface plot.

Sample
Plot:

This contour plot shows that the surface is symmetric and
peaks in the center.

Definition The contour plot is formed by:

Vertical axis: Independent variable 2
Horizontal axis: Independent variable 1
Lines: iso-response values

The independent variables are usually restricted to a regular
grid. The actual techniques for determining the correct iso-
response values are rather complex and are almost always
computer generated.

http://www.itl.nist.gov/div898/handbook/index.htm
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An additional variable may be required to specify the Z
values for drawing the iso-lines. Some software packages
require explicit values. Other software packages will
determine them automatically.

If the data (or function) do not form a regular grid, you
typically need to perform a 2-D interpolation to form a
regular grid.

Questions The contour plot is used to answer the question

How does Z change as a function of X and Y?

Importance:
Visualizing
3-
dimensional
data

For univariate data, a run sequence plot and a histogram are
considered necessary first steps in understanding the data.
For 2-dimensional data, a scatter plot is a necessary first step
in understanding the data.

In a similar manner, 3-dimensional data should be plotted.
Small data sets, such as result from designed experiments,
can typically be represented by block plots, DOE mean plots,
and the like ("DOE" stands for "Design of Experiments").
For large data sets, a contour plot or a 3-D surface plot
should be considered a necessary first step in understanding
the data.

DOE
Contour
Plot

The DOE contour plot is a specialized contour plot used in
the design of experiments. In particular, it is useful for full
and fractional designs.

Related
Techniques

3-D Plot

Software Contour plots are available in most general purpose statistical
software programs. They are also available in many general
purpose graphics and mathematics programs. These programs
vary widely in the capabilities for the contour plots they
generate. Many provide just a basic contour plot over a
rectangular grid while others permit color filled or shaded
contours.

Most statistical software programs that support design of
experiments will provide a DOE contour plot capability.

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri333.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.10.1. DOE Contour Plot

DOE
Contour Plot:
Introduction

The DOE contour plot is a specialized contour plot used in the analysis of full and fractional
experimental designs. These designs often have a low level, coded as "-1" or "-", and a high
level, coded as "+1" or "+" for each factor. In addition, there can optionally be one or more
center points. Center points are at the mid-point between the low and high level for each
factor and are coded as "0".

The DOE contour plot is generated for two factors. Typically, this would be the two most
important factors as determined by previous analyses (e.g., through the use of the DOE
mean plots and an analysis of variance). If more than two factors are important, you may
want to generate a series of DOE contour plots, each of which is drawn for two of these
factors. You can also generate a matrix of all pairwise DOE contour plots for a number of
important factors (similar to the scatter plot matrix for scatter plots).

The typical application of the DOE contour plot is in determining settings that will
maximize (or minimize) the response variable. It can also be helpful in determining settings
that result in the response variable hitting a pre-determined target value. The DOE contour
plot plays a useful role in determining the settings for the next iteration of the experiment.
That is, the initial experiment is typically a fractional factorial design with a fairly large
number of factors. After the most important factors are determined, the DOE contour plot
can be used to help define settings for a full factorial or response surface design based on a
smaller number of factors.

Construction
of DOE
Contour Plot

The following are the primary steps in the construction of the DOE contour plot.

1. The x and y axes of the plot represent the values of the first and second factor
(independent) variables.

2. The four vertex points are drawn. The vertex points are (-1,-1), (-1,1), (1,1), (1,-1). At
each vertex point, the average of all the response values at that vertex point is printed.

3. Similarly, if there are center points, a point is drawn at (0,0) and the average of the
response values at the center points is printed.

4. The linear DOE contour plot assumes the model:

where  is the overall mean of the response variable. The values of , , , and 
are estimated from the vertex points using least squares estimation.

In order to generate a single contour line, we need a value for Y, say Y . Next, we

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri333.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc23.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatplma.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd431.htm
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0
solve for U2 in terms of U1 and, after doing the algebra, we have the equation:

We generate a sequence of points for U1 in the range -2 to 2 and compute the
corresponding values of U2. These points constitute a single contour line
corresponding to Y = Y0.

The user specifies the target values for which contour lines will be generated.

The above algorithm assumes a linear model for the design. DOE contour plots can also be
generated for the case in which we assume a quadratic model for the design. The algebra for
solving for U2 in terms of U1 becomes more complicated, but the fundamental idea is the
same. Quadratic models are needed for the case when the average for the center points does
not fall in the range defined by the vertex point (i.e., there is curvature).

Sample DOE
Contour Plot

The following is a DOE contour plot for the data used in the Eddy current case study. The
analysis in that case study demonstrated that X1 and X2 were the most important factors.

http://www.itl.nist.gov/div898/handbook/pri/section6/pri61.htm
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Interpretation
of the Sample
DOE
Contour Plot

From the above DOE contour plot we can derive the following information.

1. Interaction significance;
2. Best (data) setting for these two dominant factors;

Interaction
Significance

Note the appearance of the contour plot. If the contour curves are linear, then that implies
that the interaction term is not significant; if the contour curves have considerable curvature,
then that implies that the interaction term is large and important. In our case, the contour
curves do not have considerable curvature, and so we conclude that the X1*X2 term is not
significant.

Best Settings To determine the best factor settings for the already-run experiment, we first must define
what "best" means. For the Eddy current data set used to generate this DOE contour plot,
"best" means to maximize (rather than minimize or hit a target) the response. Hence from
the contour plot we determine the best settings for the two dominant factors by simply
scanning the four vertices and choosing the vertex with the largest value (= average
response). In this case, it is (X1 = +1, X2 = +1).
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As for factor X3, the contour plot provides no best setting information, and so we would
resort to other tools: the main effects plot, the interaction effects matrix, or the ordered data
to determine optimal X3 settings.

Case Study The Eddy current case study demonstrates the use of the DOE contour plot in the context of
the analysis of a full factorial design.

Software DOE Contour plots are available in many statistical software programs that analyze data
from designed experiments.

http://www.itl.nist.gov/div898/handbook/pri/section6/pri61.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.11. DOE Scatter Plot

Purpose:
Determine
Important
Factors with
Respect to
Location and
Scale

The DOE scatter plot shows the response values for each level of each factor (i.e.,
independent) variable. This graphically shows how the location and scale vary for both
within a factor variable and between different factor variables. This graphically shows
which are the important factors and can help provide a ranked list of important factors from
a designed experiment. The DOE scatter plot is a complement to the traditional analyis of
variance of designed experiments.

DOE scatter plots are typically used in conjunction with the DOE mean plot and the DOE
standard deviation plot. The DOE mean plot replaces the raw response values with mean
response values while the DOE standard deviation plot replaces the raw response values
with the standard deviation of the response values. There is value in generating all 3 of these
plots. The DOE mean and standard deviation plots are useful in that the summary measures
of location and spread stand out (they can sometimes get lost with the raw plot). However,
the raw data points can reveal subtleties, such as the presence of outliers, that might get lost
with the summary statistics.

Sample Plot:
Factors 4, 2,
3, and 7 are
the Important
Factors.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
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Description
of the Plot

For this sample plot, there are seven factors and each factor has two levels. For each factor,
we define a distinct x coordinate for each level of the factor. For example, for factor 1, level
1 is coded as 0.8 and level 2 is coded as 1.2. The y coordinate is simply the value of the
response variable. The solid horizontal line is drawn at the overall mean of the response
variable. The vertical dotted lines are added for clarity.

Although the plot can be drawn with an arbitrary number of levels for a factor, it is really
only useful when there are two or three levels for a factor.

Conclusions This sample DOE scatter plot shows that:

1. there does not appear to be any outliers;
2. the levels of factors 2 and 4 show distinct location differences; and
3. the levels of factor 1 show distinct scale differences.

Definition:
Response
Values
Versus
Factor
Variables

DOE scatter plots are formed by:

Vertical axis: Value of the response variable
Horizontal axis: Factor variable (with each level of the factor coded with a slightly
offset x coordinate)

Questions The DOE scatter plot can be used to answer the following questions:
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1. Which factors are important with respect to location and scale?
2. Are there outliers?

Importance:
Identify
Important
Factors with
Respect to
Location and
Scale

The goal of many designed experiments is to determine which factors are important with
respect to location and scale. A ranked list of the important factors is also often of interest.
DOE scatter, mean, and standard deviation plots show this graphically. The DOE scatter plot
additionally shows if outliers may potentially be distorting the results.

DOE scatter plots were designed primarily for analyzing designed experiments. However,
they are useful for any type of multi-factor data (i.e., a response variable with two or more
factor variables having a small number of distinct levels) whether or not the data were
generated from a designed experiment.

Extension for
Interaction
Effects

Using the concept of the scatterplot matrix, the DOE scatter plot can be extended to display
first order interaction effects.

Specifically, if there are k factors, we create a matrix of plots with k rows and k columns.
On the diagonal, the plot is simply a DOE scatter plot with a single factor. For the off-
diagonal plots, we multiply the values of Xi and Xj. For the common 2-level designs (i.e.,
each factor has two levels) the values are typically coded as -1 and 1, so the multiplied
values are also -1 and 1. We then generate a DOE scatter plot for this interaction variable.
This plot is called a DOE interaction effects plot and an example is shown below.

Interpretation
of the DOE
Interaction
Effects Plot

We can first examine the diagonal elements for the main effects. These diagonal plots show
a great deal of overlap between the levels for all three factors. This indicates that location
and scale effects will be relatively small.

We can then examine the off-diagonal plots for the first order interaction effects. For
example, the plot in the first row and second column is the interaction between factors X1
and X2. As with the main effect plots, no clear patterns are evident.

Related
Techniques

DOE mean plot
DOE standard deviation plot
Block plot
Box plot
Analysis of variance

http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
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Case Study The DOE scatter plot is demonstrated in the ceramic strength data case study.

Software DOE scatter plots are available in some general purpose statistical software programs,
although the format may vary somewhat between these programs. They are essentially just
scatter plots with the X variable defined in a particular way, so it should be feasible to write
macros for DOE scatter plots in most statistical software programs.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.12. DOE Mean Plot

Purpose:
Detect
Important
Factors
With
Respect to
Location

The DOE mean plot is appropriate for analyzing data from a designed
experiment, with respect to important factors, where the factors are at two or
more levels. The plot shows mean values for the two or more levels of each
factor plotted by factor. The means for a single factor are connected by a
straight line. The DOE mean plot is a complement to the traditional analysis
of variance of designed experiments.

This plot is typically generated for the mean. However, it can be generated
for other location statistics such as the median.

Sample
Plot:
Factors 4,
2, and 1 Are
the Most
Important
Factors

This sample DOE mean plot shows that:

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc23.htm
http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc23.htm
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1. factor 4 is the most important;
2. factor 2 is the second most important;
3. factor 1 is the third most important;
4. factor 7 is the fourth most important;
5. factor 6 is the fifth most important;
6. factors 3 and 5 are relatively unimportant.

In summary, factors 4, 2, and 1 seem to be clearly important, factors 3 and 5
seem to be clearly unimportant, and factors 6 and 7 are borderline factors
whose inclusion in any subsequent models will be determined by further
analyses.

Definition:
Mean
Response
Versus
Factor
Variables

DOE mean plots are formed by:

Vertical axis: Mean of the response variable for each level of the
factor
Horizontal axis: Factor variable

Questions The DOE mean plot can be used to answer the following questions:

1. Which factors are important? The DOE mean plot does not provide a
definitive answer to this question, but it does help categorize factors as
"clearly important", "clearly not important", and "borderline
importance".

2. What is the ranking list of the important factors?

Importance:
Determine
Significant
Factors

The goal of many designed experiments is to determine which factors are
significant. A ranked order listing of the important factors is also often of
interest. The DOE mean plot is ideally suited for answering these types of
questions and we recommend its routine use in analyzing designed
experiments.

Extension
for
Interaction
Effects

Using the concept of the scatter plot matrix, the DOE mean plot can be
extended to display first-order interaction effects.

Specifically, if there are k factors, we create a matrix of plots with k rows
and k columns. On the diagonal, the plot is simply a DOE mean plot with a
single factor. For the off-diagonal plots, measurements at each level of the
interaction are plotted versus level, where level is Xi times Xj and Xi is the
code for the ith main effect level and Xj is the code for the jth main effect.
For the common 2-level designs (i.e., each factor has two levels) the values
are typically coded as -1 and 1, so the multiplied values are also -1 and 1.
We then generate a DOE mean plot for this interaction variable. This plot is
called a DOE interaction effects plot and an example is shown below.

DOE
Interaction
Effects Plot
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This plot shows that the most significant factor is X1 and the most
significant interaction is between X1 and X3.

Related
Techniques

DOE scatter plot
DOE standard deviation plot
Block plot
Box plot
Analysis of variance

Case Study The DOE mean plot and the DOE interaction effects plot are demonstrated in
the ceramic strength data case study.

Software DOE mean plots are available in some general purpose statistical software
programs, although the format may vary somewhat between these programs.
It may be feasible to write macros for DOE mean plots in some statistical
software programs that do not support this plot directly.

http://www.itl.nist.gov/div898/handbook/eda/section3/dexsplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc4.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.13. DOE Standard Deviation Plot

Purpose:
Detect
Important
Factors
With
Respect to
Scale

The DOE standard deviation plot is appropriate for analyzing data from a
designed experiment, with respect to important factors, where the factors are
at two or more levels and there are repeated values at each level. The plot
shows standard deviation values for the two or more levels of each factor
plotted by factor. The standard deviations for a single factor are connected
by a straight line. The DOE standard deviation plot is a complement to the
traditional analysis of variance of designed experiments.

This plot is typically generated for the standard deviation. However, it can
also be generated for other scale statistics such as the range, the median
absolute deviation, or the average absolute deviation.

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc23.htm
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This sample DOE standard deviation plot shows that:

1. factor 1 has the greatest difference in standard deviations between
factor levels;

2. factor 4 has a significantly lower average standard deviation than the
average standard deviations of other factors (but the level 1 standard
deviation for factor 1 is about the same as the level 1 standard
deviation for factor 4);

3. for all factors, the level 1 standard deviation is smaller than the level 2
standard deviation.

Definition:
Response
Standard
Deviations
Versus
Factor
Variables

DOE standard deviation plots are formed by:

Vertical axis: Standard deviation of the response variable for each
level of the factor
Horizontal axis: Factor variable

Questions The DOE standard deviation plot can be used to answer the following
questions:

1. How do the standard deviations vary across factors?
2. How do the standard deviations vary within a factor?
3. Which are the most important factors with respect to scale?
4. What is the ranked list of the important factors with respect to scale?

Importance:
Assess
Variability

The goal with many designed experiments is to determine which factors are
significant. This is usually determined from the means of the factor levels
(which can be conveniently shown with a DOE mean plot). A secondary
goal is to assess the variability of the responses both within a factor and
between factors. The DOE standard deviation plot is a convenient way to do
this.

Related
Techniques

DOE scatter plot
DOE mean plot
Block plot
Box plot
Analysis of variance

Case Study The DOE standard deviation plot is demonstrated in the ceramic strength
data case study.

Software DOE standard deviation plots are not available in most general purpose
statistical software programs. It may be feasible to write macros for DOE
standard deviation plots in some statistical software programs that do not
support them directly.

http://www.itl.nist.gov/div898/handbook/eda/section3/dexsplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14. Histogram

Purpose:
Summarize
a
Univariate
Data Set

The purpose of a histogram (Chambers) is to graphically
summarize the distribution of a univariate data set.

The histogram graphically shows the following:

1. center (i.e., the location) of the data;
2. spread (i.e., the scale) of the data;
3. skewness of the data;
4. presence of outliers; and
5. presence of multiple modes in the data.

These features provide strong indications of the proper
distributional model for the data. The probability plot or a
goodness-of-fit test can be used to verify the distributional
model.

The examples section shows the appearance of a number of
common features revealed by histograms.

Sample
Plot

Definition The most common form of the histogram is obtained by
splitting the range of the data into equal-sized bins (called
classes). Then for each bin, the number of points from the data
set that fall into each bin are counted. That is

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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Vertical axis: Frequency (i.e., counts for each bin)
Horizontal axis: Response variable

The classes can either be defined arbitrarily by the user or via
some systematic rule. A number of theoretically derived rules
have been proposed by Scott (Scott 1992).

The cumulative histogram is a variation of the histogram in
which the vertical axis gives not just the counts for a single
bin, but rather gives the counts for that bin plus all bins for
smaller values of the response variable.

Both the histogram and cumulative histogram have an
additional variant whereby the counts are replaced by the
normalized counts. The names for these variants are the
relative histogram and the relative cumulative histogram.

There are two common ways to normalize the counts.

1. The normalized count is the count in a class divided by
the total number of observations. In this case the relative
counts are normalized to sum to one (or 100 if a
percentage scale is used). This is the intuitive case
where the height of the histogram bar represents the
proportion of the data in each class.

2. The normalized count is the count in the class divided
by the number of observations times the class width. For
this normalization, the area (or integral) under the
histogram is equal to one. From a probabilistic point of
view, this normalization results in a relative histogram
that is most akin to the probability density function and
a relative cumulative histogram that is most akin to the
cumulative distribution function. If you want to overlay
a probability density or cumulative distribution function
on top of the histogram, use this normalization.
Although this normalization is less intuitive (relative
frequencies greater than 1 are quite permissible), it is the
appropriate normalization if you are using the histogram
to model a probability density function.

Questions The histogram can be used to answer the following questions:

1. What kind of population distribution do the data come
from?

2. Where are the data located?
3. How spread out are the data?
4. Are the data symmetric or skewed?
5. Are there outliers in the data?

Examples 1. Normal
2. Symmetric, Non-Normal, Short-Tailed

http://www.itl.nist.gov/div898/handbook/eda/section3/histogr1.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr2.htm
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3. Symmetric, Non-Normal, Long-Tailed
4. Symmetric and Bimodal
5. Bimodal Mixture of 2 Normals
6. Skewed (Non-Symmetric) Right
7. Skewed (Non-Symmetric) Left
8. Symmetric with Outlier

Related
Techniques

Box plot
Probability plot

The techniques below are not discussed in the Handbook.
However, they are similar in purpose to the histogram.
Additional information on them is contained in the Chambers
and Scott references.

Frequency Plot
Stem and Leaf Plot
Density Trace

Case Study The histogram is demonstrated in the heat flow meter data
case study.

Software Histograms are available in most general purpose statistical
software programs. They are also supported in most general
purpose charting, spreadsheet, and business graphics
programs.

http://www.itl.nist.gov/div898/handbook/eda/section3/histogr3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr4.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr5.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr6.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr7.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr8.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14.1. Histogram Interpretation: Normal

Symmetric,
Moderate-
Tailed
Histogram

  Note the classical bell-shaped, symmetric histogram with
most of the frequency counts bunched in the middle and
with the counts dying off out in the tails. From a physical
science/engineering point of view, the normal distribution
is that distribution which occurs most often in nature (due
in part to the central limit theorem).

Recommended
Next Step

If the histogram indicates a symmetric, moderate tailed
distribution, then the recommended next step is to do a
normal probability plot to confirm approximate normality.
If the normal probability plot is linear, then the normal
distribution is a good model for the data.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14.2. Histogram Interpretation:
Symmetric, Non-Normal, Short-
Tailed

Symmetric,
Short-Tailed
Histogram

Description of
What Short-
Tailed Means

For a symmetric distribution, the "body" of a distribution
refers to the "center" of the distribution--commonly that
region of the distribution where most of the probability
resides--the "fat" part of the distribution. The "tail" of a
distribution refers to the extreme regions of the
distribution--both left and right. The "tail length" of a
distribution is a term that indicates how fast these extremes
approach zero.

For a short-tailed distribution, the tails approach zero very
fast. Such distributions commonly have a truncated
("sawed-off") look. The classical short-tailed distribution is
the uniform (rectangular) distribution in which the
probability is constant over a given range and then drops to
zero everywhere else--we would speak of this as having no
tails, or extremely short tails.

For a moderate-tailed distribution, the tails decline to zero
in a moderate fashion. The classical moderate-tailed
distribution is the normal (Gaussian) distribution.

http://www.itl.nist.gov/div898/handbook/index.htm
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For a long-tailed distribution, the tails decline to zero very
slowly--and hence one is apt to see probability a long way
from the body of the distribution. The classical long-tailed
distribution is the Cauchy distribution.

In terms of tail length, the histogram shown above would
be characteristic of a "short-tailed" distribution.

The optimal (unbiased and most precise) estimator for
location for the center of a distribution is heavily
dependent on the tail length of the distribution. The
common choice of taking N observations and using the
calculated sample mean as the best estimate for the center
of the distribution is a good choice for the normal
distribution (moderate tailed), a poor choice for the
uniform distribution (short tailed), and a horrible choice for
the Cauchy distribution (long tailed). Although for the
normal distribution the sample mean is as precise an
estimator as we can get, for the uniform and Cauchy
distributions, the sample mean is not the best estimator.

For the uniform distribution, the midrange

midrange = (smallest + largest) / 2

is the best estimator of location. For a Cauchy distribution,
the median is the best estimator of location.

Recommended
Next Step

If the histogram indicates a symmetric, short-tailed
distribution, the recommended next step is to generate a
uniform probability plot. If the uniform probability plot is
linear, then the uniform distribution is an appropriate
model for the data.

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14.3. Histogram Interpretation:
Symmetric, Non-Normal, Long-
Tailed

Symmetric,
Long-Tailed
Histogram

Description of
Long-Tailed

The previous example contains a discussion of the
distinction between short-tailed, moderate-tailed, and long-
tailed distributions.

In terms of tail length, the histogram shown above would
be characteristic of a "long-tailed" distribution.

Recommended
Next Step

If the histogram indicates a symmetric, long tailed
distribution, the recommended next step is to do a Cauchy
probability plot. If the Cauchy probability plot is linear,
then the Cauchy distribution is an appropriate model for the
data. Alternatively, a Tukey Lambda PPCC plot may
provide insight into a suitable distributional model for the
data.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr2.htm#tail
http://www.itl.nist.gov/div898/handbook/eda/section3/histogr2.htm#tail
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14.4. Histogram Interpretation:
Symmetric and Bimodal

Symmetric,
Bimodal
Histogram

Description of
Bimodal

The mode of a distribution is that value which is most
frequently occurring or has the largest probability of
occurrence. The sample mode occurs at the peak of the
histogram.

For many phenomena, it is quite common for the
distribution of the response values to cluster around a
single mode (unimodal) and then distribute themselves
with lesser frequency out into the tails. The normal
distribution is the classic example of a unimodal
distribution.

The histogram shown above illustrates data from a bimodal
(2 peak) distribution. The histogram serves as a tool for
diagnosing problems such as bimodality. Questioning the
underlying reason for distributional non-unimodality
frequently leads to greater insight and improved
deterministic modeling of the phenomenon under study.
For example, for the data presented above, the bimodal
histogram is caused by sinusoidality in the data.

Recommended
Next Step

If the histogram indicates a symmetric, bimodal
distribution, the recommended next steps are to:

http://www.itl.nist.gov/div898/handbook/index.htm
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1. Do a run sequence plot or a scatter plot to check for
sinusoidality.

2. Do a lag plot to check for sinusoidality. If the lag
plot is elliptical, then the data are sinusoidal.

3. If the data are sinusoidal, then a spectral plot is used
to graphically estimate the underlying sinusoidal
frequency.

4. If the data are not sinusoidal, then a Tukey Lambda
PPCC plot may determine the best-fit symmetric
distribution for the data.

5. The data may be fit with a mixture of two
distributions. A common approach to this case is to
fit a mixture of 2 normal or lognormal distributions.
Further discussion of fitting mixtures of distributions
is beyond the scope of this Handbook.

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14.5. Histogram Interpretation: Bimodal
Mixture of 2 Normals

Histogram
from Mixture
of 2 Normal
Distributions

Discussion of
Unimodal and
Bimodal

The histogram shown above illustrates data from a bimodal
(2 peak) distribution.

In contrast to the previous example, this example
illustrates bimodality due not to an underlying
deterministic model, but bimodality due to a mixture of
probability models. In this case, each of the modes appears
to have a rough bell-shaped component. One could easily
imagine the above histogram being generated by a process
consisting of two normal distributions with the same
standard deviation but with two different locations (one
centered at approximately 9.17 and the other centered at
approximately 9.26). If this is the case, then the research
challenge is to determine physically why there are two
similar but separate sub-processes.

Recommended
Next Steps

If the histogram indicates that the data might be
appropriately fit with a mixture of two normal
distributions, the recommended next step is:

Fit the normal mixture model using either least squares or
maximum likelihood. The general normal mixing model is

http://www.itl.nist.gov/div898/handbook/index.htm
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where p is the mixing proportion (between 0 and 1) and 
and  are normal probability density functions with
location and scale parameters , , , and ,
respectively. That is, there are 5 parameters to estimate in
the fit.

Whether maximum likelihood or least squares is used, the
quality of the fit is sensitive to good starting values. For the
mixture of two normals, the histogram can be used to
provide initial estimates for the location and scale
parameters of the two normal distributions.

Both Dataplot code and R code can be used to fit a
mixture of two normals.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33e5.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda33e5.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.14.6. Histogram Interpretation: Skewed
(Non-Normal) Right

Right-Skewed
Histogram

Discussion of
Skewness

A symmetric distribution is one in which the 2 "halves" of
the histogram appear as mirror-images of one another. A
skewed (non-symmetric) distribution is a distribution in
which there is no such mirror-imaging.

For skewed distributions, it is quite common to have one
tail of the distribution considerably longer or drawn out
relative to the other tail. A "skewed right" distribution is
one in which the tail is on the right side. A "skewed left"
distribution is one in which the tail is on the left side. The
above histogram is for a distribution that is skewed right.

Skewed distributions bring a certain philosophical
complexity to the very process of estimating a "typical
value" for the distribution. To be specific, suppose that the
analyst has a collection of 100 values randomly drawn
from a distribution, and wishes to summarize these 100
observations by a "typical value". What does typical value
mean? If the distribution is symmetric, the typical value is
unambiguous-- it is a well-defined center of the
distribution. For example, for a bell-shaped symmetric
distribution, a center point is identical to that value at the
peak of the distribution.

http://www.itl.nist.gov/div898/handbook/index.htm
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For a skewed distribution, however, there is no "center" in
the usual sense of the word. Be that as it may, several
"typical value" metrics are often used for skewed
distributions. The first metric is the mode of the
distribution. Unfortunately, for severely-skewed
distributions, the mode may be at or near the left or right
tail of the data and so it seems not to be a good
representative of the center of the distribution. As a second
choice, one could conceptually argue that the mean (the
point on the horizontal axis where the distributiuon would
balance) would serve well as the typical value. As a third
choice, others may argue that the median (that value on the
horizontal axis which has exactly 50% of the data to the
left (and also to the right) would serve as a good typical
value.

For symmetric distributions, the conceptual problem
disappears because at the population level the mode, mean,
and median are identical. For skewed distributions,
however, these 3 metrics are markedly different. In
practice, for skewed distributions the most commonly
reported typical value is the mean; the next most common
is the median; the least common is the mode. Because each
of these 3 metrics reflects a different aspect of
"centerness", it is recommended that the analyst report at
least 2 (mean and median), and preferably all 3 (mean,
median, and mode) in summarizing and characterizing a
data set.

Some Causes
for Skewed
Data

Skewed data often occur due to lower or upper bounds on
the data. That is, data that have a lower bound are often
skewed right while data that have an upper bound are often
skewed left. Skewness can also result from start-up effects.
For example, in reliability applications some processes
may have a large number of initial failures that could cause
left skewness. On the other hand, a reliability process
could have a long start-up period where failures are rare
resulting in right-skewed data.

Data collected in scientific and engineering applications
often have a lower bound of zero. For example, failure data
must be non-negative. Many measurement processes
generate only positive data. Time to occurence and size are
common measurements that cannot be less than zero.

Recommended
Next Steps

If the histogram indicates a right-skewed data set, the
recommended next steps are to:

1. Quantitatively summarize the data by computing and
reporting the sample mean, the sample median, and
the sample mode.

2. Determine the best-fit distribution (skewed-right)
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from the
Weibull family (for the maximum)
Gamma family
Chi-square family
Lognormal family
Power lognormal family

3. Consider a normalizing transformation such as the
Box-Cox transformation.

http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxno.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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http://www.nist.gov/


1.3.3.14.7. Histogram Interpretation: Skewed (Non-Symmetric) Left

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33e7.htm[6/27/2012 2:01:05 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.3. Graphical Techniques: Alphabetic 
1.3.3.14. Histogram 

1.3.3.14.7. Histogram Interpretation: Skewed
(Non-Symmetric) Left

Skewed
Left
Histogram

The issues for skewed left data are similar to those for skewed
right data.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.3.14.8. Histogram Interpretation:
Symmetric with Outlier

Symmetric
Histogram
with Outlier

Discussion of
Outliers

A symmetric distribution is one in which the 2 "halves" of
the histogram appear as mirror-images of one another. The
above example is symmetric with the exception of outlying
data near Y = 4.5.

An outlier is a data point that comes from a distribution
different (in location, scale, or distributional form) from
the bulk of the data. In the real world, outliers have a range
of causes, from as simple as

1. operator blunders
2. equipment failures
3. day-to-day effects
4. batch-to-batch differences
5. anomalous input conditions
6. warm-up effects

to more subtle causes such as

1. A change in settings of factors that (knowingly or
unknowingly) affect the response.

2. Nature is trying to tell us something.

http://www.itl.nist.gov/div898/handbook/index.htm
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Outliers
Should be
Investigated

All outliers should be taken seriously and should be
investigated thoroughly for explanations. Automatic
outlier-rejection schemes (such as throw out all data
beyond 4 sample standard deviations from the sample
mean) are particularly dangerous.

The classic case of automatic outlier rejection becoming
automatic information rejection was the South Pole ozone
depletion problem. Ozone depletion over the South Pole
would have been detected years earlier except for the fact
that the satellite data recording the low ozone readings had
outlier-rejection code that automatically screened out the
"outliers" (that is, the low ozone readings) before the
analysis was conducted. Such inadvertent (and incorrect)
purging went on for years. It was not until ground-based
South Pole readings started detecting low ozone readings
that someone decided to double-check as to why the
satellite had not picked up this fact--it had, but it had
gotten thrown out!

The best attitude is that outliers are our "friends", outliers
are trying to tell us something, and we should not stop
until we are comfortable in the explanation for each outlier.

Recommended
Next Steps

If the histogram shows the presence of outliers, the
recommended next steps are:

1. Graphically check for outliers (in the commonly
encountered normal case) by generating a box plot.
In general, box plots are a much better graphical tool
for detecting outliers than are histograms.

2. Quantitatively check for outliers (in the commonly
encountered normal case) by carrying out Grubbs
test which indicates how many sample standard
deviations away from the sample mean are the data
in question. Large values indicate outliers.

http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.15. Lag Plot

Purpose:
Check for
randomness

A lag plot checks whether a data set or time series is random
or not. Random data should not exhibit any identifiable
structure in the lag plot. Non-random structure in the lag plot
indicates that the underlying data are not random. Several
common patterns for lag plots are shown in the examples
below.

Sample
Plot

This sample lag plot exhibits a linear pattern. This shows that
the data are strongly non-random and further suggests that an
autoregressive model might be appropriate.

Definition A lag is a fixed time displacement. For example, given a data
set Y1, Y2 ..., Yn, Y2 and Y7 have lag 5 since 7 - 2 = 5. Lag
plots can be generated for any arbitrary lag, although the
most commonly used lag is 1.

A plot of lag 1 is a plot of the values of Yi versus Yi-1

Vertical axis: Yi for all i
Horizontal axis: Yi-1 for all i

Questions Lag plots can provide answers to the following questions:

http://www.itl.nist.gov/div898/handbook/index.htm
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1. Are the data random?
2. Is there serial correlation in the data?
3. What is a suitable model for the data?
4. Are there outliers in the data?

Importance Inasmuch as randomness is an underlying assumption for
most statistical estimation and testing techniques, the lag plot
should be a routine tool for researchers.

Examples Random (White Noise) 
Weak autocorrelation 
Strong autocorrelation and autoregressive model 
Sinusoidal model and outliers 

Related
Techniques

Autocorrelation Plot
Spectrum
Runs Test

Case Study The lag plot is demonstrated in the beam deflection data case
study.

Software Lag plots are not directly available in most general purpose
statistical software programs. Since the lag plot is essentially
a scatter plot with the 2 variables properly lagged, it should
be feasible to write a macro for the lag plot in most statistical
programs.

http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot1.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot4.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.15.1. Lag Plot: Random Data

Lag Plot

Conclusions We can make the following conclusions based on the above
plot.

1. The data are random.
2. The data exhibit no autocorrelation.
3. The data contain no outliers.

Discussion The lag plot shown above is for lag = 1. Note the absence of
structure. One cannot infer, from a current value Yi-1, the
next value Yi. Thus for a known value Yi-1 on the horizontal
axis (say, Yi-1 = +0.5), the Yi-th value could be virtually
anything (from Yi = -2.5 to Yi = +1.5). Such non-association
is the essence of randomness.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
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1.3.3.15.2. Lag Plot: Moderate Autocorrelation

Lag Plot

Conclusions We can make the conclusions based on the above plot.

1. The data are from an underlying autoregressive
model with moderate positive autocorrelation

2. The data contain no outliers.

Discussion In the plot above for lag = 1, note how the points tend to
cluster (albeit noisily) along the diagonal. Such clustering
is the lag plot signature of moderate autocorrelation.

If the process were completely random, knowledge of a
current observation (say Yi-1 = 0) would yield virtually no
knowledge about the next observation Yi. If the process has
moderate autocorrelation, as above, and if Yi-1 = 0, then
the range of possible values for Yi is seen to be restricted
to a smaller range (.01 to +.01). This suggests prediction is
possible using an autoregressive model.

Recommended
Next Step

Estimate the parameters for the autoregressive model:

Since Y  and Y  are precisely the axes of the lag plot,

http://www.itl.nist.gov/div898/handbook/index.htm
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i i-1
such estimation is a linear regression straight from the lag
plot.

The residual standard deviation for the autoregressive
model will be much smaller than the residual standard
deviation for the default model

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.3.15.3. Lag Plot: Strong Autocorrelation and
Autoregressive Model

Lag Plot

Conclusions We can make the following conclusions based on the
above plot.

1. The data come from an underlying autoregressive
model with strong positive autocorrelation

2. The data contain no outliers.

Discussion Note the tight clustering of points along the diagonal. This
is the lag plot signature of a process with strong positive
autocorrelation. Such processes are highly non-random--
there is strong association between an observation and a
succeeding observation. In short, if you know Yi-1 you can
make a strong guess as to what Yi will be.

If the above process were completely random, the plot
would have a shotgun pattern, and knowledge of a current
observation (say Yi-1 = 3) would yield virtually no
knowledge about the next observation Yi (it could here be
anywhere from -2 to +8). On the other hand, if the process
had strong autocorrelation, as seen above, and if Yi-1 = 3,
then the range of possible values for Y  is seen to be

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot1.htm
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i
restricted to a smaller range (2 to 4)--still wide, but an
improvement nonetheless (relative to -2 to +8) in
predictive power.

Recommended
Next Step

When the lag plot shows a strongly autoregressive pattern
and only successive observations appear to be correlated,
the next steps are to:

1. Extimate the parameters for the autoregressive
model:

Since Yi and Yi-1 are precisely the axes of the lag
plot, such estimation is a linear regression straight
from the lag plot.

The residual standard deviation for this
autoregressive model will be much smaller than the
residual standard deviation for the default model

2. Reexamine the system to arrive at an explanation for
the strong autocorrelation. Is it due to the

1. phenomenon under study; or
2. drifting in the environment; or
3. contamination from the data acquisition

system?

Sometimes the source of the problem is
contamination and carry-over from the data
acquisition system where the system does not have
time to electronically recover before collecting the
next data point. If this is the case, then consider
slowing down the sampling rate to achieve
randomness.

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.15.4. Lag Plot: Sinusoidal Models and
Outliers

Lag Plot

Conclusions We can make the following conclusions based on the
above plot.

1. The data come from an underlying single-cycle
sinusoidal model.

2. The data contain three outliers.

Discussion In the plot above for lag = 1, note the tight elliptical
clustering of points. Processes with a single-cycle
sinusoidal model will have such elliptical lag plots.

Consequences
of Ignoring
Cyclical
Pattern

If one were to naively assume that the above process came
from the null model

and then estimate the constant by the sample mean, then
the analysis would suffer because

1. the sample mean would be biased and meaningless;
2. the confidence limits would be meaningless and

optimistically small.

http://www.itl.nist.gov/div898/handbook/index.htm
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The proper model

(where  is the amplitude,  is the frequency--between 0
and .5 cycles per observation--, and  is the phase) can be
fit by standard non-linear least squares, to estimate the
coefficients and their uncertainties.

The lag plot is also of value in outlier detection. Note in
the above plot that there appears to be 4 points lying off the
ellipse. However, in a lag plot, each point in the original
data set Y shows up twice in the lag plot--once as Yi and
once as Yi-1. Hence the outlier in the upper left at Yi = 300
is the same raw data value that appears on the far right at
Yi-1 = 300. Thus (-500,300) and (300,200) are due to the
same outlier, namely the 158th data point: 300. The correct
value for this 158th point should be approximately -300
and so it appears that a sign got dropped in the data
collection. The other two points lying off the ellipse, at
roughly (100,100) and at (0,-50), are caused by two faulty
data values: the third data point of -15 should be about
+125 and the fourth data point of +141 should be about -
50, respectively. Hence the 4 apparent lag plot outliers are
traceable to 3 actual outliers in the original run sequence:
at points 4 (-15), 5 (141) and 158 (300). In retrospect, only
one of these (point 158 (= 300)) is an obvious outlier in the
run sequence plot.

Unexpected
Value of EDA

Frequently a technique (e.g., the lag plot) is constructed to
check one aspect (e.g., randomness) which it does well.
Along the way, the technique also highlights some other
anomaly of the data (namely, that there are 3 outliers).
Such outlier identification and removal is extremely
important for detecting irregularities in the data collection
system, and also for arriving at a "purified" data set for
modeling. The lag plot plays an important role in such
outlier identification.

Recommended
Next Step

When the lag plot indicates a sinusoidal model with
possible outliers, the recommended next steps are:

1. Do a spectral plot to obtain an initial estimate of the
frequency of the underlying cycle. This will be
helpful as a starting value for the subsequent non-
linear fitting.

2. Omit the outliers.

3. Carry out a non-linear fit of the model to the 197
points.

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
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1.3.3.16. Linear Correlation Plot

Purpose:
Detect
changes in
correlation
between
groups

Linear correlation plots are used to assess whether or not
correlations are consistent across groups. That is, if your
data is in groups, you may want to know if a single
correlation can be used across all the groups or whether
separate correlations are required for each group.

Linear correlation plots are often used in conjunction with
linear slope, linear intercept, and linear residual standard
deviation plots. A linear correlation plot could be generated
intially to see if linear fitting would be a fruitful direction. If
the correlations are high, this implies it is worthwhile to
continue with the linear slope, intercept, and residual
standard deviation plots. If the correlations are weak, a
different model needs to be pursued.

In some cases, you might not have groups. Instead you may
have different data sets and you want to know if the same
correlation can be adequately applied to each of the data
sets. In this case, simply think of each distinct data set as a
group and apply the linear slope plot as for groups.

Sample Plot

This linear correlation plot shows that the correlations are
high for all groups. This implies that linear fits could

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineinte.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
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provide a good model for each of these groups.

Definition:
Group
Correlations
Versus
Group ID

Linear correlation plots are formed by:

Vertical axis: Group correlations
Horizontal axis: Group identifier

A reference line is plotted at the correlation between the full
data sets.

Questions The linear correlation plot can be used to answer the
following questions.

1. Are there linear relationships across groups?
2. Are the strength of the linear relationships relatively

constant across the groups?

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear correlation plots help
answer this question in the context of linear fitting.

Related
Techniques

Linear Intercept Plot
Linear Slope Plot
Linear Residual Standard Deviation Plot 
Linear Fitting

Case Study The linear correlation plot is demonstrated in the Alaska
pipeline data case study.

Software Most general purpose statistical software programs do not
support a linear correlation plot. However, if the statistical
program can generate correlations over a group, it should be
feasible to write a macro to generate this plot.

http://www.itl.nist.gov/div898/handbook/eda/section3/lineinte.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
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1.3.3.17. Linear Intercept Plot

Purpose:
Detect
changes in
linear
intercepts
between
groups

Linear intercept plots are used to graphically assess whether
or not linear fits are consistent across groups. That is, if your
data have groups, you may want to know if a single fit can
be used across all the groups or whether separate fits are
required for each group.

Linear intercept plots are typically used in conjunction with
linear slope and linear residual standard deviation plots.

In some cases you might not have groups. Instead, you have
different data sets and you want to know if the same fit can
be adequately applied to each of the data sets. In this case,
simply think of each distinct data set as a group and apply
the linear intercept plot as for groups.

Sample Plot

This linear intercept plot shows that there is a shift in
intercepts. Specifically, the first three intercepts are lower
than the intercepts for the other groups. Note that these are
small differences in the intercepts.

Definition:
Group
Intercepts
Versus

Linear intercept plots are formed by:

Vertical axis: Group intercepts from linear fits
Horizontal axis: Group identifier

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
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Group ID
A reference line is plotted at the intercept from a linear fit
using all the data.

Questions The linear intercept plot can be used to answer the following
questions.

1. Is the intercept from linear fits relatively constant
across groups?

2. If the intercepts vary across groups, is there a
discernible pattern?

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear intercept plots help
answer this question in the context of linear fitting.

Related
Techniques

Linear Correlation Plot
Linear Slope Plot
Linear Residual Standard Deviation Plot 
Linear Fitting

Case Study The linear intercept plot is demonstrated in the Alaska
pipeline data case study.

Software Most general purpose statistical software programs do not
support a linear intercept plot. However, if the statistical
program can generate linear fits over a group, it should be
feasible to write a macro to generate this plot.
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http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd62.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd62.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.3.3.18. Linear Slope Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33i.htm[6/27/2012 2:01:12 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.3. Graphical Techniques: Alphabetic 

1.3.3.18. Linear Slope Plot

Purpose:
Detect
changes in
linear slopes
between
groups

Linear slope plots are used to graphically assess whether or
not linear fits are consistent across groups. That is, if your
data have groups, you may want to know if a single fit can
be used across all the groups or whether separate fits are
required for each group.

Linear slope plots are typically used in conjunction with
linear intercept and linear residual standard deviation plots.

In some cases you might not have groups. Instead, you have
different data sets and you want to know if the same fit can
be adequately applied to each of the data sets. In this case,
simply think of each distinct data set as a group and apply
the linear slope plot as for groups.

Sample Plot

This linear slope plot shows that the slopes are about 0.174
(plus or minus 0.002) for all groups. There does not appear
to be a pattern in the variation of the slopes. This implies
that a single fit may be adequate.

Definition:
Group
Slopes
Versus
Group ID

Linear slope plots are formed by:

Vertical axis: Group slopes from linear fits
Horizontal axis: Group identifier

http://www.itl.nist.gov/div898/handbook/index.htm
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A reference line is plotted at the slope from a linear fit using
all the data.

Questions The linear slope plot can be used to answer the following
questions.

1. Do you get the same slope across groups for linear
fits?

2. If the slopes differ, is there a discernible pattern in the
slopes?

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear slope plots help
answer this question in the context of linear fitting.

Related
Techniques

Linear Intercept Plot
Linear Correlation Plot
Linear Residual Standard Deviation Plot 
Linear Fitting

Case Study The linear slope plot is demonstrated in the Alaska pipeline
data case study.

Software Most general purpose statistical software programs do not
support a linear slope plot. However, if the statistical
program can generate linear fits over a group, it should be
feasible to write a macro to generate this plot.
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1.3.3.19. Linear Residual Standard Deviation
Plot

Purpose:
Detect
Changes in
Linear
Residual
Standard
Deviation
Between
Groups

Linear residual standard deviation (RESSD) plots are used
to graphically assess whether or not linear fits are consistent
across groups. That is, if your data have groups, you may
want to know if a single fit can be used across all the groups
or whether separate fits are required for each group.

The residual standard deviation is a goodness-of-fit
measure. That is, the smaller the residual standard deviation,
the closer is the fit to the data.

Linear RESSD plots are typically used in conjunction with
linear intercept and linear slope plots. The linear intercept
and slope plots convey whether or not the fits are consistent
across groups while the linear RESSD plot conveys whether
the adequacy of the fit is consistent across groups.

In some cases you might not have groups. Instead, you have
different data sets and you want to know if the same fit can
be adequately applied to each of the data sets. In this case,
simply think of each distinct data set as a group and apply
the linear RESSD plot as for groups.

Sample Plot
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This linear RESSD plot shows that the residual standard
deviations from a linear fit are about 0.0025 for all the
groups.

Definition:
Group
Residual
Standard
Deviation
Versus
Group ID

Linear RESSD plots are formed by:

Vertical axis: Group residual standard deviations from
linear fits
Horizontal axis: Group identifier

A reference line is plotted at the residual standard deviation
from a linear fit using all the data. This reference line will
typically be much greater than any of the individual residual
standard deviations.

Questions The linear RESSD plot can be used to answer the following
questions.

1. Is the residual standard deviation from a linear fit
constant across groups?

2. If the residual standard deviations vary, is there a
discernible pattern across the groups?

Importance:
Checking
Group
Homogeneity

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear RESSD plots help
answer this question in the context of linear fitting.

Related
Techniques

Linear Intercept Plot
Linear Slope Plot
Linear Correlation Plot
Linear Fitting

Case Study The linear residual standard deviation plot is demonstrated
in the Alaska pipeline data case study.

Software Most general purpose statistical software programs do not
support a linear residual standard deviation plot. However, if
the statistical program can generate linear fits over a group,
it should be feasible to write a macro to generate this plot.
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1.3.3.20. Mean Plot

Purpose:
Detect
changes in
location
between
groups

Mean plots are used to see if the mean varies between
different groups of the data. The grouping is determined by
the analyst. In most cases, the data set contains a specific
grouping variable. For example, the groups may be the levels
of a factor variable. In the sample plot below, the months of
the year provide the grouping.

Mean plots can be used with ungrouped data to determine if
the mean is changing over time. In this case, the data are
split into an arbitrary number of equal-sized groups. For
example, a data series with 400 points can be divided into 10
groups of 40 points each. A mean plot can then be generated
with these groups to see if the mean is increasing or
decreasing over time.

Although the mean is the most commonly used measure of
location, the same concept applies to other measures of
location. For example, instead of plotting the mean of each
group, the median or the trimmed mean might be plotted
instead. This might be done if there were significant outliers
in the data and a more robust measure of location than the
mean was desired.

Mean plots are typically used in conjunction with standard
deviation plots. The mean plot checks for shifts in location
while the standard deviation plot checks for shifts in scale.

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
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This sample mean plot shows a shift of location after the 6th
month.

Definition:
Group
Means
Versus
Group ID

Mean plots are formed by:

Vertical axis: Group mean
Horizontal axis: Group identifier

A reference line is plotted at the overall mean.

Questions The mean plot can be used to answer the following
questions.

1. Are there any shifts in location?
2. What is the magnitude of the shifts in location?
3. Is there a distinct pattern in the shifts in location?

Importance:
Checking
Assumptions

A common assumption in 1-factor analyses is that of
constant location. That is, the location is the same for
different levels of the factor variable. The mean plot provides
a graphical check for that assumption. A common assumption
for univariate data is that the location is constant. By
grouping the data into equal intervals, the mean plot can
provide a graphical test of this assumption.

Related
Techniques

Standard Deviation Plot
DOE Mean Plot
Box Plot

Software Most general purpose statistical software programs do not
support a mean plot. However, if the statistical program can
generate the mean over a group, it should be feasible to write
a macro to generate this plot.
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1.3.3.21. Normal Probability Plot

Purpose:
Check If Data
Are
Approximately
Normally
Distributed

The normal probability plot (Chambers 1983) is a
graphical technique for assessing whether or not a data set
is approximately normally distributed.

The data are plotted against a theoretical normal
distribution in such a way that the points should form an
approximate straight line. Departures from this straight line
indicate departures from normality.

The normal probability plot is a special case of the
probability plot. We cover the normal probability plot
separately due to its importance in many applications.

Sample Plot

The points on this plot form a nearly linear pattern, which
indicates that the normal distribution is a good model for
this data set.

Definition:
Ordered
Response
Values Versus
Normal Order
Statistic
Medians

The normal probability plot is formed by:

Vertical axis: Ordered response values
Horizontal axis: Normal order statistic medians

The observations are plotted as a function of the
corresponding normal order statistic medians which are

http://www.itl.nist.gov/div898/handbook/index.htm
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defined as:

N(i) = G(U(i))

where U(i) are the uniform order statistic medians (defined
below) and G is the percent point function of the normal
distribution. The percent point function is the inverse of
the cumulative distribution function (probability that x is
less than or equal to some value). That is, given a
probability, we want the corresponding x of the cumulative
distribution function.

The uniform order statistic medians are defined as:

U(i) = 1 - U(n) for i = 1
U(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1 
U(i) = 0.5(1/n) for i = n

In addition, a straight line can be fit to the points and
added as a reference line. The further the points vary from
this line, the greater the indication of departures from
normality.

Probability plots for distributions other than the normal are
computed in exactly the same way. The normal percent
point function (the G) is simply replaced by the percent
point function of the desired distribution. That is, a
probability plot can easily be generated for any distribution
for which you have the percent point function.

One advantage of this method of computing probability
plots is that the intercept and slope estimates of the fitted
line are in fact estimates for the location and scale
parameters of the distribution. Although this is not too
important for the normal distribution since the location and
scale are estimated by the mean and standard deviation,
respectively, it can be useful for many other distributions.

The correlation coefficient of the points on the normal
probability plot can be compared to a table of critical
values to provide a formal test of the hypothesis that the
data come from a normal distribution.

Questions The normal probability plot is used to answer the
following questions.

1. Are the data normally distributed?
2. What is the nature of the departure from normality

(data skewed, shorter than expected tails, longer than
expected tails)?

Importance:
Check

The underlying assumptions for a measurement process are
that the data should behave like:

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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Normality
Assumption 1. random drawings;

2. from a fixed distribution;
3. with fixed location;
4. with fixed scale.

Probability plots are used to assess the assumption of a
fixed distribution. In particular, most statistical models are
of the form:

response = deterministic + random

where the deterministic part is the fit and the random part
is error. This error component in most common statistical
models is specifically assumed to be normally distributed
with fixed location and scale. This is the most frequent
application of normal probability plots. That is, a model is
fit and a normal probability plot is generated for the
residuals from the fitted model. If the residuals from the
fitted model are not normally distributed, then one of the
major assumptions of the model has been violated.

Examples 1. Data are normally distributed
2. Data have short tails
3. Data have fat tails
4. Data are skewed right

Related
Techniques

Histogram
Probability plots for other distributions (e.g., Weibull)
Probability plot correlation coefficient plot (PPCC plot)
Anderson-Darling Goodness-of-Fit Test
Chi-Square Goodness-of-Fit Test
Kolmogorov-Smirnov Goodness-of-Fit Test

Case Study The normal probability plot is demonstrated in the heat
flow meter data case study.

Software Most general purpose statistical software programs can
generate a normal probability plot.
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1.3.3.21.1. Normal Probability Plot: Normally
Distributed Data

Normal
Probability
Plot

The following normal probability plot is from the heat flow
meter data.

Conclusions We can make the following conclusions from the above plot.

1. The normal probability plot shows a strongly linear
pattern. There are only minor deviations from the line
fit to the points on the probability plot.

2. The normal distribution appears to be a good model for
these data.

Discussion Visually, the probability plot shows a strongly linear pattern.
This is verified by the correlation coefficient of 0.9989 of the
line fit to the probability plot. The fact that the points in the
lower and upper extremes of the plot do not deviate
significantly from the straight-line pattern indicates that there
are not any significant outliers (relative to a normal
distribution).

In this case, we can quite reasonably conclude that the
normal distribution provides an excellent model for the data.
The intercept and slope of the fitted line give estimates of
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9.26 and 0.023 for the location and scale parameters of the
fitted normal distribution.
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1.3.3.21.2. Normal Probability Plot: Data Have
Short Tails

Normal
Probability
Plot for
Data with
Short Tails

The following is a normal probability plot for 500 random
numbers generated from a Tukey-Lambda distribution with
the  parameter equal to 1.1.

Conclusions We can make the following conclusions from the above plot.

1. The normal probability plot shows a non-linear pattern.
2. The normal distribution is not a good model for these

data.

Discussion For data with short tails relative to the normal distribution,
the non-linearity of the normal probability plot shows up in
two ways. First, the middle of the data shows an S-like
pattern. This is common for both short and long tails.
Second, the first few and the last few points show a marked
departure from the reference fitted line. In comparing this
plot to the long tail example in the next section, the
important difference is the direction of the departure from the
fitted line for the first few and last few points. For short tails,
the first few points show increasing departure from the fitted
line above the line and last few points show increasing
departure from the fitted line below the line. For long tails,
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this pattern is reversed.

In this case, we can reasonably conclude that the normal
distribution does not provide an adequate fit for this data set.
For probability plots that indicate short-tailed distributions,
the next step might be to generate a Tukey Lambda PPCC
plot. The Tukey Lambda PPCC plot can often be helpful in
identifying an appropriate distributional family.
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1.3.3.21.3. Normal Probability Plot: Data Have
Long Tails

Normal
Probability
Plot for
Data with
Long Tails

The following is a normal probability plot of 500 numbers
generated from a double exponential distribution. The double
exponential distribution is symmetric, but relative to the
normal it declines rapidly and has longer tails.

Conclusions We can make the following conclusions from the above plot.

1. The normal probability plot shows a reasonably linear
pattern in the center of the data. However, the tails,
particularly the lower tail, show departures from the
fitted line.

2. A distribution other than the normal distribution would
be a good model for these data.

Discussion For data with long tails relative to the normal distribution, the
non-linearity of the normal probability plot can show up in
two ways. First, the middle of the data may show an S-like
pattern. This is common for both short and long tails. In this
particular case, the S pattern in the middle is fairly mild.
Second, the first few and the last few points show marked
departure from the reference fitted line. In the plot above,
this is most noticeable for the first few data points. In
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comparing this plot to the short-tail example in the previous
section, the important difference is the direction of the
departure from the fitted line for the first few and the last few
points. For long tails, the first few points show increasing
departure from the fitted line below the line and last few
points show increasing departure from the fitted line above
the line. For short tails, this pattern is reversed.

In this case we can reasonably conclude that the normal
distribution can be improved upon as a model for these data.
For probability plots that indicate long-tailed distributions,
the next step might be to generate a Tukey Lambda PPCC
plot. The Tukey Lambda PPCC plot can often be helpful in
identifying an appropriate distributional family.
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1.3.3.21.4. Normal Probability Plot: Data are
Skewed Right

Normal
Probability
Plot for
Data that
are Skewed
Right

Conclusions We can make the following conclusions from the above plot.

1. The normal probability plot shows a strongly non-
linear pattern. Specifically, it shows a quadratic pattern
in which all the points are below a reference line
drawn between the first and last points.

2. The normal distribution is not a good model for these
data.

Discussion This quadratic pattern in the normal probability plot is the
signature of a significantly right-skewed data set. Similarly,
if all the points on the normal probability plot fell above the
reference line connecting the first and last points, that would
be the signature pattern for a significantly left-skewed data
set.

In this case we can quite reasonably conclude that we need to
model these data with a right skewed distribution such as the
Weibull or lognormal.
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1.3.3.22. Probability Plot

Purpose:
Check If
Data Follow
a Given
Distribution

The probability plot (Chambers 1983) is a graphical
technique for assessing whether or not a data set follows a
given distribution such as the normal or Weibull.

The data are plotted against a theoretical distribution in such
a way that the points should form approximately a straight
line. Departures from this straight line indicate departures
from the specified distribution.

The correlation coefficient associated with the linear fit to
the data in the probability plot is a measure of the goodness
of the fit. Estimates of the location and scale parameters of
the distribution are given by the intercept and slope.
Probability plots can be generated for several competing
distributions to see which provides the best fit, and the
probability plot generating the highest correlation
coefficient is the best choice since it generates the
straightest probability plot.

For distributions with shape parameters (not counting
location and scale parameters), the shape parameters must
be known in order to generate the probability plot. For
distributions with a single shape parameter, the probability
plot correlation coefficient (PPCC) plot provides an
excellent method for estimating the shape parameter.

We cover the special case of the normal probability plot
separately due to its importance in many statistical
applications.

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
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This data is a set of 500 Weibull random numbers with a
shape parameter = 2, location parameter = 0, and scale
parameter = 1. The Weibull probability plot indicates that
the Weibull distribution does in fact fit these data well.

Definition:
Ordered
Response
Values
Versus Order
Statistic
Medians for
the Given
Distribution

The probability plot is formed by:

Vertical axis: Ordered response values
Horizontal axis: Order statistic medians for the given
distribution

The order statistic medians are defined as:

N(i) = G(U(i))

where the U(i) are the uniform order statistic medians
(defined below) and G is the percent point function for the
desired distribution. The percent point function is the
inverse of the cumulative distribution function (probability
that x is less than or equal to some value). That is, given a
probability, we want the corresponding x of the cumulative
distribution function.

The uniform order statistic medians are defined as:

m(i) = 1 - m(n) for i = 1
m(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1 
m(i) = 0.5**(1/n) for i = n

In addition, a straight line can be fit to the points and added
as a reference line. The further the points vary from this
line, the greater the indication of a departure from the
specified distribution.

This definition implies that a probability plot can be easily
generated for any distribution for which the percent point
function can be computed.
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One advantage of this method of computing proability plots
is that the intercept and slope estimates of the fitted line are
in fact estimates for the location and scale parameters of the
distribution. Although this is not too important for the
normal distribution (the location and scale are estimated by
the mean and standard deviation, respectively), it can be
useful for many other distributions.

Questions The probability plot is used to answer the following
questions:

Does a given distribution, such as the Weibull,
provide a good fit to my data?
What distribution best fits my data?
What are good estimates for the location and scale
parameters of the chosen distribution?

Importance:
Check
distributional
assumption

The discussion for the normal probability plot covers the
use of probability plots for checking the fixed distribution
assumption.

Some statistical models assume data have come from a
population with a specific type of distribution. For example,
in reliability applications, the Weibull, lognormal, and
exponential are commonly used distributional models.
Probability plots can be useful for checking this
distributional assumption.

Related
Techniques

Histogram
Probability Plot Correlation Coefficient (PPCC) Plot
Hazard Plot
Quantile-Quantile Plot
Anderson-Darling Goodness of Fit
Chi-Square Goodness of Fit
Kolmogorov-Smirnov Goodness of Fit

Case Study The probability plot is demonstrated in the uniform random
numbers case study.

Software Most general purpose statistical software programs support
probability plots for at least a few common distributions.

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm#importance
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/apr/section2/apr222.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.23. Probability Plot Correlation
Coefficient Plot

Purpose:
Graphical
Technique for
Finding the
Shape
Parameter of
a
Distributional
Family that
Best Fits a
Data Set

The probability plot correlation coefficient (PPCC) plot
(Filliben 1975) is a graphical technique for identifying the
shape parameter for a distributional family that best
describes the data set. This technique is appropriate for
families, such as the Weibull, that are defined by a single
shape parameter and location and scale parameters, and it is
not appropriate for distributions, such as the normal, that
are defined only by location and scale parameters.

The PPCC plot is generated as follows. For a series of
values for the shape parameter, the correlation coefficient is
computed for the probability plot associated with a given
value of the shape parameter. These correlation coefficients
are plotted against their corresponding shape parameters.
The maximum correlation coefficient corresponds to the
optimal value of the shape parameter. For better precision,
two iterations of the PPCC plot can be generated; the first
is for finding the right neighborhood and the second is for
fine tuning the estimate.

The PPCC plot is used first to find a good value of the
shape parameter. The probability plot is then generated to
find estimates of the location and scale parameters and in
addition to provide a graphical assessment of the adequacy
of the distributional fit.

Compare
Distributions

In addition to finding a good choice for estimating the
shape parameter of a given distribution, the PPCC plot can
be useful in deciding which distributional family is most
appropriate. For example, given a set of reliabilty data, you
might generate PPCC plots for a Weibull, lognormal,
gamma, and inverse Gaussian distributions, and possibly
others, on a single page. This one page would show the
best value for the shape parameter for several distributions
and would additionally indicate which of these
distributional families provides the best fit (as measured by
the maximum probability plot correlation coefficient). That
is, if the maximum PPCC value for the Weibull is 0.99 and
only 0.94 for the lognormal, then we could reasonably

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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conclude that the Weibull family is the better choice.

Tukey-
Lambda
PPCC Plot
for Symmetric
Distributions

The Tukey Lambda PPCC plot, with shape parameter , is
particularly useful for symmetric distributions. It indicates
whether a distribution is short or long tailed and it can
further indicate several common distributions. Specifically,

1.  = -1: distribution is approximately Cauchy
2.  = 0: distribution is exactly logistic
3.  = 0.14: distribution is approximately normal
4.  = 0.5: distribution is U-shaped
5.  = 1: distribution is exactly uniform

If the Tukey Lambda PPCC plot gives a maximum value
near 0.14, we can reasonably conclude that the normal
distribution is a good model for the data. If the maximum
value is less than 0.14, a long-tailed distribution such as the
double exponential or logistic would be a better choice. If
the maximum value is near -1, this implies the selection of
very long-tailed distribution, such as the Cauchy. If the
maximum value is greater than 0.14, this implies a short-
tailed distribution such as the Beta or uniform.

The Tukey-Lambda PPCC plot is used to suggest an
appropriate distribution. You should follow-up with PPCC
and probability plots of the appropriate alternatives.

Use
Judgement
When
Selecting An
Appropriate
Distributional
Family

When comparing distributional models, do not simply
choose the one with the maximum PPCC value. In many
cases, several distributional fits provide comparable PPCC
values. For example, a lognormal and Weibull may both fit
a given set of reliability data quite well. Typically, we
would consider the complexity of the distribution. That is, a
simpler distribution with a marginally smaller PPCC value
may be preferred over a more complex distribution.
Likewise, there may be theoretical justification in terms of
the underlying scientific model for preferring a distribution
with a marginally smaller PPCC value in some cases. In
other cases, we may not need to know if the distributional
model is optimal, only that it is adequate for our purposes.
That is, we may be able to use techniques designed for
normally distributed data even if other distributions fit the
data somewhat better.

Sample Plot The following is a PPCC plot of 100 normal random
numbers. The maximum value of the correlation coefficient
= 0.997 at  = 0.099.
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This PPCC plot shows that:

1. the best-fit symmetric distribution is nearly normal;
2. the data are not long tailed;
3. the sample mean would be an appropriate estimator

of location.

We can follow-up this PPCC plot with a normal probability
plot to verify the normality model for the data.

Definition: The PPCC plot is formed by:

Vertical axis: Probability plot correlation coefficient;
Horizontal axis: Value of shape parameter.

Questions The PPCC plot answers the following questions:

1. What is the best-fit member within a distributional
family?

2. Does the best-fit member provide a good fit (in terms
of generating a probability plot with a high
correlation coefficient)?

3. Does this distributional family provide a good fit
compared to other distributions?

4. How sensitive is the choice of the shape parameter?

Importance Many statistical analyses are based on distributional
assumptions about the population from which the data have
been obtained. However, distributional families can have
radically different shapes depending on the value of the
shape parameter. Therefore, finding a reasonable choice for
the shape parameter is a necessary step in the analysis. In
many analyses, finding a good distributional model for the
data is the primary focus of the analysis. In both of these
cases, the PPCC plot is a valuable tool.
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Related
Techniques

Probability Plot
Maximum Likelihood Estimation
Least Squares Estimation
Method of Moments Estimation

Software PPCC plots are currently not available in most common
general purpose statistical software programs. However, the
underlying technique is based on probability plots and
correlation coefficients, so it should be possible to write
macros for PPCC plots in statistical programs that support
these capabilities. Dataplot supports PPCC plots.

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.24. Quantile-Quantile Plot

Purpose:
Check If
Two Data
Sets Can Be
Fit With the
Same
Distribution

The quantile-quantile (q-q) plot is a graphical technique for
determining if two data sets come from populations with a
common distribution.

A q-q plot is a plot of the quantiles of the first data set
against the quantiles of the second data set. By a quantile, we
mean the fraction (or percent) of points below the given
value. That is, the 0.3 (or 30%) quantile is the point at which
30% percent of the data fall below and 70% fall above that
value.

A 45-degree reference line is also plotted. If the two sets
come from a population with the same distribution, the points
should fall approximately along this reference line. The
greater the departure from this reference line, the greater the
evidence for the conclusion that the two data sets have come
from populations with different distributions.

The advantages of the q-q plot are:

1. The sample sizes do not need to be equal.

2. Many distributional aspects can be simultaneously
tested. For example, shifts in location, shifts in scale,
changes in symmetry, and the presence of outliers can
all be detected from this plot. For example, if the two
data sets come from populations whose distributions
differ only by a shift in location, the points should lie
along a straight line that is displaced either up or down
from the 45-degree reference line.

The q-q plot is similar to a probability plot. For a probability
plot, the quantiles for one of the data samples are replaced
with the quantiles of a theoretical distribution.

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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This q-q plot shows that

1. These 2 batches do not appear to have come from
populations with a common distribution.

2. The batch 1 values are significantly higher than the
corresponding batch 2 values.

3. The differences are increasing from values 525 to 625.
Then the values for the 2 batches get closer again.

Definition:
Quantiles
for Data Set
1 Versus
Quantiles of
Data Set 2

The q-q plot is formed by:

Vertical axis: Estimated quantiles from data set 1
Horizontal axis: Estimated quantiles from data set 2

Both axes are in units of their respective data sets. That is,
the actual quantile level is not plotted. For a given point on
the q-q plot, we know that the quantile level is the same for
both points, but not what that quantile level actually is.

If the data sets have the same size, the q-q plot is essentially
a plot of sorted data set 1 against sorted data set 2. If the data
sets are not of equal size, the quantiles are usually picked to
correspond to the sorted values from the smaller data set and
then the quantiles for the larger data set are interpolated.

Questions The q-q plot is used to answer the following questions:

Do two data sets come from populations with a
common distribution?
Do two data sets have common location and scale?
Do two data sets have similar distributional shapes?
Do two data sets have similar tail behavior?

Importance:
Check for
Common

When there are two data samples, it is often desirable to
know if the assumption of a common distribution is justified.
If so, then location and scale estimators can pool both data
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Distribution sets to obtain estimates of the common location and scale. If
two samples do differ, it is also useful to gain some
understanding of the differences. The q-q plot can provide
more insight into the nature of the difference than analytical
methods such as the chi-square and Kolmogorov-Smirnov 2-
sample tests.

Related
Techniques

Bihistogram
T Test
F Test
2-Sample Chi-Square Test
2-Sample Kolmogorov-Smirnov Test

Case Study The quantile-quantile plot is demonstrated in the ceramic
strength data case study.

Software Q-Q plots are available in some general purpose statistical
software programs. If the number of data points in the two
samples are equal, it should be relatively easy to write a
macro in statistical programs that do not support the q-q plot.
If the number of points are not equal, writing a macro for a
q-q plot may be difficult.

http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.25. Run-Sequence Plot

Purpose:
Check for
Shifts in
Location
and Scale
and Outliers

Run sequence plots (Chambers 1983) are an easy way to
graphically summarize a univariate data set. A common
assumption of univariate data sets is that they behave like:

1. random drawings;
2. from a fixed distribution;
3. with a common location; and
4. with a common scale.

With run sequence plots, shifts in location and scale are
typically quite evident. Also, outliers can easily be detected.

Sample
Plot:
Last Third
of Data
Shows a
Shift of
Location

This sample run sequence plot shows that the location shifts
up for the last third of the data.

Definition:
y(i) Versus i

Run sequence plots are formed by:

Vertical axis: Response variable Y(i)
Horizontal axis: Index i (i = 1, 2, 3, ... )

Questions The run sequence plot can be used to answer the following
questions

http://www.itl.nist.gov/div898/handbook/index.htm
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1. Are there any shifts in location?
2. Are there any shifts in variation?
3. Are there any outliers?

The run sequence plot can also give the analyst an excellent
feel for the data.

Importance:
Check
Univariate
Assumptions

For univariate data, the default model is

Y = constant + error

where the error is assumed to be random, from a fixed
distribution, and with constant location and scale. The
validity of this model depends on the validity of these
assumptions. The run sequence plot is useful for checking for
constant location and scale.

Even for more complex models, the assumptions on the error
term are still often the same. That is, a run sequence plot of
the residuals (even from very complex models) is still vital
for checking for outliers and for detecting shifts in location
and scale.

Related
Techniques

Scatter Plot
Histogram
Autocorrelation Plot
Lag Plot

Case Study The run sequence plot is demonstrated in the Filter
transmittance data case study.

Software Run sequence plots are available in most general purpose
statistical software programs.

http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.26. Scatter Plot

Purpose:
Check for
Relationship

A scatter plot (Chambers 1983) reveals relationships or
association between two variables. Such relationships
manifest themselves by any non-random structure in the plot.
Various common types of patterns are demonstrated in the
examples.

Sample
Plot:
Linear
Relationship
Between
Variables Y
and X

This sample plot reveals a linear relationship between the
two variables indicating that a linear regression model might
be appropriate.

Definition:
Y Versus X

A scatter plot is a plot of the values of Y versus the
corresponding values of X:

Vertical axis: variable Y--usually the response variable
Horizontal axis: variable X--usually some variable we
suspect may ber related to the response

Questions Scatter plots can provide answers to the following questions:

1. Are variables X and Y related?
2. Are variables X and Y linearly related?
3. Are variables X and Y non-linearly related?
4. Does the variation in Y change depending on X?
5. Are there outliers?

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
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Examples 1. No relationship
2. Strong linear (positive correlation)
3. Strong linear (negative correlation)
4. Exact linear (positive correlation)
5. Quadratic relationship
6. Exponential relationship
7. Sinusoidal relationship (damped)
8. Variation of Y doesn't depend on X (homoscedastic)
9. Variation of Y does depend on X (heteroscedastic)

10. Outlier

Combining
Scatter
Plots

Scatter plots can also be combined in multiple plots per page
to help understand higher-level structure in data sets with
more than two variables.

The scatterplot matrix generates all pairwise scatter plots on
a single page. The conditioning plot, also called a co-plot or
subset plot, generates scatter plots of Y versus X dependent
on the value of a third variable.

Causality Is
Not Proved
By
Association

The scatter plot uncovers relationships in data.
"Relationships" means that there is some structured
association (linear, quadratic, etc.) between X and Y. Note,
however, that even though

causality implies association

association does NOT imply causality.

Scatter plots are a useful diagnostic tool for determining
association, but if such association exists, the plot may or
may not suggest an underlying cause-and-effect mechanism.
A scatter plot can never "prove" cause and effect--it is
ultimately only the researcher (relying on the underlying
science/engineering) who can conclude that causality actually
exists.

Appearance The most popular rendition of a scatter plot is

1. some plot character (e.g., X) at the data points, and
2. no line connecting data points.

Other scatter plot format variants include

1. an optional plot character (e.g, X) at the data points,
but

2. a solid line connecting data points.

In both cases, the resulting plot is referred to as a scatter plot,
although the former (discrete and disconnected) is the
author's personal preference since nothing makes it onto the
screen except the data--there are no interpolative artifacts to

http://www.itl.nist.gov/div898/handbook/eda/section3/scatter1.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter4.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter5.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter6.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter7.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter8.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatter9.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattera.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterb.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterc.htm
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bias the interpretation.

Related
Techniques

Run Sequence Plot 
Box Plot 
Block Plot 

Case Study The scatter plot is demonstrated in the load cell calibration
data case study.

Software Scatter plots are a fundamental technique that should be
available in any general purpose statistical software program.
Scatter plots are also available in most graphics and
spreadsheet programs as well.

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd61.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.26.1. Scatter Plot: No Relationship

Scatter Plot
with No
Relationship

Discussion Note in the plot above how for a given value of X (say X =
0.5), the corresponding values of Y range all over the place
from Y = -2 to Y = +2. The same is true for other values of X.
This lack of predictablility in determining Y from a given
value of X, and the associated amorphous, non-structured
appearance of the scatter plot leads to the summary
conclusion: no relationship.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.3.26.2. Scatter Plot: Strong Linear (positive
correlation) Relationship

Scatter
Plot
Showing
Strong
Positive
Linear
Correlation

Discussion Note in the plot above how a straight line comfortably fits
through the data; hence a linear relationship exists. The
scatter about the line is quite small, so there is a strong linear
relationship. The slope of the line is positive (small values of
X correspond to small values of Y; large values of X
correspond to large values of Y), so there is a positive co-
relation (that is, a positive correlation) between X and Y.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
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1.3.3.26.3. Scatter Plot: Strong Linear (negative
correlation) Relationship

Scatter
Plot
Showing a
Strong
Negative
Correlation

Discussion Note in the plot above how a straight line comfortably fits
through the data; hence there is a linear relationship. The
scatter about the line is quite small, so there is a strong linear
relationship. The slope of the line is negative (small values of
X correspond to large values of Y; large values of X
correspond to small values of Y), so there is a negative co-
relation (that is, a negative correlation) between X and Y.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.3.3.26.4. Scatter Plot: Exact Linear (positive
correlation) Relationship

Scatter Plot
Showing an
Exact
Linear
Relationship

Discussion Note in the plot above how a straight line comfortably fits
through the data; hence there is a linear relationship. The
scatter about the line is zero--there is perfect predictability
between X and Y), so there is an exact linear relationship.
The slope of the line is positive (small values of X
correspond to small values of Y; large values of X correspond
to large values of Y), so there is a positive co-relation (that
is, a positive correlation) between X and Y.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.3.26.5. Scatter Plot: Quadratic Relationship

Scatter Plot
Showing
Quadratic
Relationship

Discussion Note in the plot above how no imaginable simple straight
line could ever adequately describe the relationship between
X and Y--a curved (or curvilinear, or non-linear) function is
needed. The simplest such curvilinear function is a quadratic
model

for some A, B, and C. Many other curvilinear functions are
possible, but the data analysis principle of parsimony
suggests that we try fitting a quadratic function first.
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1.3.3.26.6. Scatter Plot: Exponential
Relationship

Scatter Plot
Showing
Exponential
Relationship

Discussion Note that a simple straight line is grossly inadequate in
describing the relationship between X and Y. A quadratic
model would prove lacking, especially for large values of X.
In this example, the large values of X correspond to nearly
constant values of Y, and so a non-linear function beyond the
quadratic is needed. Among the many other non-linear
functions available, one of the simpler ones is the
exponential model

for some A, B, and C. In this case, an exponential function
would, in fact, fit well, and so one is led to the summary
conclusion of an exponential relationship.

http://www.itl.nist.gov/div898/handbook/index.htm
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1.3.3.26.7. Scatter Plot: Sinusoidal Relationship
(damped)

Scatter Plot
Showing a
Sinusoidal
Relationship

Discussion The complex relationship between X and Y appears to be
basically oscillatory, and so one is naturally drawn to the
trigonometric sinusoidal model:

Closer inspection of the scatter plot reveals that the amount
of swing (the amplitude  in the model) does not appear to
be constant but rather is decreasing (damping) as X gets
large. We thus would be led to the conclusion: damped
sinusoidal relationship, with the simplest corresponding
model being

http://www.itl.nist.gov/div898/handbook/index.htm
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1.3.3.26.8. Scatter Plot: Variation of Y Does Not
Depend on X (homoscedastic)

Scatter Plot
Showing
Homoscedastic
Variability

Discussion This scatter plot reveals a linear relationship between X
and Y: for a given value of X, the predicted value of Y will
fall on a line. The plot further reveals that the variation in
Y about the predicted value is about the same (+- 10 units),
regardless of the value of X. Statistically, this is referred to
as homoscedasticity. Such homoscedasticity is very
important as it is an underlying assumption for regression,
and its violation leads to parameter estimates with inflated
variances. If the data are homoscedastic, then the usual
regression estimates can be used. If the data are not
homoscedastic, then the estimates can be improved using
weighting procedures as shown in the next example.
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1.3.3.26.9. Scatter Plot: Variation of Y Does
Depend on X (heteroscedastic)

Scatter Plot
Showing
Heteroscedastic
Variability

Discussion This scatter plot reveals an approximate linear relationship
between X and Y, but more importantly, it reveals a
statistical condition referred to as heteroscedasticity (that
is, nonconstant variation in Y over the values of X). For a
heteroscedastic data set, the variation in Y differs
depending on the value of X. In this example, small values
of X yield small scatter in Y while large values of X result
in large scatter in Y.

Heteroscedasticity complicates the analysis somewhat, but
its effects can be overcome by:

1. proper weighting of the data with noisier data being
weighted less, or by

2. performing a Y variable transformation to achieve
homoscedasticity. The Box-Cox normality plot can
help determine a suitable transformation.

Impact of
Ignoring
Unequal

Fortunately, unweighted regression analyses on
heteroscedastic data produce estimates of the coefficients
that are unbiased. However, the coefficients will not be as

http://www.itl.nist.gov/div898/handbook/index.htm
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Variability in
the Data

precise as they would be with proper weighting.

Note further that if heteroscedasticity does exist, it is
frequently useful to plot and model the local variation 

 as a function of X, as in 
. This modeling has two

advantages:

1. it provides additional insight and understanding as
to how the response Y relates to X; and

2. it provides a convenient means of forming weights
for a weighted regression by simply using

The topic of non-constant variation is discussed in some
detail in the process modeling chapter.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd452.htm
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1.3.3.26.10. Scatter Plot: Outlier

Scatter
Plot
Showing
Outliers

Discussion The scatter plot here reveals

1. a basic linear relationship between X and Y for most of
the data, and

2. a single outlier (at X = 375).

An outlier is defined as a data point that emanates from a
different model than do the rest of the data. The data here
appear to come from a linear model with a given slope and
variation except for the outlier which appears to have been
generated from some other model.

Outlier detection is important for effective modeling. Outliers
should be excluded from such model fitting. If all the data
here are included in a linear regression, then the fitted model
will be poor virtually everywhere. If the outlier is omitted
from the fitting process, then the resulting fit will be excellent
almost everywhere (for all points except the outlying point).

http://www.itl.nist.gov/div898/handbook/index.htm
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1.3.3.26.11. Scatterplot Matrix

Purpose: 
Check
Pairwise
Relationships
Between
Variables

Given a set of variables X1, X2, ... , Xk, the scatterplot
matrix contains all the pairwise scatter plots of the variables
on a single page in a matrix format. That is, if there are k
variables, the scatterplot matrix will have k rows and k
columns and the ith row and jth column of this matrix is a
plot of Xi versus Xj.

Although the basic concept of the scatterplot matrix is
simple, there are numerous alternatives in the details of the
plots.

1. The diagonal plot is simply a 45-degree line since we
are plotting Xi versus Xi. Although this has some
usefulness in terms of showing the univariate
distribution of the variable, other alternatives are
common. Some users prefer to use the diagonal to
print the variable label. Another alternative is to plot
the univariate histogram on the diagonal.
Alternatively, we could simply leave the diagonal
blank.

2. Since Xi versus Xj is equivalent to Xj versus Xi with
the axes reversed, some prefer to omit the plots below
the diagonal.

3. It can be helpful to overlay some type of fitted curve
on the scatter plot. Although a linear or quadratic fit
can be used, the most common alternative is to
overlay a lowess curve.

4. Due to the potentially large number of plots, it can be
somewhat tricky to provide the axes labels in a way
that is both informative and visually pleasing. One
alternative that seems to work well is to provide axis
labels on alternating rows and columns. That is, row
one will have tic marks and axis labels on the left
vertical axis for the first plot only while row two will
have the tic marks and axis labels for the right
vertical axis for the last plot in the row only. This
alternating pattern continues for the remaining rows.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm
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A similar pattern is used for the columns and the
horizontal axes labels. Another alternative is to put
the minimum and maximum scale value in the
diagonal plot with the variable name.

5. Some analysts prefer to connect the scatter plots.
Others prefer to leave a little gap between each plot.

6. Although this plot type is most commonly used for
scatter plots, the basic concept is both simple and
powerful and extends easily to other plot formats that
involve pairwise plots such as the quantile-quantile
plot and the bihistogram.

Sample Plot

This sample plot was generated from pollution data
collected by NIST chemist Lloyd Currie.

There are a number of ways to view this plot. If we are
primarily interested in a particular variable, we can scan the
row and column for that variable. If we are interested in
finding the strongest relationship, we can scan all the plots
and then determine which variables are related.

Definition Given k variables, scatter plot matrices are formed by
creating k rows and k columns. Each row and column
defines a single scatter plot

The individual plot for row i and column j is defined as

Vertical axis: Variable Xi
Horizontal axis: Variable Xj

Questions The scatterplot matrix can provide answers to the following
questions:

http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
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1. Are there pairwise relationships between the
variables?

2. If there are relationships, what is the nature of these
relationships?

3. Are there outliers in the data?
4. Is there clustering by groups in the data?

Linking and
Brushing

The scatterplot matrix serves as the foundation for the
concepts of linking and brushing.

By linking, we mean showing how a point, or set of points,
behaves in each of the plots. This is accomplished by
highlighting these points in some fashion. For example, the
highlighted points could be drawn as a filled circle while
the remaining points could be drawn as unfilled circles. A
typical application of this would be to show how an outlier
shows up in each of the individual pairwise plots. Brushing
extends this concept a bit further. In brushing, the points to
be highlighted are interactively selected by a mouse and the
scatterplot matrix is dynamically updated (ideally in real
time). That is, we can select a rectangular region of points
in one plot and see how those points are reflected in the
other plots. Brushing is discussed in detail by Becker,
Cleveland, and Wilks in the paper "Dynamic Graphics for
Data Analysis" (Cleveland and McGill, 1988).

Related
Techniques

Star plot
Scatter plot
Conditioning plot
Locally weighted least squares

Software Scatterplot matrices are becoming increasingly common in
general purpose statistical software programs. If a software
program does not generate scatterplot matrices, but it does
provide multiple plots per page and scatter plots, it should
be possible to write a macro to generate a scatterplot matrix.
Brushing is available in a few of the general purpose
statistical software programs that emphasize graphical
approaches.

http://www.itl.nist.gov/div898/handbook/eda/section3/starplot.htm
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1.3.3.26.12. Conditioning Plot

Purpose: 
Check
pairwise
relationship
between
two
variables
conditional
on a third
variable

A conditioning plot, also known as a coplot or subset plot, is
a plot of two variables conditional on the value of a third
variable (called the conditioning variable). The conditioning
variable may be either a variable that takes on only a few
discrete values or a continuous variable that is divided into a
limited number of subsets.

One limitation of the scatterplot matrix is that it cannot show
interaction effects with another variable. This is the strength
of the conditioning plot. It is also useful for displaying scatter
plots for groups in the data. Although these groups can also
be plotted on a single plot with different plot symbols, it can
often be visually easier to distinguish the groups using the
conditioning plot.

Although the basic concept of the conditioning plot matrix is
simple, there are numerous alternatives in the details of the
plots.

1. It can be helpful to overlay some type of fitted curve on
the scatter plot. Although a linear or quadratic fit can
be used, the most common alternative is to overlay a
lowess curve.

2. Due to the potentially large number of plots, it can be
somewhat tricky to provide the axis labels in a way that
is both informative and visually pleasing. One
alternative that seems to work well is to provide axis
labels on alternating rows and columns. That is, row
one will have tic marks and axis labels on the left
vertical axis for the first plot only while row two will
have the tic marks and axis labels for the right vertical
axis for the last plot in the row only. This alternating
pattern continues for the remaining rows. A similar
pattern is used for the columns and the horizontal axis
labels. Note that this approach only works if the axes
limits are fixed to common values for all of the plots.

3. Some analysts prefer to connect the scatter plots.
Others prefer to leave a little gap between each plot.
Alternatively, each plot can have its own labeling with

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatplma.htm
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the plots not connected.

4. Although this plot type is most commonly used for
scatter plots, the basic concept is both simple and
powerful and extends easily to other plot formats.

Sample
Plot

In this case, temperature has six distinct values. We plot
torque versus time for each of these temperatures. This
example is discussed in more detail in the process modeling
chapter.

Definition Given the variables X, Y, and Z, the conditioning plot is
formed by dividing the values of Z into k groups. There are
several ways that these groups may be formed. There may be
a natural grouping of the data, the data may be divided into
several equal sized groups, the grouping may be determined
by clusters in the data, and so on. The page will be divided
into n rows and c columns where . Each row and
column defines a single scatter plot.

The individual plot for row i and column j is defined as

Vertical axis: Variable Y
Horizontal axis: Variable X

where only the points in the group corresponding to the ith
row and jth column are used.

Questions The conditioning plot can provide answers to the following
questions:

1. Is there a relationship between two variables?
2. If there is a relationship, does the nature of the

relationship depend on the value of a third variable?
3. Are groups in the data similar?
4. Are there outliers in the data?

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd11.htm#pt.r1
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Related
Techniques

Scatter plot
Scatterplot matrix
Locally weighted least squares

Software Scatter plot matrices are becoming increasingly common in
general purpose statistical software programs, including. If a
software program does not generate conditioning plots, but it
does provide multiple plots per page and scatter plots, it
should be possible to write a macro to generate a
conditioning plot.

http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
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1.3.3.27. Spectral Plot

Purpose:
Examine
Cyclic
Structure

A spectral plot ( Jenkins and Watts 1968 or Bloomfield 1976)
is a graphical technique for examining cyclic structure in the
frequency domain. It is a smoothed Fourier transform of the
autocovariance function.

The frequency is measured in cycles per unit time where unit
time is defined to be the distance between 2 points. A
frequency of 0 corresponds to an infinite cycle while a
frequency of 0.5 corresponds to a cycle of 2 data points. Equi-
spaced time series are inherently limited to detecting
frequencies between 0 and 0.5.

Trends should typically be removed from the time series
before applying the spectral plot. Trends can be detected from
a run sequence plot. Trends are typically removed by
differencing the series or by fitting a straight line (or some
other polynomial curve) and applying the spectral analysis to
the residuals.

Spectral plots are often used to find a starting value for the
frequency, , in the sinusoidal model

See the beam deflection case study for an example of this.

Sample
Plot

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
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This spectral plot shows one dominant frequency of
approximately 0.3 cycles per observation.

Definition:
Variance
Versus
Frequency

The spectral plot is formed by:

Vertical axis: Smoothed variance (power)
Horizontal axis: Frequency (cycles per observation)

The computations for generating the smoothed variances can
be involved and are not discussed further here. The details can
be found in the Jenkins and Bloomfield references and in
most texts that discuss the frequency analysis of time series.

Questions The spectral plot can be used to answer the following
questions:

1. How many cyclic components are there?
2. Is there a dominant cyclic frequency?
3. If there is a dominant cyclic frequency, what is it?

Importance
Check
Cyclic
Behavior
of Time
Series

The spectral plot is the primary technique for assessing the
cyclic nature of univariate time series in the frequency
domain. It is almost always the second plot (after a run
sequence plot) generated in a frequency domain analysis of a
time series.

Examples 1. Random (= White Noise)
2. Strong autocorrelation and autoregressive model 
3. Sinusoidal model

Related
Techniques

Autocorrelation Plot
Complex Demodulation Amplitude Plot
Complex Demodulation Phase Plot

Case Study The spectral plot is demonstrated in the beam deflection data
case study.

Software Spectral plots are a fundamental technique in the frequency
analysis of time series. They are available in many general
purpose statistical software programs.
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1.3.3.27.1. Spectral Plot: Random Data

Spectral
Plot of 200
Normal
Random
Numbers

Conclusions We can make the following conclusions from the above plot.

1. There are no dominant peaks.
2. There is no identifiable pattern in the spectrum.
3. The data are random.

Discussion For random data, the spectral plot should show no dominant
peaks or distinct pattern in the spectrum. For the sample plot
above, there are no clearly dominant peaks and the peaks
seem to fluctuate at random. This type of appearance of the
spectral plot indicates that there are no significant cyclic
patterns in the data.
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1.3.3.27.2. Spectral Plot: Strong Autocorrelation
and Autoregressive Model

Spectral Plot
for Random
Walk Data

Conclusions We can make the following conclusions from the above
plot.

1. Strong dominant peak near zero.
2. Peak decays rapidly towards zero.
3. An autoregressive model is an appropriate model.

Discussion This spectral plot starts with a dominant peak near zero
and rapidly decays to zero. This is the spectral plot
signature of a process with strong positive autocorrelation.
Such processes are highly non-random in that there is high
association between an observation and a succeeding
observation. In short, if you know Yi you can make a strong
guess as to what Yi+1 will be.

Recommended
Next Step

The next step would be to determine the parameters for the
autoregressive model:

Such estimation can be done by linear regression or by

http://www.itl.nist.gov/div898/handbook/index.htm
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fitting a Box-Jenkins autoregressive (AR) model.

The residual standard deviation for this autoregressive
model will be much smaller than the residual standard
deviation for the default model

Then the system should be reexamined to find an
explanation for the strong autocorrelation. Is it due to the

1. phenomenon under study; or
2. drifting in the environment; or
3. contamination from the data acquisition system

(DAS)?

Oftentimes the source of the problem is item (3) above
where contamination and carry-over from the data
acquisition system result because the DAS does not have
time to electronically recover before collecting the next
data point. If this is the case, then consider slowing down
the sampling rate to re-achieve randomness.
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1.3.3.27.3. Spectral Plot: Sinusoidal Model

Spectral Plot
for Sinusoidal
Model

Conclusions We can make the following conclusions from the above
plot.

1. There is a single dominant peak at approximately
0.3.

2. There is an underlying single-cycle sinusoidal
model.

Discussion This spectral plot shows a single dominant frequency. This
indicates that a single-cycle sinusoidal model might be
appropriate.

If one were to naively assume that the data represented by
the graph could be fit by the model

and then estimate the constant by the sample mean, the
analysis would be incorrect because

the sample mean is biased;
the confidence interval for the mean, which is valid
only for random data, is meaningless and too small.

http://www.itl.nist.gov/div898/handbook/index.htm
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On the other hand, the choice of the proper model

where  is the amplitude,  is the frequency (between 0
and .5 cycles per observation), and  is the phase can be fit
by non-linear least squares. The beam deflection data case
study demonstrates fitting this type of model.

Recommended
Next Steps

The recommended next steps are to:

1. Estimate the frequency from the spectral plot. This
will be helpful as a starting value for the subsequent
non-linear fitting. A complex demodulation phase
plot can be used to fine tune the estimate of the
frequency before performing the non-linear fit.

2. Do a complex demodulation amplitude plot to obtain
an initial estimate of the amplitude and to determine
if a constant amplitude is justified.

3. Carry out a non-linear fit of the model

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
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1.3.3.28. Standard Deviation Plot

Purpose:
Detect
Changes in
Scale
Between
Groups

Standard deviation plots are used to see if the standard
deviation varies between different groups of the data. The
grouping is determined by the analyst. In most cases, the data
provide a specific grouping variable. For example, the groups
may be the levels of a factor variable. In the sample plot
below, the months of the year provide the grouping.

Standard deviation plots can be used with ungrouped data to
determine if the standard deviation is changing over time. In
this case, the data are broken into an arbitrary number of
equal-sized groups. For example, a data series with 400
points can be divided into 10 groups of 40 points each. A
standard deviation plot can then be generated with these
groups to see if the standard deviation is increasing or
decreasing over time.

Although the standard deviation is the most commonly used
measure of scale, the same concept applies to other measures
of scale. For example, instead of plotting the standard
deviation of each group, the median absolute deviation or the
average absolute deviation might be plotted instead. This
might be done if there were significant outliers in the data
and a more robust measure of scale than the standard
deviation was desired.

Standard deviation plots are typically used in conjunction
with mean plots. The mean plot would be used to check for
shifts in location while the standard deviation plot would be
used to check for shifts in scale.

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
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This sample standard deviation plot shows

1. there is a shift in variation;
2. greatest variation is during the summer months.

Definition:
Group
Standard
Deviations
Versus
Group ID

Standard deviation plots are formed by:

Vertical axis: Group standard deviations
Horizontal axis: Group identifier

A reference line is plotted at the overall standard deviation.

Questions The standard deviation plot can be used to answer the
following questions.

1. Are there any shifts in variation?
2. What is the magnitude of the shifts in variation?
3. Is there a distinct pattern in the shifts in variation?

Importance:
Checking
Assumptions

A common assumption in 1-factor analyses is that of equal
variances. That is, the variance is the same for different
levels of the factor variable. The standard deviation plot
provides a graphical check for that assumption. A common
assumption for univariate data is that the variance is constant.
By grouping the data into equi-sized intervals, the standard
deviation plot can provide a graphical test of this assumption.

Related
Techniques

Mean Plot
DOE Standard Deviation Plot

Software Most general purpose statistical software programs do not
support a standard deviation plot. However, if the statistical
program can generate the standard deviation for a group, it
should be feasible to write a macro to generate this plot.

http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
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1.3.3.29. Star Plot

Purpose:
Display
Multivariate
Data

The star plot (Chambers 1983) is a method of displaying
multivariate data. Each star represents a single observation.
Typically, star plots are generated in a multi-plot format with
many stars on each page and each star representing one
observation.

Star plots are used to examine the relative values for a single
data point (e.g., point 3 is large for variables 2 and 4, small
for variables 1, 3, 5, and 6) and to locate similar points or
dissimilar points.

Sample Plot The plot below contains the star plots of 16 cars. The data
file actually contains 74 cars, but we restrict the plot to what
can reasonably be shown on one page. The variable list for
the sample star plot is

1 Price
2 Mileage (MPG)
3 1978 Repair Record (1 = Worst, 5 = Best)
4 1977 Repair Record (1 = Worst, 5 = Best)
5 Headroom
6 Rear Seat Room
7 Trunk Space
8 Weight
9 Length

http://www.itl.nist.gov/div898/handbook/index.htm
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We can look at these plots individually or we can use them
to identify clusters of cars with similar features. For example,
we can look at the star plot of the Cadillac Seville and see
that it is one of the most expensive cars, gets below average
(but not among the worst) gas mileage, has an average repair
record, and has average-to-above-average roominess and
size. We can then compare the Cadillac models (the last three
plots) with the AMC models (the first three plots). This
comparison shows distinct patterns. The AMC models tend
to be inexpensive, have below average gas mileage, and are
small in both height and weight and in roominess. The
Cadillac models are expensive, have poor gas mileage, and
are large in both size and roominess.

Definition The star plot consists of a sequence of equi-angular spokes,
called radii, with each spoke representing one of the
variables. The data length of a spoke is proportional to the
magnitude of the variable for the data point relative to the
maximum magnitude of the variable across all data points. A
line is drawn connecting the data values for each spoke. This
gives the plot a star-like appearance and the origin of the
name of this plot.

Questions The star plot can be used to answer the following questions:

1. What variables are dominant for a given observation?
2. Which observations are most similar, i.e., are there

clusters of observations?
3. Are there outliers?

Weakness
in
Technique

Star plots are helpful for small-to-moderate-sized
multivariate data sets. Their primary weakness is that their
effectiveness is limited to data sets with less than a few
hundred points. After that, they tend to be overwhelming.

Graphical techniques suited for large data sets are discussed
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by Scott.

Related
Techniques

Alternative ways to plot multivariate data are discussed in
Chambers, du Toit, and Everitt.

Software Star plots are available in some general purpose statistical
software progams.

http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.3.30. Weibull Plot

Purpose:
Graphical
Check To See
If Data Come
From a
Population
That Would
Be Fit by a
Weibull
Distribution

The Weibull plot (Nelson 1982) is a graphical technique for
determining if a data set comes from a population that
would logically be fit by a 2-parameter Weibull distribution
(the location is assumed to be zero).

The Weibull plot has special scales that are designed so that
if the data do in fact follow a Weibull distribution, the
points will be linear (or nearly linear). The least squares fit
of this line yields estimates for the shape and scale
parameters of the Weibull distribution (the location is
assumed to be zero).

Specifically, the shape parameter is the reciprocal of the
slope of the fitted line and the scale parameter is the
exponent of the intercept of the fitted line.

The Weibull distribution also has the property that the scale
parameter falls at the 63.2% point irrespective of the value
of the shape parameter. The plot shows a horizontal line at
this 63.2% point and a vertical line where the horizontal
line intersects the least squares fitted line. This vertical line
shows the value of scale parameter.

Sample Plot

This Weibull plot shows that:

1. the assumption of a Weibull distribution is

http://www.itl.nist.gov/div898/handbook/index.htm


1.3.3.30. Weibull Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33u.htm[6/27/2012 2:01:36 PM]

reasonable;
2. the scale parameter estimate is computed to be 33.32;
3. the shape parameter estimate is computed to be 5.28;

and
4. there are no outliers.

Note that the values on the x-axis ("0", "1", and "2") are the
exponents. These actually denote the value 100 = 1, 101 =
10, and 102 = 100.

Definition:
Weibull
Cumulative
Probability
Versus
LN(Ordered
Response)

The Weibull plot is formed by:

Vertical axis: Weibull cumulative probability
expressed as a percentage
Horizontal axis: ordered failure times (in a LOG10
scale)

The vertical scale is ln(-ln(1-p)) where p=(i-0.3)/(n+0.4)
and i is the rank of the observation. This scale is chosen in
order to linearize the resulting plot for Weibull data.

Questions The Weibull plot can be used to answer the following
questions:

1. Do the data follow a 2-parameter Weibull
distribution?

2. What is the best estimate of the shape parameter for
the 2-parameter Weibull distribution?

3. What is the best estimate of the scale (= variation)
parameter for the 2-parameter Weibull distribution?

Importance:
Check
Distributional
Assumptions

Many statistical analyses, particularly in the field of
reliability, are based on the assumption that the data follow
a Weibull distribution. If the analysis assumes the data
follow a Weibull distribution, it is important to verify this
assumption and, if verified, find good estimates of the
Weibull parameters.

Related
Techniques

Weibull Probability Plot
Weibull PPCC Plot
Weibull Hazard Plot

The Weibull probability plot (in conjunction with the
Weibull PPCC plot), the Weibull hazard plot, and the
Weibull plot are all similar techniques that can be used for
assessing the adequacy of the Weibull distribution as a
model for the data, and additionally providing estimation
for the shape, scale, or location parameters.

The Weibull hazard plot and Weibull plot are designed to
handle censored data (which the Weibull probability plot
does not).

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/apr/section2/apr22.htm
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Case Study The Weibull plot is demonstrated in the fatigue life of
aluminum alloy specimens case study.

Software Weibull plots are generally available in statistical software
programs that are designed to analyze reliability data.

http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.3.31. Youden Plot

Purpose:
Interlab
Comparisons

Youden plots are a graphical technique for analyzing
interlab data when each lab has made two runs on the same
product or one run on two different products.

The Youden plot is a simple but effective method for
comparing both the within-laboratory variability and the
between-laboratory variability.

Sample Plot

This plot shows:

1. Not all labs are equivalent.
2. Lab 4 is biased low.
3. Lab 3 has within-lab variability problems.
4. Lab 5 has an outlying run.

Definition:
Response 1
Versus
Response 2
Coded by
Lab

Youden plots are formed by:

1. Vertical axis: Response variable 1 (i.e., run 1 or
product 1 response value)

2. Horizontal axis: Response variable 2 (i.e., run 2 or
product 2 response value)

In addition, the plot symbol is the lab id (typically an
integer from 1 to k where k is the number of labs).

http://www.itl.nist.gov/div898/handbook/index.htm
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Sometimes a 45-degree reference line is drawn. Ideally, a
lab generating two runs of the same product should produce
reasonably similar results. Departures from this reference
line indicate inconsistency from the lab. If two different
products are being tested, then a 45-degree line may not be
appropriate. However, if the labs are consistent, the points
should lie near some fitted straight line.

Questions The Youden plot can be used to answer the following
questions:

1. Are all labs equivalent?
2. What labs have between-lab problems

(reproducibility)?
3. What labs have within-lab problems (repeatability)?
4. What labs are outliers?

Importance In interlaboratory studies or in comparing two runs from the
same lab, it is useful to know if consistent results are
generated. Youden plots should be a routine plot for
analyzing this type of data.

DOE Youden
Plot

The DOE Youden plot is a specialized Youden plot used in
the design of experiments. In particular, it is useful for full
and fractional designs.

Related
Techniques

Scatter Plot

Software The Youden plot is essentially a scatter plot, so it should be
feasible to write a macro for a Youden plot in any general
purpose statistical program that supports scatter plots.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33v1.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri333.htm
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1.3.3.31.1. DOE Youden Plot

DOE Youden
Plot:
Introduction

The DOE (Design of Experiments) Youden plot is a specialized Youden plot used in the
analysis of full and fractional experiment designs. In particular, it is used in conjunction
with the Yates algorithm. These designs may have a low level, coded as "-1" or "-", and a
high level, coded as "+1" or "+", for each factor. In addition, there can optionally be one or
more center points. Center points are at the midpoint between the low and high levels for
each factor and are coded as "0".

The Yates agorithm and the the DOE Youden plot only use the "-1" and "+1" points. The
Yates agorithm is used to estimate factor effects. The DOE Youden plot can be used to help
determine the approriate model to based on the effect estimates from the Yates algorithm.

Construction
of DOE
Youden Plot

The following are the primary steps in the construction of the DOE Youden plot.

1. For a given factor or interaction term, compute the mean of the response variable for
the low level of the factor and for the high level of the factor. Any center points are
omitted from the computation.

2. Plot the point where the y-coordinate is the mean for the high level of the factor and
the x-coordinate is the mean for the low level of the factor. The character used for the
plot point should identify the factor or interaction term (e.g., "1" for factor 1, "13" for
the interaction between factors 1 and 3).

3. Repeat steps 1 and 2 for each factor and interaction term of the data.

The high and low values of the interaction terms are obtained by multiplying the
corresponding values of the main level factors. For example, the interaction term X13 is
obtained by multiplying the values for X1 with the corresponding values of X3. Since the
values for X1 and X3 are either "-1" or "+1", the resulting values for X13 are also either "-1"
or "+1".

In summary, the DOE Youden plot is a plot of the mean of the response variable for the
high level of a factor or interaction term against the mean of the response variable for the
low level of that factor or interaction term.

For unimportant factors and interaction terms, these mean values should be nearly the same.
For important factors and interaction terms, these mean values should be quite different. So
the interpretation of the plot is that unimportant factors should be clustered together near the
grand mean. Points that stand apart from this cluster identify important factors that should
be included in the model.

Sample DOE The following is a DOE Youden plot for the data used in the Eddy current case study. The

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri333.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
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Youden Plot analysis in that case study demonstrated that X1 and X2 were the most important factors.

Interpretation
of the Sample
DOE Youden
Plot

From the above DOE Youden plot, we see that factors 1 and 2 stand out from the others.
That is, the mean response values for the low and high levels of factor 1 and factor 2 are
quite different. For factor 3 and the 2 and 3-term interactions, the mean response values for
the low and high levels are similar.

We would conclude from this plot that factors 1 and 2 are important and should be included
in our final model while the remaining factors and interactions should be omitted from the
final model.

Case Study The Eddy current case study demonstrates the use of the DOE Youden plot in the context of
the analysis of a full factorial design.

Software DOE Youden plots are not typically available as built-in plots in statistical software
programs. However, it should be relatively straightforward to write a macro to generate this
plot in most general purpose statistical software programs.

http://www.itl.nist.gov/div898/handbook/pri/section6/pri611.htm
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1.3.3.32. 4-Plot

Purpose:
Check
Underlying
Statistical
Assumptions

The 4-plot is a collection of 4 specific EDA graphical
techniques whose purpose is to test the assumptions that
underlie most measurement processes. A 4-plot consists of
a

1. run sequence plot;
2. lag plot;
3. histogram;
4. normal probability plot.

If the 4 underlying assumptions of a typical measurement
process hold, then the above 4 plots will have a
characteristic appearance (see the normal random numbers
case study below); if any of the underlying assumptions
fail to hold, then it will be revealed by an anomalous
appearance in one or more of the plots. Several commonly
encountered situations are demonstrated in the case studies
below.

Although the 4-plot has an obvious use for univariate and
time series data, its usefulness extends far beyond that.
Many statistical models of the form

have the same underlying assumptions for the error term.
That is, no matter how complicated the functional fit, the
assumptions on the underlying error term are still the
same. The 4-plot can and should be routinely applied to
the residuals when fitting models regardless of whether the
model is simple or complicated.

Sample Plot:
Process Has
Fixed
Location,
Fixed
Variation,
Non-Random
(Oscillatory),
Non-Normal
U-Shaped

http://www.itl.nist.gov/div898/handbook/index.htm
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Distribution,
and Has 3
Outliers.

This 4-plot reveals the following:

1. the fixed location assumption is justified as shown
by the run sequence plot in the upper left corner.

2. the fixed variation assumption is justified as shown
by the run sequence plot in the upper left corner.

3. the randomness assumption is violated as shown by
the non-random (oscillatory) lag plot in the upper
right corner.

4. the assumption of a common, normal distribution is
violated as shown by the histogram in the lower left
corner and the normal probability plot in the lower
right corner. The distribution is non-normal and is a
U-shaped distribution.

5. there are several outliers apparent in the lag plot in
the upper right corner.

Definition: 
1. Run
Sequence
Plot;
2. Lag Plot;
3. Histogram;
4. Normal
Probability
Plot

The 4-plot consists of the following:

1. Run sequence plot to test fixed location and
variation.

Vertically: Yi
Horizontally: i

2. Lag Plot to test randomness.
Vertically: Yi
Horizontally: Yi-1

3. Histogram to test (normal) distribution.
Vertically: Counts
Horizontally: Y

4. Normal probability plot to test normal distribution.
Vertically: Ordered Yi
Horizontally: Theoretical values from a
normal N(0,1) distribution for ordered Yi
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Questions 4-plots can provide answers to many questions:

1. Is the process in-control, stable, and predictable?
2. Is the process drifting with respect to location?
3. Is the process drifting with respect to variation?
4. Are the data random?
5. Is an observation related to an adjacent observation?
6. If the data are a time series, is is white noise?
7. If the data are a time series and not white noise, is it

sinusoidal, autoregressive, etc.?
8. If the data are non-random, what is a better model?
9. Does the process follow a normal distribution?

10. If non-normal, what distribution does the process
follow?

11. Is the model

valid and sufficient?

12. If the default model is insufficient, what is a better
model?

13. Is the formula  valid?
14. Is the sample mean a good estimator of the process

location?
15. If not, what would be a better estimator?
16. Are there any outliers?

Importance:
Testing
Underlying
Assumptions
Helps Ensure
the Validity of
the Final
Scientific and
Engineering
Conclusions

There are 4 assumptions that typically underlie all
measurement processes; namely, that the data from the
process at hand "behave like":

1. random drawings;
2. from a fixed distribution;
3. with that distribution having a fixed location; and
4. with that distribution having fixed variation.

Predictability is an all-important goal in science and
engineering. If the above 4 assumptions hold, then we
have achieved probabilistic predictability--the ability to
make probability statements not only about the process in
the past, but also about the process in the future. In short,
such processes are said to be "statistically in control". If
the 4 assumptions do not hold, then we have a process that
is drifting (with respect to location, variation, or
distribution), is unpredictable, and is out of control. A
simple characterization of such processes by a location
estimate, a variation estimate, or a distribution "estimate"
inevitably leads to optimistic and grossly invalid
engineering conclusions.

Inasmuch as the validity of the final scientific and
engineering conclusions is inextricably linked to the
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validity of these same 4 underlying assumptions, it
naturally follows that there is a real necessity for all 4
assumptions to be routinely tested. The 4-plot (run
sequence plot, lag plot, histogram, and normal probability
plot) is seen as a simple, efficient, and powerful way of
carrying out this routine checking.

Interpretation:
Flat, Equi-
Banded,
Random, Bell-
Shaped, and
Linear

Of the 4 underlying assumptions:

1. If the fixed location assumption holds, then the run
sequence plot will be flat and non-drifting.

2. If the fixed variation assumption holds, then the
vertical spread in the run sequence plot will be
approximately the same over the entire horizontal
axis.

3. If the randomness assumption holds, then the lag
plot will be structureless and random.

4. If the fixed distribution assumption holds (in
particular, if the fixed normal distribution
assumption holds), then the histogram will be bell-
shaped and the normal probability plot will be
approximatelylinear.

If all 4 of the assumptions hold, then the process is
"statistically in control". In practice, many processes fall
short of achieving this ideal.

Related
Techniques

Run Sequence Plot 
Lag Plot 
Histogram 
Normal Probability Plot 

Autocorrelation Plot 
Spectral Plot 
PPCC Plot 

Case Studies The 4-plot is used in most of the case studies in this
chapter:

1. Normal random numbers (the ideal)
2. Uniform random numbers
3. Random walk
4. Josephson junction cryothermometry
5. Beam deflections
6. Filter transmittance
7. Standard resistor
8. Heat flow meter 1

Software It should be feasible to write a macro for the 4-plot in any
general purpose statistical software program that supports
the capability for multiple plots per page and supports the
underlying plot techniques.

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
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1.3.3.33. 6-Plot

Purpose:
Graphical
Model
Validation

The 6-plot is a collection of 6 specific graphical techniques
whose purpose is to assess the validity of a Y versus X fit.
The fit can be a linear fit, a non-linear fit, a LOWESS
(locally weighted least squares) fit, a spline fit, or any other
fit utilizing a single independent variable.

The 6 plots are:

1. Scatter plot of the response and predicted values versus
the independent variable;

2. Scatter plot of the residuals versus the independent
variable;

3. Scatter plot of the residuals versus the predicted values;
4. Lag plot of the residuals;
5. Histogram of the residuals;
6. Normal probability plot of the residuals.

Sample Plot

This 6-plot, which followed a linear fit, shows that the linear
model is not adequate. It suggests that a quadratic model
would be a better model.

Definition:
6

The 6-plot consists of the following:

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Component
Plots

1. Response and predicted values
Vertical axis: Response variable, predicted
values
Horizontal axis: Independent variable

2. Residuals versus independent variable
Vertical axis: Residuals
Horizontal axis: Independent variable

3. Residuals versus predicted values
Vertical axis: Residuals
Horizontal axis: Predicted values

4. Lag plot of residuals
Vertical axis: RES(I)
Horizontal axis: RES(I-1)

5. Histogram of residuals
Vertical axis: Counts
Horizontal axis: Residual values

6. Normal probability plot of residuals
Vertical axis: Ordered residuals
Horizontal axis: Theoretical values from a
normal N(0,1) distribution for ordered residuals

Questions The 6-plot can be used to answer the following questions:

1. Are the residuals approximately normally distributed
with a fixed location and scale?

2. Are there outliers?
3. Is the fit adequate?
4. Do the residuals suggest a better fit?

Importance:
Validating
Model

A model involving a response variable and a single
independent variable has the form:

where Y is the response variable, X is the independent
variable, f is the linear or non-linear fit function, and E is the
random component. For a good model, the error component
should behave like:

1. random drawings (i.e., independent);
2. from a fixed distribution;
3. with fixed location; and
4. with fixed variation.

In addition, for fitting models it is usually further assumed
that the fixed distribution is normal and the fixed location is
zero. For a good model the fixed variation should be as small
as possible. A necessary component of fitting models is to
verify these assumptions for the error component and to
assess whether the variation for the error component is
sufficiently small. The histogram, lag plot, and normal
probability plot are used to verify the fixed distribution,



1.3.3.33. 6-Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3333.htm[6/27/2012 2:01:41 PM]

location, and variation assumptions on the error component.
The plot of the response variable and the predicted values
versus the independent variable is used to assess whether the
variation is sufficiently small. The plots of the residuals
versus the independent variable and the predicted values is
used to assess the independence assumption.

Assessing the validity and quality of the fit in terms of the
above assumptions is an absolutely vital part of the model-
fitting process. No fit should be considered complete without
an adequate model validation step.

Related
Techniques

Linear Least Squares
Non-Linear Least Squares
Scatter Plot
Run Sequence Plot
Lag Plot
Normal Probability Plot
Histogram

Case Study The 6-plot is used in the Alaska pipeline data case study.

Software It should be feasible to write a macro for the 6-plot in any
general purpose statistical software program that supports the
capability for multiple plots per page and supports the
underlying plot techniques.

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd62.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1. Exploratory Data Analysis 
1.3. EDA Techniques 

1.3.4. Graphical
Techniques: By
Problem Category

Univariate
y = c + e

Run Sequence
Plot: 1.3.3.25

Lag Plot:
1.3.3.15

Histogram:
1.3.3.14

 

Normal
Probability Plot:

1.3.3.21

4-Plot:
1.3.3.32

PPCC Plot:
1.3.3.23

 

Weibull Plot:
1.3.3.30

Probability
Plot: 1.3.3.22

Box-Cox
Linearity Plot:

1.3.3.5

 

Box-Cox
Normality Plot:

1.3.3.6

Bootstrap
Plot: 1.3.3.4

Time Series
y = f(t) + e

Run Sequence
Plot: 1.3.3.25

Spectral Plot:
1.3.3.27

Autocorrelation
Plot: 1.3.3.1

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/weibplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/weibplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/weibplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxli.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxli.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxli.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxli.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcox.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
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Complex
Demodulation

Amplitude Plot:
1.3.3.8

Complex
Demodulation

Phase Plot:
1.3.3.9

1 Factor 
y = f(x) + e

Scatter Plot:
1.3.3.26

Box Plot:
1.3.3.7

Bihistogram:
1.3.3.2

 

Quantile-
Quantile Plot:

1.3.3.24

Mean Plot:
1.3.3.20

Standard
Deviation Plot:

1.3.3.28

Multi-
Factor/Comparative

y =
f(xp,  x1,x2,...,xk) +
e

Block Plot:
1.3.3.3

Multi-
Factor/Screening
y =
f(x1,x2,x3,...,xk) +
e DOE Scatter

Plot: 1.3.3.11
DOE Mean

Plot: 1.3.3.12
DOE Standard
Deviation Plot:

1.3.3.13

Contour Plot:
1.3.3.10

http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/compdeph.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattepl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattepl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scattepl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/sdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/sdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/sdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/sdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/contour.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/contour.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/contour.htm
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Regression 
y =
f(x1,x2,x3,...,xk) +
e

Scatter Plot:
1.3.3.26

6-Plot:
1.3.3.33

Linear
Correlation

Plot: 1.3.3.16

  Linear Intercept
Plot: 1.3.3.17

Linear Slope
Plot: 1.3.3.18

Linear Residual
Standard
Deviation

Plot:1.3.3.19

Interlab 
(y1,y2) = f(x) + e

Youden Plot:
1.3.3.31

Multivariate 
(y1,y2,...,yp)

Star Plot:
1.3.3.29

http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/6plot.htm
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http://www.itl.nist.gov/div898/handbook/eda/section3/lineinte.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineinte.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lineslop.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/linressd.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/youdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/youdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/youdplot.htm
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http://www.itl.nist.gov/div898/handbook/eda/section3/starplot.htm
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1. Exploratory Data Analysis 
1.3. EDA Techniques 

1.3.5. Quantitative Techniques

Confirmatory
Statistics

The techniques discussed in this section are classical
statistical methods as opposed to EDA techniques. EDA and
classical techniques are not mutually exclusive and can be
used in a complementary fashion. For example, the analysis
can start with some simple graphical techniques such as the
4-plot followed by the classical confirmatory methods
discussed herein to provide more rigorous statements about
the conclusions. If the classical methods yield different
conclusions than the graphical analysis, then some effort
should be invested to explain why. Often this is an
indication that some of the assumptions of the classical
techniques are violated.

Many of the quantitative techniques fall into two broad
categories:

1. Interval estimation
2. Hypothesis tests

Interval
Estimates

It is common in statistics to estimate a parameter from a
sample of data. The value of the parameter using all of the
possible data, not just the sample data, is called the
population parameter or true value of the parameter. An
estimate of the true parameter value is made using the
sample data. This is called a point estimate or a sample
estimate.

For example, the most commonly used measure of location
is the mean. The population, or true, mean is the sum of all
the members of the given population divided by the number
of members in the population. As it is typically impractical
to measure every member of the population, a random
sample is drawn from the population. The sample mean is
calculated by summing the values in the sample and
dividing by the number of values in the sample. This sample
mean is then used as the point estimate of the population
mean.

Interval estimates expand on point estimates by
incorporating the uncertainty of the point estimate. In the
example for the mean above, different samples from the
same population will generate different values for the

http://www.itl.nist.gov/div898/handbook/index.htm
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sample mean. An interval estimate quantifies this
uncertainty in the sample estimate by computing lower and
upper values of an interval which will, with a given level of
confidence (i.e., probability), contain the population
parameter.

Hypothesis
Tests

Hypothesis tests also address the uncertainty of the sample
estimate. However, instead of providing an interval, a
hypothesis test attempts to refute a specific claim about a
population parameter based on the sample data. For
example, the hypothesis might be one of the following:

the population mean is equal to 10
the population standard deviation is equal to 5
the means from two populations are equal
the standard deviations from 5 populations are equal

To reject a hypothesis is to conclude that it is false.
However, to accept a hypothesis does not mean that it is
true, only that we do not have evidence to believe
otherwise. Thus hypothesis tests are usually stated in terms
of both a condition that is doubted (null hypothesis) and a
condition that is believed (alternative hypothesis).

A common format for a hypothesis test is:

H0: A statement of the null hypothesis, e.g., two
population means are equal.

Ha: A statement of the alternative hypothesis, e.g.,
two population means are not equal.

Test
Statistic:

The test statistic is based on the specific
hypothesis test.

Significance
Level:

The significance level, , defines the
sensitivity of the test. A value of  = 0.05
means that we inadvertently reject the null
hypothesis 5% of the time when it is in fact
true. This is also called the type I error. The
choice of  is somewhat arbitrary, although in
practice values of 0.1, 0.05, and 0.01 are
commonly used.

The probability of rejecting the null
hypothesis when it is in fact false is called the
power of the test and is denoted by 1 - . Its
complement, the probability of accepting the
null hypothesis when the alternative
hypothesis is, in fact, true (type II error), is
called  and can only be computed for a
specific alternative hypothesis.

Critical
Region:

The critical region encompasses those values
of the test statistic that lead to a rejection of
the null hypothesis. Based on the distribution
of the test statistic and the significance level,
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a cut-off value for the test statistic is
computed. Values either above or below or
both (depending on the direction of the test)
this cut-off define the critical region.

Practical
Versus
Statistical
Significance

It is important to distinguish between statistical significance
and practical significance. Statistical significance simply
means that we reject the null hypothesis. The ability of the
test to detect differences that lead to rejection of the null
hypothesis depends on the sample size. For example, for a
particularly large sample, the test may reject the null
hypothesis that two process means are equivalent. However,
in practice the difference between the two means may be
relatively small to the point of having no real engineering
significance. Similarly, if the sample size is small, a
difference that is large in engineering terms may not lead to
rejection of the null hypothesis. The analyst should not just
blindly apply the tests, but should combine engineering
judgement with statistical analysis.

Bootstrap
Uncertainty
Estimates

In some cases, it is possible to mathematically derive
appropriate uncertainty intervals. This is particularly true for
intervals based on the assumption of a normal distribution.
However, there are many cases in which it is not possible to
mathematically derive the uncertainty. In these cases, the
bootstrap provides a method for empirically determining an
appropriate interval.

Table of
Contents

Some of the more common classical quantitative techniques
are listed below. This list of quantitative techniques is by no
means meant to be exhaustive. Additional discussions of
classical statistical techniques are contained in the product
comparisons chapter.

Location
1. Measures of Location
2. Confidence Limits for the Mean and One

Sample t-Test
3. Two Sample t-Test for Equal Means
4. One Factor Analysis of Variance
5. Multi-Factor Analysis of Variance

Scale (or variability or spread)
1. Measures of Scale
2. Bartlett's Test
3. Chi-Square Test
4. F-Test
5. Levene Test

Skewness and Kurtosis
1. Measures of Skewness and Kurtosis

Randomness
1. Autocorrelation
2. Runs Test

http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/prc/prc.htm
http://www.itl.nist.gov/div898/handbook/prc/prc.htm
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Distributional Measures
1. Anderson-Darling Test
2. Chi-Square Goodness-of-Fit Test
3. Kolmogorov-Smirnov Test

Outliers
1. Detection of Outliers
2. Grubbs Test
3. Tietjen-Moore Test
4. Generalized Extreme Deviate Test

2-Level Factorial Designs
1. Yates Algorithm

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/
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1.3.5.1. Measures of Location

Location A fundamental task in many statistical analyses is to estimate
a location parameter for the distribution; i.e., to find a typical
or central value that best describes the data.

Definition
of Location

The first step is to define what we mean by a typical value.
For univariate data, there are three common definitions:

1. mean - the mean is the sum of the data points divided
by the number of data points. That is,

The mean is that value that is most commonly referred
to as the average. We will use the term average as a
synonym for the mean and the term typical value to
refer generically to measures of location.

2. median - the median is the value of the point which has
half the data smaller than that point and half the data
larger than that point. That is, if X1, X2, ... ,XN is a
random sample sorted from smallest value to largest
value, then the median is defined as:

3. mode - the mode is the value of the random sample that
occurs with the greatest frequency. It is not necessarily
unique. The mode is typically used in a qualitative
fashion. For example, there may be a single dominant
hump in the data perhaps two or more smaller humps
in the data. This is usually evident from a histogram of
the data.

When taking samples from continuous populations, we
need to be somewhat careful in how we define the
mode. That is, any specific value may not occur more
than once if the data are continuous. What may be a
more meaningful, if less exact measure, is the midpoint

http://www.itl.nist.gov/div898/handbook/index.htm
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of the class interval of the histogram with the highest
peak.

Why
Different
Measures

A natural question is why we have more than one measure of
the typical value. The following example helps to explain
why these alternative definitions are useful and necessary.

This plot shows histograms for 10,000 random numbers
generated from a normal, an exponential, a Cauchy, and a
lognormal distribution.

Normal
Distribution

The first histogram is a sample from a normal distribution.
The mean is 0.005, the median is -0.010, and the mode is -
0.144 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

The normal distribution is a symmetric distribution with well-
behaved tails and a single peak at the center of the
distribution. By symmetric, we mean that the distribution can
be folded about an axis so that the 2 sides coincide. That is, it
behaves the same to the left and right of some center point.
For a normal distribution, the mean, median, and mode are
actually equivalent. The histogram above generates similar
estimates for the mean, median, and mode. Therefore, if a
histogram or normal probability plot indicates that your data
are approximated well by a normal distribution, then it is
reasonable to use the mean as the location estimator.

Exponential
Distribution

The second histogram is a sample from an exponential
distribution. The mean is 1.001, the median is 0.684, and the
mode is 0.254 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

The exponential distribution is a skewed, i. e., not symmetric,
distribution. For skewed distributions, the mean and median
are not the same. The mean will be pulled in the direction of
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the skewness. That is, if the right tail is heavier than the left
tail, the mean will be greater than the median. Likewise, if
the left tail is heavier than the right tail, the mean will be less
than the median.

For skewed distributions, it is not at all obvious whether the
mean, the median, or the mode is the more meaningful
measure of the typical value. In this case, all three measures
are useful.

Cauchy
Distribution

The third histogram is a sample from a Cauchy distribution.
The mean is 3.70, the median is -0.016, and the mode is -
0.362 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

For better visual comparison with the other data sets, we
restricted the histogram of the Cauchy distribution to values
between -10 and 10. The full Cauchy data set in fact has a
minimum of approximately -29,000 and a maximum of
approximately 89,000.

The Cauchy distribution is a symmetric distribution with
heavy tails and a single peak at the center of the distribution.
The Cauchy distribution has the interesting property that
collecting more data does not provide a more accurate
estimate of the mean. That is, the sampling distribution of the
mean is equivalent to the sampling distribution of the original
data. This means that for the Cauchy distribution the mean is
useless as a measure of the typical value. For this histogram,
the mean of 3.7 is well above the vast majority of the data.
This is caused by a few very extreme values in the tail.
However, the median does provide a useful measure for the
typical value.

Although the Cauchy distribution is an extreme case, it does
illustrate the importance of heavy tails in measuring the
mean. Extreme values in the tails distort the mean. However,
these extreme values do not distort the median since the
median is based on ranks. In general, for data with extreme
values in the tails, the median provides a better estimate of
location than does the mean.

Lognormal
Distribution

The fourth histogram is a sample from a lognormal
distribution. The mean is 1.677, the median is 0.989, and the
mode is 0.680 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

The lognormal is also a skewed distribution. Therefore the
mean and median do not provide similar estimates for the
location. As with the exponential distribution, there is no
obvious answer to the question of which is the more
meaningful measure of location.

Robustness There are various alternatives to the mean and median for



1.3.5.1. Measures of Location

http://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm[6/27/2012 2:01:44 PM]

measuring location. These alternatives were developed to
address non-normal data since the mean is an optimal
estimator if in fact your data are normal.

Tukey and Mosteller defined two types of robustness where
robustness is a lack of susceptibility to the effects of
nonnormality.

1. Robustness of validity means that the confidence
intervals for the population location have a 95%
chance of covering the population location regardless
of what the underlying distribution is.

2. Robustness of efficiency refers to high effectiveness in
the face of non-normal tails. That is, confidence
intervals for the population location tend to be almost
as narrow as the best that could be done if we knew the
true shape of the distributuion.

The mean is an example of an estimator that is the best we
can do if the underlying distribution is normal. However, it
lacks robustness of validity. That is, confidence intervals
based on the mean tend not to be precise if the underlying
distribution is in fact not normal.

The median is an example of a an estimator that tends to
have robustness of validity but not robustness of efficiency.

The alternative measures of location try to balance these two
concepts of robustness. That is, the confidence intervals for
the case when the data are normal should be almost as
narrow as the confidence intervals based on the mean.
However, they should maintain their validity even if the
underlying data are not normal. In particular, these
alternatives address the problem of heavy-tailed distributions.

Alternative
Measures
of Location

A few of the more common alternative location measures are:

1. Mid-Mean - computes a mean using the data between
the 25th and 75th percentiles.

2. Trimmed Mean - similar to the mid-mean except
different percentile values are used. A common choice
is to trim 5% of the points in both the lower and upper
tails, i.e., calculate the mean for data between the 5th
and 95th percentiles.

3. Winsorized Mean - similar to the trimmed mean.
However, instead of trimming the points, they are set
to the lowest (or highest) value. For example, all data
below the 5th percentile are set equal to the value of
the 5th percentile and all data greater than the 95th
percentile are set equal to the 95th percentile.

4. Mid-range = (smallest + largest)/2.
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The first three alternative location estimators defined above
have the advantage of the median in the sense that they are
not unduly affected by extremes in the tails. However, they
generate estimates that are closer to the mean for data that are
normal (or nearly so).

The mid-range, since it is based on the two most extreme
points, is not robust. Its use is typically restricted to situations
in which the behavior at the extreme points is relevant.

Case Study The uniform random numbers case study compares the
performance of several different location estimators for a
particular non-normal distribution.

Software Most general purpose statistical software programs can
compute at least some of the measures of location discussed
above.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.2. Confidence Limits for the Mean

Purpose:
Interval
Estimate
for Mean

Confidence limits for the mean (Snedecor and Cochran, 1989) are an interval estimate for the
mean. Interval estimates are often desirable because the estimate of the mean varies from
sample to sample. Instead of a single estimate for the mean, a confidence interval generates a
lower and upper limit for the mean. The interval estimate gives an indication of how much
uncertainty there is in our estimate of the true mean. The narrower the interval, the more
precise is our estimate.

Confidence limits are expressed in terms of a confidence coefficient. Although the choice of
confidence coefficient is somewhat arbitrary, in practice 90 %, 95 %, and 99 % intervals are
often used, with 95 % being the most commonly used.

As a technical note, a 95 % confidence interval does not mean that there is a 95 % probability
that the interval contains the true mean. The interval computed from a given sample either
contains the true mean or it does not. Instead, the level of confidence is associated with the
method of calculating the interval. The confidence coefficient is simply the proportion of
samples of a given size that may be expected to contain the true mean. That is, for a 95 %
confidence interval, if many samples are collected and the confidence interval computed, in
the long run about 95 % of these intervals would contain the true mean.

Definition:
Confidence
Interval

Confidence limits are defined as:

where  is the sample mean, s is the sample standard deviation, N is the sample size,  is the
desired significance level, and t1-α/2, N-1 is the 100(1-α/2) percentile of the t distribution with
N - 1 degrees of freedom. Note that the confidence coefficient is 1 - α.

From the formula, it is clear that the width of the interval is controlled by two factors:

1. As N increases, the interval gets narrower from the  term.

That is, one way to obtain more precise estimates for the mean is to increase the sample
size.

2. The larger the sample standard deviation, the larger the confidence interval. This simply
means that noisy data, i.e., data with a large standard deviation, are going to generate
wider intervals than data with a smaller standard deviation.

http://www.itl.nist.gov/div898/handbook/index.htm
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Definition:
Hypothesis
Test

To test whether the population mean has a specific value, , against the two-sided alternative
that it does not have a value , the confidence interval is converted to hypothesis-test form.
The test is a one-sample t-test, and it is defined as:
H0:
Ha:
Test Statistic:  

where , N, and  are defined as above.
Significance Level: . The most commonly used value for  is 0.05.
Critical Region: Reject the null hypothesis that the mean is a specified value, , if

or

Confidence
Interval
Example

We generated a 95 %, two-sided confidence interval for the ZARR13.DAT data set based on
the following information.

N                          = 195
MEAN                       =   9.261460
STANDARD DEVIATION         =   0.022789
t1-0.025,N-1                  =   1.9723

LOWER LIMIT = 9.261460 - 1.9723*0.022789/√195 
UPPER LIMIT = 9.261460 + 1.9723*0.022789/√195 

Thus, a 95 % confidence interval for the mean is (9.258242, 9.264679).

t-Test
Example

We performed a two-sided, one-sample t-test using the ZARR13.DAT data set to test the null
hypothesis that the population mean is equal to 5.

H0:  μ = 5 
Ha:  μ ≠ 5

Test statistic:  T = 2611.284
Degrees of freedom:  ν = 194
Significance level:  α = 0.05
Critical value:  t1-α/2,ν = 1.9723
Critical region:  Reject H0 if |T| > 1.9723

We reject the null hypotheses for our two-tailed t-test because the absolute value of the test
statistic is greater than the critical value. If we were to perform an upper, one-tailed test, the
critical value would be t1-α,ν = 1.6527, and we would still reject the null hypothesis.

The confidence interval provides an alternative to the hypothesis test. If the confidence
interval contains 5, then H0 cannot be rejected. In our example, the confidence interval
(9.258242, 9.264679) does not contain 5, indicating that the population mean does not equal 5
at the 0.05 level of significance.

In general, there are three possible alternative hypotheses and rejection regions for the one-
sample t-test:
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Alternative Hypothesis Rejection Region

Ha: μ ≠ μ0 |T| > t1-α/2,ν

Ha: μ > μ0 T > t1-α,ν

Ha: μ < μ0 T < tα,ν

The rejection regions for three posssible alternative hypotheses using our example data are
shown in the following graphs.

Questions Confidence limits for the mean can be used to answer the following questions:

1. What is a reasonable estimate for the mean?
2. How much variability is there in the estimate of the mean?
3. Does a given target value fall within the confidence limits?



1.3.5.2. Confidence Limits for the Mean

http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm[6/27/2012 2:01:46 PM]

Related
Techniques

Two-Sample t-Test

Confidence intervals for other location estimators such as the median or mid-mean tend to be
mathematically difficult or intractable. For these cases, confidence intervals can be obtained
using the bootstrap.

Case Study Heat flow meter data.

Software Confidence limits for the mean and one-sample t-tests are available in just about all general
purpose statistical software programs. Both Dataplot code and R code can be used to generate
the analyses in this section.

http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.3. Two-Sample t-Test for Equal Means

Purpose:
Test if two
population
means are
equal

The two-sample t-test (Snedecor and Cochran, 1989) is used to determine if two population
means are equal. A common application is to test if a new process or treatment is superior to a
current process or treatment.

There are several variations on this test.

1. The data may either be paired or not paired. By paired, we mean that there is a one-to-
one correspondence between the values in the two samples. That is, if X1, X2, ..., Xn and
Y1, Y2, ... , Yn are the two samples, then Xi corresponds to Yi. For paired samples, the
difference Xi - Yi is usually calculated. For unpaired samples, the sample sizes for the
two samples may or may not be equal. The formulas for paired data are somewhat
simpler than the formulas for unpaired data.

2. The variances of the two samples may be assumed to be equal or unequal. Equal
variances yields somewhat simpler formulas, although with computers this is no longer
a significant issue.

3. In some applications, you may want to adopt a new process or treatment only if it
exceeds the current treatment by some threshold. In this case, we can state the null
hypothesis in the form that the difference between the two populations means is equal to
some constant ( ) where the constant is the desired threshold.

Definition The two-sample t-test for unpaired data is defined as:
H0:
Ha:
Test Statistic:

where N1 and N2 are the sample sizes,  and  are the sample means, and 
and  are the sample variances.

If equal variances are assumed, then the formula reduces to:

where

http://www.itl.nist.gov/div898/handbook/index.htm
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Significance
Level: 

.

Critical
Region:

Reject the null hypothesis that the two means are equal if

|T| > t1-α/2,ν

where t1-α/2,ν is the critical value of the t distribution with ν degrees of
freedom where

If equal variances are assumed, then

Two-
Sample t-
Test
Example

The following two-sample t-test was generated for the AUTO83B.DAT data set. The data set
contains miles per gallon for U.S. cars (sample 1) and for Japanese cars (sample 2); the
summary statistics for each sample are shown below.

SAMPLE 1:
    NUMBER OF OBSERVATIONS      = 249
    MEAN                        =  20.14458
    STANDARD DEVIATION          =   6.41470
    STANDARD ERROR OF THE MEAN  =   0.40652
  
SAMPLE 2:
    NUMBER OF OBSERVATIONS      = 79
    MEAN                        = 30.48101
    STANDARD DEVIATION          =  6.10771
    STANDARD ERROR OF THE MEAN  =  0.68717

We are testing the hypothesis that the population means are equal for the two samples. We
assume that the variances for the two samples are equal.

H0:  μ1 = μ2
Ha:  μ1 ≠ μ2

Test statistic:  T = -12.62059
Pooled standard deviation:  sp = 6.34260
Degrees of freedom:  ν = 326
Significance level:  α = 0.05
Critical value (upper tail):  t1-α/2,ν = 1.9673
Critical region: Reject H0 if |T| > 1.9673

The absolute value of the test statistic for our example, 12.62059, is greater than the critical
value of 1.9673, so we reject the null hypothesis and conclude that the two population means
are different at the 0.05 significance level.

In general, there are three possible alternative hypotheses and rejection regions for the one-
sample t-test:

Alternative Hypothesis Rejection Region
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Ha: μ1 ≠ μ2 |T| > t1-α/2,ν

Ha: μ1 > μ2 T > t1-α,ν

Ha: μ1 < μ2 T < tα,ν

For our two-tailed t-test, the critical value is t1-α/2,ν = 1.9673, where α = 0.05 and ν = 326. If
we were to perform an upper, one-tailed test, the critical value would be t1-α,ν = 1.6495. The
rejection regions for three posssible alternative hypotheses using our example data are shown
below.

Questions Two-sample t-tests can be used to answer the following questions:

1. Is process 1 equivalent to process 2?
2. Is the new process better than the current process?
3. Is the new process better than the current process by at least some pre-determined

threshold amount?
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Related
Techniques

Confidence Limits for the Mean
Analysis of Variance

Case Study Ceramic strength data.

Software Two-sample t-tests are available in just about all general purpose statistical software
programs. Both Dataplot code and R code can be used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/


1.3.5.3.1. Data Used for Two-Sample <i>t</i>-Test

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3531.htm[6/27/2012 2:01:49 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.5. Quantitative Techniques 
1.3.5.3. Two-Sample t-Test for Equal Means 

1.3.5.3.1. Data Used for Two-Sample t-Test

Data Used
for Two-
Sample t-
Test
Example

The following is the data used for the two-sample t-test
example. The first column is miles per gallon for U.S. cars and
the second column is miles per gallon for Japanese cars. For
the t-test example, rows with the second column equal to -999
were deleted.

   18           24
   15           27
   18           27
   16           25
   17           31
   15           35
   14           24
   14           19
   14           28
   15           23
   15           27
   14           20
   15           22
   14           18
   22           20
   18           31
   21           32
   21           31
   10           32
   10           24
   11           26
    9           29
   28           24
   25           24
   19           33
   16           33
   17           32
   19           28
   18           19
   14           32
   14           34
   14           26
   14           30
   12           22
   13           22
   13           33
   18           39
   22           36
   19           28
   18           27
   23           21
   26           24
   25           30
   20           34
   21           32
   13           38
   14           37
   15           30
   14           31
   17           37
   11           32
   13           47
   12           41

http://www.itl.nist.gov/div898/handbook/index.htm
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   13           45
   15           34
   13           33
   13           24
   14           32
   22           39
   28           35
   13           32
   14           37
   13           38
   14           34
   15           34
   12           32
   13           33
   13           32
   14           25
   13           24
   12           37
   13           31
   18           36
   16           36
   18           34
   18           38
   23           32
   11           38
   12           32
   13         -999
   12         -999
   18         -999
   21         -999
   19         -999
   21         -999
   15         -999
   16         -999
   15         -999
   11         -999
   20         -999
   21         -999
   19         -999
   15         -999
   26         -999
   25         -999
   16         -999
   16         -999
   18         -999
   16         -999
   13         -999
   14         -999
   14         -999
   14         -999
   28         -999
   19         -999
   18         -999
   15         -999
   15         -999
   16         -999
   15         -999
   16         -999
   14         -999
   17         -999
   16         -999
   15         -999
   18         -999
   21         -999
   20         -999
   13         -999
   23         -999
   20         -999
   23         -999
   18         -999
   19         -999
   25         -999
   26         -999
   18         -999
   16         -999
   16         -999
   15         -999
   22         -999
   22         -999
   24         -999
   23         -999
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   29         -999
   25         -999
   20         -999
   18         -999
   19         -999
   18         -999
   27         -999
   13         -999
   17         -999
   13         -999
   13         -999
   13         -999
   30         -999
   26         -999
   18         -999
   17         -999
   16         -999
   15         -999
   18         -999
   21         -999
   19         -999
   19         -999
   16         -999
   16         -999
   16         -999
   16         -999
   25         -999
   26         -999
   31         -999
   34         -999
   36         -999
   20         -999
   19         -999
   20         -999
   19         -999
   21         -999
   20         -999
   25         -999
   21         -999
   19         -999
   21         -999
   21         -999
   19         -999
   18         -999
   19         -999
   18         -999
   18         -999
   18         -999
   30         -999
   31         -999
   23         -999
   24         -999
   22         -999
   20         -999
   22         -999
   20         -999
   21         -999
   17         -999
   18         -999
   17         -999
   18         -999
   17         -999
   16         -999
   19         -999
   19         -999
   36         -999
   27         -999
   23         -999
   24         -999
   34         -999
   35         -999
   28         -999
   29         -999
   27         -999
   34         -999
   32         -999
   28         -999
   26         -999
   24         -999
   19         -999
   28         -999



1.3.5.3.1. Data Used for Two-Sample <i>t</i>-Test

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3531.htm[6/27/2012 2:01:49 PM]

   24         -999
   27         -999
   27         -999
   26         -999
   24         -999
   30         -999
   39         -999
   35         -999
   34         -999
   30         -999
   22         -999
   27         -999
   20         -999
   18         -999
   28         -999
   27         -999
   34         -999
   31         -999
   29         -999
   27         -999
   24         -999
   23         -999
   38         -999
   36         -999
   25         -999
   38         -999
   26         -999
   22         -999
   36         -999
   27         -999
   27         -999
   32         -999
   28         -999
   31         -999

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.5. Quantitative Techniques 

1.3.5.4. One-Factor ANOVA

Purpose:
Test for
Equal
Means
Across
Groups

One factor analysis of variance (Snedecor and Cochran, 1989)
is a special case of analysis of variance (ANOVA), for one
factor of interest, and a generalization of the two-sample t-
test. The two-sample t-test is used to decide whether two
groups (levels) of a factor have the same mean. One-way
analysis of variance generalizes this to levels where k, the
number of levels, is greater than or equal to 2.

For example, data collected on, say, five instruments have one
factor (instruments) at five levels. The ANOVA tests whether
instruments have a significant effect on the results.

Definition The Product and Process Comparisons chapter (chapter 7)
contains a more extensive discussion of one-factor ANOVA,
including the details for the mathematical computations of
one-way analysis of variance.

The model for the analysis of variance can be stated in two
mathematically equivalent ways. In the following discussion,
each level of each factor is called a cell. For the one-way
case, a cell and a level are equivalent since there is only one
factor. In the following, the subscript i refers to the level and
the subscript j refers to the observation within a level. For
example, Y23 refers to the third observation in the second
level.

The first model is

This model decomposes the response into a mean for each cell
and an error term. The analysis of variance provides estimates
for each cell mean. These estimated cell means are the
predicted values of the model and the differences between the
response variable and the estimated cell means are the
residuals. That is

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
http://www.itl.nist.gov/div898/handbook/prc/prc.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
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The second model is

This model decomposes the response into an overall (grand)
mean, the effect of the ith factor level, and an error term. The
analysis of variance provides estimates of the grand mean and
the effect of the ith factor level. The predicted values and the
residuals of the model are

The distinction between these models is that the second model
divides the cell mean into an overall mean and the effect of
the ith factor level. This second model makes the factor effect
more explicit, so we will emphasize this approach.

Model
Validation

Note that the ANOVA model assumes that the error term, Eij,
should follow the assumptions for a univariate measurement
process. That is, after performing an analysis of variance, the
model should be validated by analyzing the residuals.

One-Way
ANOVA
Example

A one-way analysis of variance was generated for the
GEAR.DAT data set. The data set contains 10 measurements
of gear diameter for ten different batches for a total of 100
measurements.

                   DEGREES OF     SUM OF      MEAN
SOURCE              FREEDOM      SQUARES     SQUARE    
F STATISTIC 
----------------   ----------   --------    ------
--   -----------
BATCH                   9       0.000729    
0.000081      2.2969   
RESIDUAL               90       0.003174    
0.000035
TOTAL (CORRECTED)      99       0.003903    
0.000039
  
RESIDUAL STANDARD DEVIATION = 0.00594

  
BATCH     N      MEAN    SD(MEAN)
---------------------------------
  1      10    0.99800    0.00178
  2      10    0.99910    0.00178
  3      10    0.99540    0.00178
  4      10    0.99820    0.00178
  5      10    0.99190    0.00178
  6      10    0.99880    0.00178
  7      10    1.00150    0.00178
  8      10    1.00040    0.00178
  9      10    0.99830    0.00178
 10      10    0.99480    0.00178

The ANOVA table decomposes the variance into the
following component sum of squares:

Total sum of squares. The degrees of freedom for this

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc421.htm
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entry is the number of observations minus one.
Sum of squares for the factor. The degrees of freedom
for this entry is the number of levels minus one. The
mean square is the sum of squares divided by the
number of degrees of freedom.
Residual sum of squares. The degrees of freedom is the
total degrees of freedom minus the factor degrees of
freedom. The mean square is the sum of squares divided
by the number of degrees of freedom.

The sums of squares summarize how much of the variance in
the data (total sum of squares) is accounted for by the factor
effect (batch sum of squares) and how much is random error
(residual sum of squares). Ideally, we would like most of the
variance to be explained by the factor effect.

The ANOVA table provides a formal F test for the factor
effect. For our example, we are testing the following
hypothesis.

      H0: All individual batch means are equal. 
      Ha: At least one batch mean is not equal to the others.

The F statistic is the batch mean square divided by the residual
mean square. This statistic follows an F distribution with (k-1)
and (N-k) degrees of freedom. For our example, the critical F
value (upper tail) for α = 0.05, (k-1) = 10, and (N-k) = 90 is
1.9376. Since the F statistic, 2.2969, is greater than the critical
value, we conclude that there is a significant batch effect at
the 0.05 level of significance.

Once we have determined that there is a significant batch
effect, we might be interested in comparing individual batch
means. The batch means and the standard errors of the batch
means provide some information about the individual batches,
however, we may want to employ multiple comparison
methods for a more formal analysis. (See Box, Hunter, and
Hunter for more information.)

In addition to the quantitative ANOVA output, it is
recommended that any analysis of variance be complemented
with model validation. At a minimum, this should include:

1. a run sequence plot of the residuals,
2. a normal probability plot of the residuals, and
3. a scatter plot of the predicted values against the

residuals.

Question The analysis of variance can be used to answer the following
question

Are means the same across groups in the data?

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
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Importance The analysis of uncertainty depends on whether the factor
significantly affects the outcome.

Related
Techniques

Two-sample t-test
Multi-factor analysis of variance
Regression
Box plot

Software Most general purpose statistical software programs can
generate an analysis of variance. Both Dataplot code and R
code can be used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda354.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda354.r
http://www.itl.nist.gov/div898/handbook/eda/section3/eda354.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.5. Quantitative Techniques 

1.3.5.5. Multi-factor Analysis of Variance

Purpose:
Detect
significant
factors

The analysis of variance (ANOVA) (Neter, Wasserman, and
Kunter, 1990) is used to detect significant factors in a multi-
factor model. In the multi-factor model, there is a response
(dependent) variable and one or more factor (independent)
variables. This is a common model in designed experiments
where the experimenter sets the values for each of the factor
variables and then measures the response variable.

Each factor can take on a certain number of values. These are
referred to as the levels of a factor. The number of levels can
vary betweeen factors. For designed experiments, the number
of levels for a given factor tends to be small. Each factor and
level combination is a cell. Balanced designs are those in
which the cells have an equal number of observations and
unbalanced designs are those in which the number of
observations varies among cells. It is customary to use
balanced designs in designed experiments.

Definition The Product and Process Comparisons chapter (chapter 7)
contains a more extensive discussion of two-factor ANOVA,
including the details for the mathematical computations.

The model for the analysis of variance can be stated in two
mathematically equivalent ways. We explain the model for a
two-way ANOVA (the concepts are the same for additional
factors). In the following discussion, each combination of
factors and levels is called a cell. In the following, the
subscript i refers to the level of factor 1, j refers to the level of
factor 2, and the subscript k refers to the kth observation
within the (i,j)th cell. For example, Y235 refers to the fifth
observation in the second level of factor 1 and the third level
of factor 2.

The first model is

This model decomposes the response into a mean for each cell
and an error term. The analysis of variance provides estimates
for each cell mean. These cell means are the predicted values
of the model and the differences between the response

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/prc/prc.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc427.htm


1.3.5.5. Multi-factor Analysis of Variance

http://www.itl.nist.gov/div898/handbook/eda/section3/eda355.htm[6/27/2012 2:01:52 PM]

variable and the estimated cell means are the residuals. That is

The second model is

This model decomposes the response into an overall (grand)
mean, factor effects (  and  represent the effects of the ith
level of the first factor and the jth level of the second factor,
respectively), and an error term. The analysis of variance
provides estimates of the grand mean and the factor effects.
The predicted values and the residuals of the model are

The distinction between these models is that the second model
divides the cell mean into an overall mean and factor effects.
This second model makes the factor effect more explicit, so
we will emphasize this approach.

Model
Validation

Note that the ANOVA model assumes that the error term, Eijk,
should follow the assumptions for a univariate measurement
process. That is, after performing an analysis of variance, the
model should be validated by analyzing the residuals.

Multi-
Factor
ANOVA
Example

An analysis of variance was performed for the
JAHANMI2.DAT data set. The data contains four, two-level
factors: table speed, down feed rate, wheel grit size, and batch.
There are 30 measurements of ceramic strength for each factor
combination for a total of 480 measurements.

 SOURCE              DF SUM OF SQUARES    MEAN 
SQUARE   F STATISTIC 
 -------------------------------------------------
-----------------
 TABLE SPEED          1   26672.726562   
26672.726562        6.7080
 DOWN FEED RATE       1   11524.053711   
11524.053711        2.8982
 WHEEL GRIT SIZE      1   14380.633789   
14380.633789        3.6166
 BATCH                1  727143.125000  
727143.125000      182.8703
 RESIDUAL           475 1888731.500000    
3976.276855
 TOTAL (CORRECTED)  479 2668446.000000    
5570.868652
  
 RESIDUAL STANDARD DEVIATION = 63.05772781
  
 FACTOR          LEVEL   N      MEAN     SD(MEAN)
 ------------------------------------------------
 TABLE SPEED      -1    240  657.53168    2.87818
                   1    240  642.62286    2.87818
 DOWN FEED RATE   -1    240  645.17755    2.87818
                   1    240  654.97723    2.87818

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
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 WHEEL GRIT SIZE  -1    240  655.55084    2.87818
                   1    240  644.60376    2.87818
 BATCH             1    240  688.99890    2.87818
                   2    240  611.15594    2.87818

The ANOVA decomposes the variance into the following
component sum of squares:

Total sum of squares. The degrees of freedom for this
entry is the number of observations minus one.
Sum of squares for each of the factors. The degrees of
freedom for these entries are the number of levels for
the factor minus one. The mean square is the sum of
squares divided by the number of degrees of freedom.
Residual sum of squares. The degrees of freedom is the
total degrees of freedom minus the sum of the factor
degrees of freedom. The mean square is the sum of
squares divided by the number of degrees of freedom.

The analysis of variance summarizes how much of the
variance in the data (total sum of squares) is accounted for by
the factor effects (factor sum of squares) and how much is due
to random error (residual sum of squares). Ideally, we would
like most of the variance to be explained by the factor effects.
The ANOVA table provides a formal F test for the factor
effects. To test the overall batch effect in our example we use
the following hypotheses.

      H0: All individual batch means are equal. 
      Ha: At least one batch mean is not equal to the others.

The F statistic is the mean square for the factor divided by the
residual mean square. This statistic follows an F distribution
with (k-1) and (N-k) degrees of freedom where k is the
number of levels for the given factor. Here, we see that the
size of the "direction" effect dominates the size of the other
effects. For our example, the critical F value (upper tail) for α
= 0.05, (k-1) = 1, and (N-k) = 475 is 3.86111. Thus, "table
speed" and "batch" are significant at the 5 % level while
"down feed rate" and "wheel grit size" are not significant at
the 5 % level.

In addition to the quantitative ANOVA output, it is
recommended that any analysis of variance be complemented
with model validation. At a minimum, this should include

1. A run sequence plot of the residuals.
2. A normal probability plot of the residuals.
3. A scatter plot of the predicted values against the

residuals.

Questions The analysis of variance can be used to answer the following
questions:

1. Do any of the factors have a significant effect?

http://www.itl.nist.gov/div898/handbook/prc/section4/prc427.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
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2. Which is the most important factor?
3. Can we account for most of the variability in the data?

Related
Techniques

One-factor analysis of variance
Two-sample t-test
Box plot
Block plot
DOE mean plot

Case Study The quantitative ANOVA approach can be contrasted with the
more graphical EDA approach in the ceramic strength case
study.

Software Most general purpose statistical software programs can
perform multi-factor analysis of variance. Both Dataplot code
and R code can be used to generate the analyses in this
section.

http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda355.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda355.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3. EDA Techniques 
1.3.5. Quantitative Techniques 

1.3.5.6. Measures of Scale

Scale,
Variability,
or Spread

A fundamental task in many statistical analyses is to
characterize the spread, or variability, of a data set. Measures
of scale are simply attempts to estimate this variability.

When assessing the variability of a data set, there are two key
components:

1. How spread out are the data values near the center?
2. How spread out are the tails?

Different numerical summaries will give different weight to
these two elements. The choice of scale estimator is often
driven by which of these components you want to emphasize.

The histogram is an effective graphical technique for showing
both of these components of the spread.

Definitions
of
Variability

For univariate data, there are several common numerical
measures of the spread:

1. variance - the variance is defined as

where  is the mean of the data.

The variance is roughly the arithmetic average of the
squared distance from the mean. Squaring the distance
from the mean has the effect of giving greater weight
to values that are further from the mean. For example,
a point 2 units from the mean adds 4 to the above sum
while a point 10 units from the mean adds 100 to the
sum. Although the variance is intended to be an overall
measure of spread, it can be greatly affected by the tail
behavior.

2. standard deviation - the standard deviation is the square
root of the variance. That is,

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
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The standard deviation restores the units of the spread
to the original data units (the variance squares the
units).

3. range - the range is the largest value minus the smallest
value in a data set. Note that this measure is based only
on the lowest and highest extreme values in the sample.
The spread near the center of the data is not captured at
all.

4. average absolute deviation - the average absolute
deviation (AAD) is defined as

where  is the mean of the data and |Y| is the absolute
value of Y. This measure does not square the distance
from the mean, so it is less affected by extreme
observations than are the variance and standard
deviation.

5. median absolute deviation - the median absolute
deviation (MAD) is defined as

where  is the median of the data and |Y| is the
absolute value of Y. This is a variation of the average
absolute deviation that is even less affected by
extremes in the tail because the data in the tails have
less influence on the calculation of the median than
they do on the mean.

6. interquartile range - this is the value of the 75th
percentile minus the value of the 25th percentile. This
measure of scale attempts to measure the variability of
points near the center.

In summary, the variance, standard deviation, average
absolute deviation, and median absolute deviation measure
both aspects of the variability; that is, the variability near the
center and the variability in the tails. They differ in that the
average absolute deviation and median absolute deviation do
not give undue weight to the tail behavior. On the other hand,
the range only uses the two most extreme points and the
interquartile range only uses the middle portion of the data.

Why
Different

The following example helps to clarify why these alternative
defintions of spread are useful and necessary.
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Measures?
This plot shows histograms for 10,000 random numbers
generated from a normal, a double exponential, a Cauchy,
and a Tukey-Lambda distribution.

Normal
Distribution

The first histogram is a sample from a normal distribution.
The standard deviation is 0.997, the median absolute
deviation is 0.681, and the range is 7.87.

The normal distribution is a symmetric distribution with well-
behaved tails and a single peak at the center of the
distribution. By symmetric, we mean that the distribution can
be folded about an axis so that the two sides coincide. That
is, it behaves the same to the left and right of some center
point. In this case, the median absolute deviation is a bit less
than the standard deviation due to the downweighting of the
tails. The range of a little less than 8 indicates the extreme
values fall within about 4 standard deviations of the mean. If
a histogram or normal probability plot indicates that your
data are approximated well by a normal distribution, then it is
reasonable to use the standard deviation as the spread
estimator.

Double
Exponential
Distribution

The second histogram is a sample from a double exponential
distribution. The standard deviation is 1.417, the median
absolute deviation is 0.706, and the range is 17.556.

Comparing the double exponential and the normal histograms
shows that the double exponential has a stronger peak at the
center, decays more rapidly near the center, and has much
longer tails. Due to the longer tails, the standard deviation
tends to be inflated compared to the normal. On the other
hand, the median absolute deviation is only slightly larger
than it is for the normal data. The longer tails are clearly
reflected in the value of the range, which shows that the
extremes fall about 6 standard deviations from the mean
compared to about 4 for the normal data.
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Cauchy
Distribution

The third histogram is a sample from a Cauchy distribution.
The standard deviation is 998.389, the median absolute
deviation is 1.16, and the range is 118,953.6.

The Cauchy distribution is a symmetric distribution with
heavy tails and a single peak at the center of the distribution.
The Cauchy distribution has the interesting property that
collecting more data does not provide a more accurate
estimate for the mean or standard deviation. That is, the
sampling distribution of the means and standard deviation are
equivalent to the sampling distribution of the original data.
That means that for the Cauchy distribution the standard
deviation is useless as a measure of the spread. From the
histogram, it is clear that just about all the data are between
about -5 and 5. However, a few very extreme values cause
both the standard deviation and range to be extremely large.
However, the median absolute deviation is only slightly
larger than it is for the normal distribution. In this case, the
median absolute deviation is clearly the better measure of
spread.

Although the Cauchy distribution is an extreme case, it does
illustrate the importance of heavy tails in measuring the
spread. Extreme values in the tails can distort the standard
deviation. However, these extreme values do not distort the
median absolute deviation since the median absolute
deviation is based on ranks. In general, for data with extreme
values in the tails, the median absolute deviation or
interquartile range can provide a more stable estimate of
spread than the standard deviation.

Tukey-
Lambda
Distribution

The fourth histogram is a sample from a Tukey lambda
distribution with shape parameter  = 1.2. The standard
deviation is 0.49, the median absolute deviation is 0.427, and
the range is 1.666.

The Tukey lambda distribution has a range limited to 
. That is, it has truncated tails. In this case the

standard deviation and median absolute deviation have closer
values than for the other three examples which have
significant tails.

Robustness Tukey and Mosteller defined two types of robustness where
robustness is a lack of susceptibility to the effects of
nonnormality.

1. Robustness of validity means that the confidence
intervals for a measure of the population spread (e.g.,
the standard deviation) have a 95 % chance of covering
the true value (i.e., the population value) of that
measure of spread regardless of the underlying
distribution.
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2. Robustness of efficiency refers to high effectiveness in
the face of non-normal tails. That is, confidence
intervals for the measure of spread tend to be almost as
narrow as the best that could be done if we knew the
true shape of the distribution.

The standard deviation is an example of an estimator that is
the best we can do if the underlying distribution is normal.
However, it lacks robustness of validity. That is, confidence
intervals based on the standard deviation tend to lack
precision if the underlying distribution is in fact not normal.

The median absolute deviation and the interquartile range are
estimates of scale that have robustness of validity. However,
they are not particularly strong for robustness of efficiency.

If histograms and probability plots indicate that your data are
in fact reasonably approximated by a normal distribution,
then it makes sense to use the standard deviation as the
estimate of scale. However, if your data are not normal, and
in particular if there are long tails, then using an alternative
measure such as the median absolute deviation, average
absolute deviation, or interquartile range makes sense. The
range is used in some applications, such as quality control,
for its simplicity. In addition, comparing the range to the
standard deviation gives an indication of the spread of the
data in the tails.

Since the range is determined by the two most extreme points
in the data set, we should be cautious about its use for large
values of N.

Tukey and Mosteller give a scale estimator that has both
robustness of validity and robustness of efficiency. However,
it is more complicated and we do not give the formula here.

Software Most general purpose statistical software programs can
generate at least some of the measures of scale discusssed
above.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.7. Bartlett's Test

Purpose:
Test for
Homogeneity
of Variances

Bartlett's test (Snedecor and Cochran, 1983) is used to test if k samples have equal
variances. Equal variances across samples is called homogeneity of variances. Some
statistical tests, for example the analysis of variance, assume that variances are equal across
groups or samples. The Bartlett test can be used to verify that assumption.

Bartlett's test is sensitive to departures from normality. That is, if your samples come from
non-normal distributions, then Bartlett's test may simply be testing for non-normality. The
Levene test is an alternative to the Bartlett test that is less sensitive to departures from
normality.

Definition The Bartlett test is defined as:

H0: σ1
2 = σ2

2 = ... = σk
2

Ha: σi
2 ≠ σj

2    for at least one pair (i,j).
Test
Statistic:

The Bartlett test statistic is designed to test for equality of variances across
groups against the alternative that variances are unequal for at least two
groups.

In the above, si
2 is the variance of the ith group, N is the total sample size, Ni

is the sample size of the ith group, k is the number of groups, and sp
2 is the

pooled variance. The pooled variance is a weighted average of the group
variances and is defined as:

Significance
Level:

      

Critical
Region:

The variances are judged to be unequal if,

http://www.itl.nist.gov/div898/handbook/index.htm
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where  is the critical value of the chi-square distribution with k - 1
degrees of freedom and a significance level of .

An alternate definition (Dixon and Massey, 1969) is based on an approximation to the F
distribution. This definition is given in the Product and Process Comparisons chapter
(chapter 7).

Example Bartlett's test was performed for the GEAR.DAT data set. The
data set contains 10 measurements of gear diameter for ten
different batches for a total of 100 measurements.

H0:  σ1
2 = σ2

2 = ... = σ10
2 

Ha:  At least one σi
2 is not equal to the others.

Test statistic:  T = 20.78580
Degrees of freedom:  k - 1 = 9
Significance level:  α = 0.05
Critical value:  Χ 21-α,k-1 = 16.919
Critical region: Reject H0 if T > 16.919

We are testing the null hypothesis that the batch variances are
all equal. Because the test statistic is larger than the critical
value, we reject the null hypotheses at the 0.05 significance
level and conclude that at least one batch variance is different
from the others.

Question Bartlett's test can be used to answer the following question:

Is the assumption of equal variances valid?

Importance Bartlett's test is useful whenever the assumption of equal
variances is made. In particular, this assumption is made for
the frequently used one-way analysis of variance. In this case,
Bartlett's or Levene's test should be applied to verify the
assumption.

Related
Techniques

Standard Deviation Plot
Box Plot
Levene Test
Chi-Square Test
Analysis of Variance

Case Study Heat flow meter data

Software The Bartlett test is available in many general purpose
statistical software programs. Both Dataplot code and R code
can be used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/prc/section5/prc5.htm#Dixon, W.J and Massey, F.J (1969).  Introduction
http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/sdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda357.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.8. Chi-Square Test for the Variance

Purpose:
Test if the
variance is
equal to a
specified
value

A chi-square test ( Snedecor and Cochran, 1983) can be used to test if the variance
of a population is equal to a specified value. This test can be either a two-sided test
or a one-sided test. The two-sided version tests against the alternative that the true
variance is either less than or greater than the specified value. The one-sided version
only tests in one direction. The choice of a two-sided or one-sided test is determined
by the problem. For example, if we are testing a new process, we may only be
concerned if its variability is greater than the variability of the current process.

Definition The chi-square hypothesis test is defined as:

H0:

Ha:

 
Test
Statistic:

where N is the sample size and s is the sample standard deviation. The
key element of this formula is the ratio s/σ0 which compares the ratio
of the sample standard deviation to the target standard deviation. The
more this ratio deviates from 1, the more likely we are to reject the null
hypothesis.

Significance
Level:

.

Critical
Region:

Reject the null hypothesis that the variance is a specified value, σ0
2, if

http://www.itl.nist.gov/div898/handbook/index.htm
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where  is the critical value of the chi-square distribution with
N - 1 degrees of freedom.

The formula for the hypothesis test can easily be converted to form an interval
estimate for the variance:

A confidence interval for the standard deviation is computed by taking the square
root of the upper and lower limits of the confidence interval for the variance.

Chi-
Square
Test
Example

A chi-square test was performed for the GEAR.DAT data set. The observed variance
for the 100 measurements of gear diameter is 0.00003969 (the standard deviation is
0.0063). We will test the null hypothesis that the true variance is equal to 0.01.

H0:  σ
2 = 0.01

Ha:  σ
2 ≠ 0.01

Test statistic:  T = 0.3903
Degrees of freedom:  N - 1 = 99
Significance level:  α = 0.05
Critical values:  Χ 2α/2,N-1 = 73.361 
                  Χ 21-α/2,N-1 = 128.422
Critical region: Reject H0 if T < 73.361 or T > 128.422

The test statistic value of 0.3903 is much smaller than the lower critical value, so we
reject the null hypothesis and conclude that the variance is not equal to 0.01.

Questions The chi-square test can be used to answer the following questions:

1. Is the variance equal to some pre-determined threshold value?
2. Is the variance greater than some pre-determined threshold value?
3. Is the variance less than some pre-determined threshold value?

Related
Techniques

F Test
Bartlett Test
Levene Test 

Software The chi-square test for the variance is available in many general purpose statistical
software programs. Both Dataplot code and R code can be used to generate the

http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.r
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analyses in this section.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.8.1. Data Used for Chi-Square Test for the
Variance

Data Used
for Chi-
Square
Test for
the
Variance
Example

The following are the data used for the chi-square test for the
variance example. The first column is gear diameter and the
second column is batch number. Only the first column is used
for this example.

  1.006          1.000
  0.996          1.000
  0.998          1.000
  1.000          1.000
  0.992          1.000
  0.993          1.000
  1.002          1.000
  0.999          1.000
  0.994          1.000
  1.000          1.000
  0.998          2.000
  1.006          2.000
  1.000          2.000
  1.002          2.000
  0.997          2.000
  0.998          2.000
  0.996          2.000
  1.000          2.000
  1.006          2.000
  0.988          2.000
  0.991          3.000
  0.987          3.000
  0.997          3.000
  0.999          3.000
  0.995          3.000
  0.994          3.000
  1.000          3.000
  0.999          3.000
  0.996          3.000
  0.996          3.000
  1.005          4.000
  1.002          4.000
  0.994          4.000
  1.000          4.000
  0.995          4.000
  0.994          4.000
  0.998          4.000
  0.996          4.000
  1.002          4.000
  0.996          4.000
  0.998          5.000
  0.998          5.000
  0.982          5.000
  0.990          5.000
  1.002          5.000
  0.984          5.000
  0.996          5.000
  0.993          5.000
  0.980          5.000
  0.996          5.000
  1.009          6.000
  1.013          6.000

http://www.itl.nist.gov/div898/handbook/index.htm
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  1.009          6.000
  0.997          6.000
  0.988          6.000
  1.002          6.000
  0.995          6.000
  0.998          6.000
  0.981          6.000
  0.996          6.000
  0.990          7.000
  1.004          7.000
  0.996          7.000
  1.001          7.000
  0.998          7.000
  1.000          7.000
  1.018          7.000
  1.010          7.000
  0.996          7.000
  1.002          7.000
  0.998          8.000
  1.000          8.000
  1.006          8.000
  1.000          8.000
  1.002          8.000
  0.996          8.000
  0.998          8.000
  0.996          8.000
  1.002          8.000
  1.006          8.000
  1.002          9.000
  0.998          9.000
  0.996          9.000
  0.995          9.000
  0.996          9.000
  1.004          9.000
  1.004          9.000
  0.998          9.000
  0.999          9.000
  0.991          9.000
  0.991         10.000
  0.995         10.000
  0.984         10.000
  0.994         10.000
  0.997         10.000
  0.997         10.000
  0.991         10.000
  0.998         10.000
  1.004         10.000
  0.997         10.000

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.9. F-Test for Equality of Two Variances

Purpose:
Test if
variances
from two
populations
are equal

An F-test (Snedecor and Cochran, 1983) is used to test if the
variances of two populations are equal. This test can be a
two-tailed test or a one-tailed test. The two-tailed version
tests against the alternative that the variances are not equal.
The one-tailed version only tests in one direction, that is the
variance from the first population is either greater than or less
than (but not both) the second population variance. The
choice is determined by the problem. For example, if we are
testing a new process, we may only be interested in knowing
if the new process is less variable than the old process.

Definition The F hypothesis test is defined as:

H0: σ1
2 = σ2

2

Ha: σ1
2 < σ2

2     for a lower one-tailed test

σ1
2 > σ2

2     for an upper one-tailed test

σ1
2 ≠ σ2

2     for a two-tailed test
Test
Statistic:

F = 

where  and  are the sample variances. The
more this ratio deviates from 1, the stronger the
evidence for unequal population variances.

Significance
Level:

    

Critical
Region:

The hypothesis that the two variances are equal
is rejected if

F > Fα, N1-1, N2-1     for an upper one-tailed test

F < F1-α, N1-1, N2-1     for a lower one-tailed
test

F < F1-α/2, N1-1, N2-1   for a two-tailed test

http://www.itl.nist.gov/div898/handbook/index.htm
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or

F > Fα/2, N1-1, N2-1

where Fα, N1-1, N2-1 is the critical value of the F
distribution with N1-1 and N2-1 degrees of
freedom and a significance level of α.

In the above formulas for the critical regions,
the Handbook follows the convention that Fα is
the upper critical value from the F distribution
and F1-α is the lower critical value from the F
distribution. Note that this is the opposite of the
designation used by some texts and software
programs.

F Test
Example

The following F-test was generated for the AUTO83B.DAT
data set. The data set contains 480 ceramic strength
measurements for two batches of material. The summary
statistics for each batch are shown below.

BATCH 1:
   NUMBER OF OBSERVATIONS      =      240
   MEAN                        =    688.9987
   STANDARD DEVIATION          =    65.54909
  
BATCH 2:
   NUMBER OF OBSERVATIONS      =      240
   MEAN                        =    611.1559
   STANDARD DEVIATION          =    61.85425

We are testing the null hypothesis that the variances for the
two batches are equal.

H0:  σ1
2 = σ2

2 
Ha:  σ1

2 ≠ σ2
2 

Test statistic:  F = 1.123037
Numerator degrees of freedom:  N1 - 1 = 239
Denominator degrees of freedom:  N2 - 1 = 239
Significance level:  α = 0.05
Critical values:  F(1-α/2,N1-1,N2-1) = 0.7756
                  F(α/2,N1-1,N2-1) = 1.2894
Rejection region:  Reject H0 if F < 0.7756 or F > 
1.2894

The F test indicates that there is not enough evidence to reject
the null hypothesis that the two batch variancess are equal at
the 0.05 significance level.

Questions The F-test can be used to answer the following questions:

1. Do two samples come from populations with equal
variancess?

2. Does a new process, treatment, or test reduce the
variability of the current process?
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Related
Techniques

Quantile-Quantile Plot
Bihistogram
Chi-Square Test
Bartlett's Test
Levene Test

Case Study Ceramic strength data.

Software The F-test for equality of two variances is available in many
general purpose statistical software programs. Both Dataplot
code and R code can be used to generate the analyses in this
section.

http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.10. Levene Test for Equality of Variances

Purpose:
Test for
Homogeneity
of Variances

Levene's test ( Levene 1960) is used to test if k samples have
equal variances. Equal variances across samples is called
homogeneity of variance. Some statistical tests, for example
the analysis of variance, assume that variances are equal
across groups or samples. The Levene test can be used to
verify that assumption.

Levene's test is an alternative to the Bartlett test. The Levene
test is less sensitive than the Bartlett test to departures from
normality. If you have strong evidence that your data do in
fact come from a normal, or nearly normal, distribution, then
Bartlett's test has better performance.

Definition The Levene test is defined as:
H0: σ1

2 = σ2
2 = ... = σk

2

Ha: σi
2 ≠ σj

2    for at least one pair (i,j).
Test
Statistic:

Given a variable Y with sample of size N
divided into k subgroups, where Ni is the
sample size of the ith subgroup, the Levene test
statistic is defined as:

where Zij can have one of the following three
definitions:

1. 

where  is the mean of the ith subgroup.

2. 

where  is the median of the ith
subgroup.

3. 

http://www.itl.nist.gov/div898/handbook/index.htm
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where  is the 10% trimmed mean of
the ith subgroup.

 are the group means of the Zij and  is the
overall mean of the Zij.

The three choices for defining Zij determine the
robustness and power of Levene's test. By
robustness, we mean the ability of the test to
not falsely detect unequal variances when the
underlying data are not normally distributed and
the variables are in fact equal. By power, we
mean the ability of the test to detect unequal
variances when the variances are in fact
unequal.

Levene's original paper only proposed using the
mean. Brown and Forsythe (1974)) extended
Levene's test to use either the median or the
trimmed mean in addition to the mean. They
performed Monte Carlo studies that indicated
that using the trimmed mean performed best
when the underlying data followed a Cauchy
distribution (i.e., heavy-tailed) and the median
performed best when the underlying data
followed a  (i.e., skewed) distribution. Using
the mean provided the best power for
symmetric, moderate-tailed, distributions.

Although the optimal choice depends on the
underlying distribution, the definition based on
the median is recommended as the choice that
provides good robustness against many types of
non-normal data while retaining good power. If
you have knowledge of the underlying
distribution of the data, this may indicate using
one of the other choices.

Significance
Level:

  α

Critical
Region:

The Levene test rejects the hypothesis that the
variances are equal if

W > Fα, k-1, N-k

where Fα, k-1, N-k is the upper critical value of
the F distribution with k-1 and N-k degrees of
freedom at a significance level of α.

In the above formulas for the critical regions,
the Handbook follows the convention that Fα is
the upper critical value from the F distribution
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and F1-α is the lower critical value. Note that
this is the opposite of some texts and software
programs.

Levene's Test
Example

Levene's test, based on the median, was performed for the
GEAR.DAT data set. The data set includes ten measurements
of gear diameter for each of ten batches for a total of 100
measurements.

H0:  σ1
2 = ... = σ10

2

Ha:  σ1
2 ≠ ... ≠ σ10

2

Test statistic:  W = 1.705910
Degrees of freedom:  k-1 = 10-1 = 9
                     N-k = 100-10 = 90
Significance level:  α = 0.05
Critical value (upper tail):  Fα,k-1,N-k = 1.9855 
Critical region: Reject H0 if F > 1.9855 

We are testing the hypothesis that the group variances are
equal. We fail to reject the null hypothesis at the 0.05
significance level since the value of the Levene test statistic is
less than the critical value. We conclude that there is
insufficient evidence to claim that the variances are not equal.

Question Levene's test can be used to answer the following question:

Is the assumption of equal variances valid?

Related
Techniques

Standard Deviation Plot
Box Plot
Bartlett Test
Chi-Square Test
Analysis of Variance

Software The Levene test is available in some general purpose
statistical software programs. Both Dataplot code and R code
can be used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/eda/section3/sdplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.11. Measures of Skewness and Kurtosis

Skewness
and
Kurtosis

A fundamental task in many statistical analyses is to
characterize the location and variability of a data set. A
further characterization of the data includes skewness and
kurtosis.

Skewness is a measure of symmetry, or more precisely, the
lack of symmetry. A distribution, or data set, is symmetric if
it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat
relative to a normal distribution. That is, data sets with high
kurtosis tend to have a distinct peak near the mean, decline
rather rapidly, and have heavy tails. Data sets with low
kurtosis tend to have a flat top near the mean rather than a
sharp peak. A uniform distribution would be the extreme
case.

The histogram is an effective graphical technique for showing
both the skewness and kurtosis of data set.

Definition
of Skewness

For univariate data Y1, Y2, ..., YN, the formula for skewness
is:

where  is the mean,  is the standard deviation, and N is the
number of data points. The skewness for a normal
distribution is zero, and any symmetric data should have a
skewness near zero. Negative values for the skewness
indicate data that are skewed left and positive values for the
skewness indicate data that are skewed right. By skewed left,
we mean that the left tail is long relative to the right tail.
Similarly, skewed right means that the right tail is long
relative to the left tail. Some measurements have a lower
bound and are skewed right. For example, in reliability
studies, failure times cannot be negative.

Definition
of Kurtosis

For univariate data Y1, Y2, ..., YN, the formula for kurtosis is:

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
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where  is the mean,  is the standard deviation, and N is the
number of data points.

Alternative
Definition
of Kurtosis

The kurtosis for a standard normal distribution is three. For
this reason, some sources use the following definition of
kurtosis (often referred to as "excess kurtosis"):

This definition is used so that the standard normal
distribution has a kurtosis of zero. In addition, with the
second definition positive kurtosis indicates a "peaked"
distribution and negative kurtosis indicates a "flat"
distribution.

Which definition of kurtosis is used is a matter of convention
(this handbook uses the original definition). When using
software to compute the sample kurtosis, you need to be
aware of which convention is being followed. Many sources
use the term kurtosis when they are actually computing
"excess kurtosis", so it may not always be clear.

Examples The following example shows histograms for 10,000 random
numbers generated from a normal, a double exponential, a
Cauchy, and a Weibull distribution.

Normal
Distribution

The first histogram is a sample from a normal distribution.
The normal distribution is a symmetric distribution with well-
behaved tails. This is indicated by the skewness of 0.03. The
kurtosis of 2.96 is near the expected value of 3. The
histogram verifies the symmetry.
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Double
Exponential
Distribution

The second histogram is a sample from a double exponential
distribution. The double exponential is a symmetric
distribution. Compared to the normal, it has a stronger peak,
more rapid decay, and heavier tails. That is, we would expect
a skewness near zero and a kurtosis higher than 3. The
skewness is 0.06 and the kurtosis is 5.9.

Cauchy
Distribution

The third histogram is a sample from a Cauchy distribution.

For better visual comparison with the other data sets, we
restricted the histogram of the Cauchy distribution to values
between -10 and 10. The full data set for the Cauchy data in
fact has a minimum of approximately -29,000 and a
maximum of approximately 89,000.

The Cauchy distribution is a symmetric distribution with
heavy tails and a single peak at the center of the distribution.
Since it is symmetric, we would expect a skewness near zero.
Due to the heavier tails, we might expect the kurtosis to be
larger than for a normal distribution. In fact the skewness is
69.99 and the kurtosis is 6,693. These extremely high values
can be explained by the heavy tails. Just as the mean and
standard deviation can be distorted by extreme values in the
tails, so too can the skewness and kurtosis measures.

Weibull
Distribution

The fourth histogram is a sample from a Weibull distribution
with shape parameter 1.5. The Weibull distribution is a
skewed distribution with the amount of skewness depending
on the value of the shape parameter. The degree of decay as
we move away from the center also depends on the value of
the shape parameter. For this data set, the skewness is 1.08
and the kurtosis is 4.46, which indicates moderate skewness
and kurtosis.

Dealing
with
Skewness
and
Kurtosis

Many classical statistical tests and intervals depend on
normality assumptions. Significant skewness and kurtosis
clearly indicate that data are not normal. If a data set exhibits
significant skewness or kurtosis (as indicated by a histogram
or the numerical measures), what can we do about it?

One approach is to apply some type of transformation to try
to make the data normal, or more nearly normal. The Box-
Cox transformation is a useful technique for trying to
normalize a data set. In particular, taking the log or square
root of a data set is often useful for data that exhibit moderate
right skewness.

Another approach is to use techniques based on distributions
other than the normal. For example, in reliability studies, the
exponential, Weibull, and lognormal distributions are
typically used as a basis for modeling rather than using the
normal distribution. The probability plot correlation
coefficient plot and the probability plot are useful tools for
determining a good distributional model for the data.

http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxno.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxcoxno.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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Software The skewness and kurtosis coefficients are available in most
general purpose statistical software programs.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.12. Autocorrelation

Purpose:
Detect Non-
Randomness,
Time Series
Modeling

The autocorrelation ( Box and Jenkins, 1976) function
can be used for the following two purposes:

1. To detect non-randomness in data.
2. To identify an appropriate time series model if the

data are not random.

Definition Given measurements, Y1, Y2, ..., YN at time X1, X2, ..., XN,
the lag k autocorrelation function is defined as

Although the time variable, X, is not used in the formula
for autocorrelation, the assumption is that the observations
are equi-spaced.

Autocorrelation is a correlation coefficient. However,
instead of correlation between two different variables, the
correlation is between two values of the same variable at
times Xi and Xi+k.

When the autocorrelation is used to detect non-
randomness, it is usually only the first (lag 1)
autocorrelation that is of interest. When the
autocorrelation is used to identify an appropriate time
series model, the autocorrelations are usually plotted for
many lags.

Autocorrelation
Example

Lag-one autocorrelations were computed for the the
LEW.DAT data set.
 
 lag     autocorrelation
  0.      1.00
  1.     -0.31
  2.     -0.74
  3.      0.77
  4.      0.21
  5.     -0.90
  6.      0.38
  7.      0.63
  8.     -0.77
  9.     -0.12
 10.      0.82
 11.     -0.40
 12.     -0.55
 13.      0.73
 14.      0.07
 15.     -0.76

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
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 16.      0.40
 17.      0.48
 18.     -0.70
 19.     -0.03
 20.      0.70
 21.     -0.41
 22.     -0.43
 23.      0.67
 24.      0.00
 25.     -0.66
 26.      0.42
 27.      0.39
 28.     -0.65
 29.      0.03
 30.      0.63
 31.     -0.42
 32.     -0.36
 33.      0.64
 34.     -0.05
 35.     -0.60
 36.      0.43
 37.      0.32
 38.     -0.64
 39.      0.08
 40.      0.58
 41.     -0.45
 42.     -0.28
 43.      0.62
 44.     -0.10
 45.     -0.55
 46.      0.45
 47.      0.25
 48.     -0.61
 49.      0.14

   

Questions The autocorrelation function can be used to answer the
following questions.

1. Was this sample data set generated from a random
process?

2. Would a non-linear or time series model be a more
appropriate model for these data than a simple
constant plus error model?

Importance Randomness is one of the key assumptions in
determining if a univariate statistical process is in control.
If the assumptions of constant location and scale,
randomness, and fixed distribution are reasonable, then
the univariate process can be modeled as:

where Ei is an error term.

If the randomness assumption is not valid, then a different
model needs to be used. This will typically be either a
time series model or a non-linear model (with time as the
independent variable).

Related
Techniques

Autocorrelation Plot
Run Sequence Plot
Lag Plot
Runs Test

Case Study The heat flow meter data demonstrate the use of
autocorrelation in determining if the data are from a
random process.

Software The autocorrelation capability is available in most general

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
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purpose statistical software programs. Both Dataplot code
and R code can be used to generate the analyses in this
section.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35c.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35c.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.13. Runs Test for Detecting Non-
randomness

Purpose:
Detect Non-
Randomness

The runs test (Bradley, 1968) can be used to decide if a data
set is from a random process.

A run is defined as a series of increasing values or a series of
decreasing values. The number of increasing, or decreasing,
values is the length of the run. In a random data set, the
probability that the (I+1)th value is larger or smaller than the
Ith value follows a binomial distribution, which forms the basis
of the runs test.

Typical
Analysis
and Test
Statistics

The first step in the runs test is to count the number of runs in
the data sequence. There are several ways to define runs in the
literature, however, in all cases the formulation must produce a
dichotomous sequence of values. For example, a series of 20
coin tosses might produce the following sequence of heads (H)
and tails (T).

H H T T H T H H H H T H H T T T T T H H

The number of runs for this series is nine. There are 11 heads
and 9 tails in the sequence.

Definition We will code values above the median as positive and values
below the median as negative. A run is defined as a series of
consecutive positive (or negative) values. The runs test is
defined as:

H0: the sequence was produced in a random manner

Ha: the sequence was not produced in a random
manner

Test
Statistic:

The test statistic is

where R is the observed number of runs, R, is the
expected number of runs, and sR is the standard
deviation of the number of runs. The values of R

http://www.itl.nist.gov/div898/handbook/index.htm
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and sR are computed as follows:

where n1 and n2 are the number of positive and
negative values in the series.

Significance
Level:

α

Critical
Region:

The runs test rejects the null hypothesis if

|Z| > Z1-α/2

For a large-sample runs test (where n1 > 10 and
n2 > 10), the test statistic is compared to a
standard normal table. That is, at the 5 %
significance level, a test statistic with an absolute
value greater than 1.96 indicates non-
randomness. For a small-sample runs test, there
are tables to determine critical values that depend
on values of n1 and n2 (Mendenhall, 1982).

Runs Test
Example

A runs test was performed for 200 measurements of beam
deflection contained in the LEW.DAT data set.

 
H0:  the sequence was produced in a random manner
Ha:  the sequence was not produced in a random 
manner  

Test statistic:  Z = 2.6938
Significance level:  α = 0.05
Critical value (upper tail):  Z1-α/2 = 1.96 
Critical region: Reject H0 if |Z| > 1.96 

Since the test statistic is greater than the critical value, we
conclude that the data are not random at the 0.05 significance
level.

Question The runs test can be used to answer the following question:

Were these sample data generated from a random
process?

Importance Randomness is one of the key assumptions in determining if a
univariate statistical process is in control. If the assumptions of
constant location and scale, randomness, and fixed distribution
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are reasonable, then the univariate process can be modeled as:

where Ei is an error term.

If the randomness assumption is not valid, then a different
model needs to be used. This will typically be either a times
series model or a non-linear model (with time as the
independent variable).

Related
Techniques

Autocorrelation
Run Sequence Plot
Lag Plot

Case Study Heat flow meter data

Software Most general purpose statistical software programs support a
runs test. Both Dataplot code and R code can be used to
generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35d.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.3.5.14. Anderson-Darling Test

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.htm[6/27/2012 2:02:04 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.5. Quantitative Techniques 

1.3.5.14. Anderson-Darling Test

Purpose:
Test for
Distributional
Adequacy

The Anderson-Darling test (Stephens, 1974) is used to test if a
sample of data came from a population with a specific distribution.
It is a modification of the Kolmogorov-Smirnov (K-S) test and
gives more weight to the tails than does the K-S test. The K-S test
is distribution free in the sense that the critical values do not depend
on the specific distribution being tested. The Anderson-Darling test
makes use of the specific distribution in calculating critical values.
This has the advantage of allowing a more sensitive test and the
disadvantage that critical values must be calculated for each
distribution. Currently, tables of critical values are available for the
normal, lognormal, exponential, Weibull, extreme value type I, and
logistic distributions. We do not provide the tables of critical values
in this Handbook (see Stephens 1974, 1976, 1977, and 1979) since
this test is usually applied with a statistical software program that
will print the relevant critical values.

The Anderson-Darling test is an alternative to the chi-square and
Kolmogorov-Smirnov goodness-of-fit tests.

Definition The Anderson-Darling test is defined as:
H0: The data follow a specified distribution.
Ha: The data do not follow the specified distribution
Test
Statistic:

The Anderson-Darling test statistic is defined as

where

F is the cumulative distribution function of the
specified distribution. Note that the Yi are the ordered
data.

Significance
Level:
Critical
Region:

The critical values for the Anderson-Darling test are
dependent on the specific distribution that is being

http://www.itl.nist.gov/div898/handbook/index.htm
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tested. Tabulated values and formulas have been
published (Stephens, 1974, 1976, 1977, 1979) for a
few specific distributions (normal, lognormal,
exponential, Weibull, logistic, extreme value type 1).
The test is a one-sided test and the hypothesis that the
distribution is of a specific form is rejected if the test
statistic, A, is greater than the critical value.

Note that for a given distribution, the Anderson-
Darling statistic may be multiplied by a constant
(which usually depends on the sample size, n). These
constants are given in the various papers by Stephens.
In the sample output below, the test statistic values are
adjusted. Also, be aware that different constants (and
therefore critical values) have been published. You
just need to be aware of what constant was used for a
given set of critical values (the needed constant is
typically given with the critical values).

Sample
Output

We generated 1,000 random numbers for normal, double
exponential, Cauchy, and lognormal distributions. In all four cases,
the Anderson-Darling test was applied to test for a normal
distribution.

The normal random numbers were stored in the variable Y1, the
double exponential random numbers were stored in the variable Y2,
the Cauchy random numbers were stored in the variable Y3, and the
lognormal random numbers were stored in the variable Y4.

      Distribution                 Mean       Standard 
Deviation
      ------------               --------     ---------
---------
      Normal (Y1)                0.004360          
1.001816
      Double Exponential (Y2)    0.020349          
1.321627
      Cauchy (Y3)                1.503854         
35.130590
      Lognormal (Y4)             1.518372          
1.719969
      
      H0:  the data are normally distributed
      Ha:  the data are not normally distributed

      Y1 adjusted test statistic:  A2 =   0.2576
      Y2 adjusted test statistic:  A2 =   5.8492
      Y3 adjusted test statistic:  A2 = 288.7863
      Y4 adjusted test statistic:  A2 =  83.3935

      Significance level:  α = 0.05
      Critical value:  0.752   
      Critical region:  Reject H0 if A

2 > 0.752
      

When the data were generated using a normal distribution, the test
statistic was small and the hypothesis of normality was not rejected.
When the data were generated using the double exponential,
Cauchy, and lognormal distributions, the test statistics were large,
and the hypothesis of an underlying normal distribution was
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rejected at the 0.05 significance level.

Questions The Anderson-Darling test can be used to answer the following
questions:

Are the data from a normal distribution?
Are the data from a log-normal distribution?
Are the data from a Weibull distribution?
Are the data from an exponential distribution?
Are the data from a logistic distribution?

Importance Many statistical tests and procedures are based on specific
distributional assumptions. The assumption of normality is
particularly common in classical statistical tests. Much reliability
modeling is based on the assumption that the data follow a Weibull
distribution.

There are many non-parametric and robust techniques that do not
make strong distributional assumptions. However, techniques based
on specific distributional assumptions are in general more powerful
than non-parametric and robust techniques. Therefore, if the
distributional assumptions can be validated, they are generally
preferred.

Related
Techniques

Chi-Square goodness-of-fit Test
Kolmogorov-Smirnov Test
Shapiro-Wilk Normality Test
Probability Plot
Probability Plot Correlation Coefficient Plot

Case Study Josephson junction cryothermometry case study.

Software The Anderson-Darling goodness-of-fit test is available in some
general purpose statistical software programs. Both Dataplot code
and R code can be used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35e.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/
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1.3.5.15. Chi-Square Goodness-of-Fit Test

Purpose:
Test for
distributional
adequacy

The chi-square test (Snedecor and Cochran, 1989) is used
to test if a sample of data came from a population with a
specific distribution.

An attractive feature of the chi-square goodness-of-fit test
is that it can be applied to any univariate distribution for
which you can calculate the cumulative distribution
function. The chi-square goodness-of-fit test is applied to
binned data (i.e., data put into classes). This is actually not a
restriction since for non-binned data you can simply
calculate a histogram or frequency table before generating
the chi-square test. However, the value of the chi-square
test statistic are dependent on how the data is binned.
Another disadvantage of the chi-square test is that it
requires a sufficient sample size in order for the chi-square
approximation to be valid.

The chi-square test is an alternative to the Anderson-
Darling and Kolmogorov-Smirnov goodness-of-fit tests.
The chi-square goodness-of-fit test can be applied to
discrete distributions such as the binomial and the Poisson.
The Kolmogorov-Smirnov and Anderson-Darling tests are
restricted to continuous distributions.

Additional discussion of the chi-square goodness-of-fit test
is contained in the product and process comparisons chapter
(chapter 7).

Definition The chi-square test is defined for the hypothesis:

H0: The data follow a specified distribution.
Ha: The data do not follow the specified

distribution.
Test
Statistic:

For the chi-square goodness-of-fit
computation, the data are divided into k bins
and the test statistic is defined as

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc211.htm
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where  is the observed frequency for bin i
and  is the expected frequency for bin i.
The expected frequency is calculated by

where F is the cumulative Distribution
function for the distribution being tested, Yu is
the upper limit for class i, Yl is the lower limit
for class i, and N is the sample size.

This test is sensitive to the choice of bins.
There is no optimal choice for the bin width
(since the optimal bin width depends on the
distribution). Most reasonable choices should
produce similar, but not identical, results. For
the chi-square approximation to be valid, the
expected frequency should be at least 5. This
test is not valid for small samples, and if some
of the counts are less than five, you may need
to combine some bins in the tails.

Significance
Level:

.

Critical
Region:

The test statistic follows, approximately, a
chi-square distribution with (k - c) degrees of
freedom where k is the number of non-empty
cells and c = the number of estimated
parameters (including location and scale
parameters and shape parameters) for the
distribution + 1. For example, for a 3-
parameter Weibull distribution, c = 4.

Therefore, the hypothesis that the data are
from a population with the specified
distribution is rejected if

where  is the chi-square critical
value with k - c degrees of freedom and
significance level α.

Chi-Square
Test Example

We generated 1,000 random numbers for normal, double
exponential, t with 3 degrees of freedom, and lognormal
distributions. In all cases, a chi-square test with k = 32 bins
was applied to test for normally distributed data. Because
the normal distribution has two parameters, c = 2 + 1 = 3

The normal random numbers were stored in the variable
Y1, the double exponential random numbers were stored in
the variable Y2, the t random numbers were stored in the
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variable Y3, and the lognormal random numbers were
stored in the variable Y4.

H0:  the data are normally distributed
Ha:  the data are not normally distributed  

Y1 Test statistic:  Χ 2 =   32.256
Y2 Test statistic:  Χ 2 =   91.776
Y3 Test statistic:  Χ 2 =  101.488
Y4 Test statistic:  Χ 2 = 1085.104

Significance level:  α = 0.05
Degrees of freedom:  k - c = 32 - 3 = 29
Critical value:  Χ 21-α, k-c = 42.557
Critical region: Reject H0 if Χ

 2 > 42.557

As we would hope, the chi-square test fails to reject the null
hypothesis for the normally distributed data set and rejects
the null hypothesis for the three non-normal data sets.

Questions The chi-square test can be used to answer the following
types of questions:

Are the data from a normal distribution?
Are the data from a log-normal distribution?
Are the data from a Weibull distribution?
Are the data from an exponential distribution?
Are the data from a logistic distribution?
Are the data from a binomial distribution?

Importance Many statistical tests and procedures are based on specific
distributional assumptions. The assumption of normality is
particularly common in classical statistical tests. Much
reliability modeling is based on the assumption that the
distribution of the data follows a Weibull distribution.

There are many non-parametric and robust techniques that
are not based on strong distributional assumptions. By non-
parametric, we mean a technique, such as the sign test, that
is not based on a specific distributional assumption. By
robust, we mean a statistical technique that performs well
under a wide range of distributional assumptions. However,
techniques based on specific distributional assumptions are
in general more powerful than these non-parametric and
robust techniques. By power, we mean the ability to detect a
difference when that difference actually exists. Therefore, if
the distributional assumption can be confirmed, the
parametric techniques are generally preferred.

If you are using a technique that makes a normality (or
some other type of distributional) assumption, it is important
to confirm that this assumption is in fact justified. If it is,
the more powerful parametric techniques can be used. If the
distributional assumption is not justified, a non-parametric
or robust technique may be required.
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Related
Techniques

Anderson-Darling Goodness-of-Fit Test
Kolmogorov-Smirnov Test
Shapiro-Wilk Normality Test
Probability Plots
Probability Plot Correlation Coefficient Plot

Software Some general purpose statistical software programs provide
a chi-square goodness-of-fit test for at least some of the
common distributions. Both Dataplot code and R code can
be used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35f.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.16. Kolmogorov-Smirnov Goodness-of-Fit Test

Purpose:
Test for
Distributional
Adequacy

The Kolmogorov-Smirnov test (Chakravart, Laha, and Roy,
1967) is used to decide if a sample comes from a population with
a specific distribution.

The Kolmogorov-Smirnov (K-S) test is based on the empirical
distribution function (ECDF). Given N ordered data points Y1,
Y2, ..., YN, the ECDF is defined as

where n(i) is the number of points less than Yi and the Yi are
ordered from smallest to largest value. This is a step function that
increases by 1/N at the value of each ordered data point.

The graph below is a plot of the empirical distribution function
with a normal cumulative distribution function for 100 normal
random numbers. The K-S test is based on the maximum distance
between these two curves.

Characteristics
and
Limitations of

An attractive feature of this test is that the distribution of the K-S
test statistic itself does not depend on the underlying cumulative
distribution function being tested. Another advantage is that it is

http://www.itl.nist.gov/div898/handbook/index.htm
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the K-S Test an exact test (the chi-square goodness-of-fit test depends on an
adequate sample size for the approximations to be valid). Despite
these advantages, the K-S test has several important limitations:

1. It only applies to continuous distributions.
2. It tends to be more sensitive near the center of the

distribution than at the tails.
3. Perhaps the most serious limitation is that the distribution

must be fully specified. That is, if location, scale, and shape
parameters are estimated from the data, the critical region
of the K-S test is no longer valid. It typically must be
determined by simulation.

Due to limitations 2 and 3 above, many analysts prefer to use the
Anderson-Darling goodness-of-fit test. However, the Anderson-
Darling test is only available for a few specific distributions.

Definition The Kolmogorov-Smirnov test is defined by:

H0: The data follow a specified distribution
Ha: The data do not follow the specified distribution
Test
Statistic:

The Kolmogorov-Smirnov test statistic is defined as

where F is the theoretical cumulative distribution of
the distribution being tested which must be a
continuous distribution (i.e., no discrete
distributions such as the binomial or Poisson), and
it must be fully specified (i.e., the location, scale,
and shape parameters cannot be estimated from the
data).

Significance
Level:

.

Critical
Values:

The hypothesis regarding the distributional form is
rejected if the test statistic, D, is greater than the
critical value obtained from a table. There are
several variations of these tables in the literature
that use somewhat different scalings for the K-S
test statistic and critical regions. These alternative
formulations should be equivalent, but it is
necessary to ensure that the test statistic is
calculated in a way that is consistent with how the
critical values were tabulated.

We do not provide the K-S tables in the Handbook
since software programs that perform a K-S test
will provide the relevant critical values.

Technical Note Previous editions of e-Handbook gave the following formula for
the computation of the Kolmogorov-Smirnov goodness of fit
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statistic:

This formula is in fact not correct. Note that this formula can be
rewritten as:

This form makes it clear that an upper bound on the difference
between these two formulas is i/N. For actual data, the difference
is likely to be less than the upper bound.

For example, for N = 20, the upper bound on the difference
between these two formulas is 0.05 (for comparison, the 5%
critical value is 0.294). For N = 100, the upper bound is 0.001. In
practice, if you have moderate to large sample sizes (say N ≥ 50),
these formulas are essentially equivalent.

Kolmogorov-
Smirnov Test
Example

We generated 1,000 random numbers for normal, double
exponential, t with 3 degrees of freedom, and lognormal
distributions. In all cases, the Kolmogorov-Smirnov test was
applied to test for a normal distribution.

The normal random numbers were stored in the variable Y1, the
double exponential random numbers were stored in the variable
Y2, the t random numbers were stored in the variable Y3, and the
lognormal random numbers were stored in the variable Y4.

      H0:  the data are normally distributed
      Ha:  the data are not normally distributed

      Y1 test statistic:  D = 0.0241492  
      Y2 test statistic:  D = 0.0514086 
      Y3 test statistic:  D = 0.0611935
      Y4 test statistic:  D = 0.5354889

      Significance level:  α = 0.05
      Critical value:  0.04301    
      Critical region:  Reject H0 if D > 0.04301
      

As expected, the null hypothesis is not rejected for the normally
distributed data, but is rejected for the remaining three data sets
that are not normally distributed.

Questions The Kolmogorov-Smirnov test can be used to answer the
following types of questions:

Are the data from a normal distribution?
Are the data from a log-normal distribution?
Are the data from a Weibull distribution?
Are the data from an exponential distribution?
Are the data from a logistic distribution?
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Importance Many statistical tests and procedures are based on specific
distributional assumptions. The assumption of normality is
particularly common in classical statistical tests. Much reliability
modeling is based on the assumption that the data follow a
Weibull distribution.

There are many non-parametric and robust techniques that are not
based on strong distributional assumptions. By non-parametric,
we mean a technique, such as the sign test, that is not based on a
specific distributional assumption. By robust, we mean a
statistical technique that performs well under a wide range of
distributional assumptions. However, techniques based on specific
distributional assumptions are in general more powerful than
these non-parametric and robust techniques. By power, we mean
the ability to detect a difference when that difference actually
exists. Therefore, if the distributional assumptions can be
confirmed, the parametric techniques are generally preferred.

If you are using a technique that makes a normality (or some
other type of distributional) assumption, it is important to confirm
that this assumption is in fact justified. If it is, the more powerful
parametric techniques can be used. If the distributional
assumption is not justified, using a non-parametric or robust
technique may be required.

Related
Techniques

Anderson-Darling goodness-of-fit Test
Chi-Square goodness-of-fit Test
Shapiro-Wilk Normality Test
Probability Plots
Probability Plot Correlation Coefficient Plot

Software Some general purpose statistical software programs support the
Kolmogorov-Smirnov goodness-of-fit test, at least for the more
common distributions. Both Dataplot code and R code can be
used to generate the analyses in this section.

http://www.itl.nist.gov/div898/handbook/prc/section2/prc243.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.dp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35g.r
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.17. Detection of Outliers

Introduction An outlier is an observation that appears to deviate
markedly from other observations in the sample.

Identification of potential outliers is important for the
following reasons.

1. An outlier may indicate bad data. For example, the
data may have been coded incorrectly or an
experiment may not have been run correctly. If it
can be determined that an outlying point is in fact
erroneous, then the outlying value should be deleted
from the analysis (or corrected if possible).

2. In some cases, it may not be possible to determine if
an outlying point is bad data. Outliers may be due to
random variation or may indicate something
scientifically interesting. In any event, we typically
do not want to simply delete the outlying
observation. However, if the data contains
significant outliers, we may need to consider the use
of robust statistical techniques.

Labeling,
Accomodation,
Identification

Iglewicz and Hoaglin distinguish the three following
issues with regards to outliers.

1. outlier labeling - flag potential outliers for further
investigation (i.e., are the potential outliers
erroneous data, indicative of an inappropriate
distributional model, and so on).

2. outlier accomodation - use robust statistical
techniques that will not be unduly affected by
outliers. That is, if we cannot determine that
potential outliers are erroneous observations, do we
need modify our statistical analysis to more
appropriately account for these observations?

3. outlier identification - formally test whether
observations are outliers.

This section focuses on the labeling and identification

http://www.itl.nist.gov/div898/handbook/index.htm
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issues.

Normality
Assumption

Identifying an observation as an outlier depends on the
underlying distribution of the data. In this section, we limit
the discussion to univariate data sets that are assumed to
follow an approximately normal distribution. If the
normality assumption for the data being tested is not valid,
then a determination that there is an outlier may in fact be
due to the non-normality of the data rather than the
prescence of an outlier.

For this reason, it is recommended that you generate a
normal probability plot of the data before applying an
outlier test. Although you can also perform formal tests for
normality, the prescence of one or more outliers may
cause the tests to reject normality when it is in fact a
reasonable assumption for applying the outlier test.

In addition to checking the normality assumption, the
lower and upper tails of the normal probability plot can be
a useful graphical technique for identifying potential
outliers. In particular, the plot can help determine whether
we need to check for a single outlier or whether we need
to check for multiple outliers.

The box plot and the histogram can also be useful
graphical tools in checking the normality assumption and
in identifying potential outliers.

Single Versus
Multiple
Outliers

Some outlier tests are designed to detect the prescence of a
single outlier while other tests are designed to detect the
prescence of multiple outliers. It is not appropriate to
apply a test for a single outlier sequentially in order to
detect multiple outliers.

In addition, some tests that detect multiple outliers may
require that you specify the number of suspected outliers
exactly.

Masking and
Swamping

Masking can occur when we specify too few outliers in the
test. For example, if we are testing for a single outlier
when there are in fact two (or more) outliers, these
additional outliers may influence the value of the test
statistic enough so that no points are declared as outliers.

On the other hand, swamping can occur when we specify
too many outliers in the test. For example, if we are testing
for two or more outliers when there is in fact only a single
outlier, both points may be declared outliers (many tests
will declare either all or none of the tested points as
outliers).

Due to the possibility of masking and swamping, it is
useful to complement formal outlier tests with graphical

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
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methods. Graphics can often help identify cases where
masking or swamping may be an issue. Swamping and
masking are also the reason that many tests require that the
exact number of outliers being tested must be specified.

Also, masking is one reason that trying to apply a single
outlier test sequentially can fail. For example, if there are
multiple outliers, masking may cause the outlier test for
the first outlier to return a conclusion of no outliers (and
so the testing for any additional outliers is not performed).

Z-Scores and
Modified Z-
Scores

The Z-score of an observation is defined as

with  and s denoting the sample mean and sample
standard deviation, respectively. In other words, data is
given in units of how many standard deviations it is from
the mean.

Although it is common practice to use Z-scores to identify
possible outliers, this can be misleading (partiucarly for
small sample sizes) due to the fact that the maximum Z-
score is at most .

Iglewicz and Hoaglin recommend using the modified Z-
score

with MAD denoting the median absolute deviation and 
denoting the median.

These authors recommend that modified Z-scores with an
absolute value of greater than 3.5 be labeled as potential
outliers.

Formal
Outlier Tests

A number of formal outlier tests have proposed in the
literature. These can be grouped by the following
characteristics:

What is the distributional model for the data? We
restrict our discussion to tests that assume the data
follow an approximately normal distribution.

Is the test designed for a single outlier or is it
designed for multiple outliers?

If the test is designed for multiple outliers, does the
number of outliers need to be specified exactly or
can we specify an upper bound for the number of
outliers?
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The following are a few of the more commonly used
outlier tests for normally distributed data. This list is not
exhaustive (a large number of outlier tests have been
proposed in the literature). The tests given here are
essentially based on the criterion of "distance from the
mean". This is not the only criterion that could be used.
For example, the Dixon test, which is not discussed here,
is based a value being too large (or small) compared to its
nearest neighbor.

1. Grubbs' Test - this is the recommended test when
testing for a single outlier.

2. Tietjen-Moore Test - this is a generalization of the
Grubbs' test to the case of more than one outlier. It
has the limitation that the number of outliers must
be specified exactly.

3. Generalized Extreme Studentized Deviate (ESD)
Test - this test requires only an upper bound on the
suspected number of outliers and is the
recommended test when the exact number of outliers
is not known.

Lognormal
Distribution

The tests discussed here are specifically based on the
assumption that the data follow an approximately normal
disribution. If your data follow an approximately
lognormal distribution, you can transform the data to
normality by taking the logarithms of the data and then
applying the outlier tests discussed here.

Further
Information

Iglewicz and Hoaglin provide an extensive discussion of
the outlier tests given above (as well as some not given
above) and also give a good tutorial on the subject of
outliers. Barnett and Lewis provide a book length
treatment of the subject.

In addition to discussing additional tests for data that
follow an approximately normal distribution, these sources
also discuss the case where the data are not normally
distributed.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h3.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.5.18. Yates Algorithm

Purpose:
Estimate
Factor Effects
in a 2-Level
Factorial
Design

Full factorial and fractional factorial designs are common
in designed experiments for engineering and scientific
applications.

In these designs, each factor is assigned two levels. These
are typically called the low and high levels. For
computational purposes, the factors are scaled so that the
low level is assigned a value of -1 and the high level is
assigned a value of +1. These are also commonly referred
to as "-" and "+".

A full factorial design contains all possible combinations
of low/high levels for all the factors. A fractional factorial
design contains a carefully chosen subset of these
combinations. The criterion for choosing the subsets is
discussed in detail in the process improvement chapter.

The Yates algorithm exploits the special structure of these
designs to generate least squares estimates for factor
effects for all factors and all relevant interactions.

The mathematical details of the Yates algorithm are given
in chapter 10 of Box, Hunter, and Hunter (1978). Natrella
(1963) also provides a procedure for testing the
significance of effect estimates.

The effect estimates are typically complemented by a
number of graphical techniques such as the DOE mean
plot and the DOE contour plot ("DOE" represents "design
of experiments"). These are demonstrated in the eddy
current case study.

Yates Order Before performing the Yates algorithm, the data should be
arranged in "Yates order". That is, given k factors, the kth
column consists of 2k-1 minus signs (i.e., the low level of
the factor) followed by 2k-1 plus signs (i.e., the high level
of the factor). For example, for a full factorial design with
three factors, the design matrix is

- - -
+ - -
- + -

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri333.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexcont.htm
http://www.itl.nist.gov/div898/handbook/pri/section6/pri61.htm
http://www.itl.nist.gov/div898/handbook/pri/section6/pri61.htm
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+ + -
- - +
+ - +
- + +
+ + +
      

Determining the Yates order for fractional factorial
designs requires knowledge of the confounding structure
of the fractional factorial design.

Yates
Algorithm

The Yates algorithm is demonstrated for the eddy current
data set. The data set contains eight measurements from a
two-level, full factorial design with three factors. The
purpose of the experiment is to identify factors that have
the most effect on eddy current measurements.

In the "Effect" column, we list the main effects and
interactions from our factorial experiment in standard
order. In the "Response" column, we list the measurement
results from our experiment in Yates order.

Effect    Response  Col 1    Col 2    Col 3  
Estimate
------    --------  -----    -----    -----  --
------
Mean       1.70      6.27    10.21    21.27   
2.65875
X1         4.57      3.94    11.06    12.41   
1.55125
X2         0.55      6.10     5.71    -3.47  -
0.43375
X1*X2      3.39      4.96     6.70     0.51   
0.06375
X3         1.51      2.87    -2.33     0.85   
0.10625
X1*X3      4.59      2.84    -1.14     0.99   
0.12375
X2*X3      0.67      3.08    -0.03     1.19   
0.14875
X1*X2*X3   4.29      3.62     0.54     0.57   
0.07125

Sum of responses:           21.27                       

Sum-of-squared responses:   77.7707
Sum-of-squared Col 3:      622.1656

The first four values in Col 1 are obtained by adding
adjacent pairs of responses, for example 4.57 + 1.70 =
6.27, and 3.39 + 0.55 = 3.94. The second four values in
Col 1 are obtained by subtracting the same adjacent pairs
of responses, for example, 4.57 - 1.70 = 2.87, and 3.39 -
0.55 = 2.84. The values in Col 2 are calculated in the same
way, except that we are adding and subtracting adjacent
values from Col 1. Col 3 is computed using adjacent
values from Col 2. Finally, we obtain the "Estimate"
column by dividing the values in Col 3 by the total number
of responses, 8.

We can check our calculations by making sure that the
first value in Col 3 (21.27) is the sum of all the responses.
In addition, the sum-of-squared responses (77.7707)
should equal the sum-of-squared Col 3 values divided by 8
(622.1656/8 = 77.7707).

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3343.htm
http://www.itl.nist.gov/div898/handbook/pri/section6/pri611.htm
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Practical
Considerations

The Yates algorithm provides a convenient method for
computing effect estimates; however, the same
information is easily obtained from statistical software
using either an analysis of variance or regression
procedure. The methods for analyzing data from a
designed experiment are discussed more fully in the
chapter on Process Improvement.

Graphical
Presentation

The following plots may be useful to complement the
quantitative information from the Yates algorithm.

1. Ordered data plot
2. Ordered absolute effects plot
3. Cumulative residual standard deviation plot

Questions The Yates algorithm can be used to answer the following
question.

1. What is the estimated effect of a factor on the
response?

Related
Techniques

Multi-factor analysis of variance
DOE mean plot
Block plot
DOE contour plot

Case Study The analysis of a full factorial design is demonstrated in
the eddy current case study.

Software All statistical software packages are capable of estimating
effects using an analysis of variance or least squares
regression procedure.

http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
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1.3.5.18.1. Defining Models and Prediction
Equations

For
Orthogonal
Designs,
Parameter
Estimates
Don't
Change as
Additional
Terms Are
Added

In most cases of least-squares fitting, the model coefficients
for previously added terms change depending on what was
successively added. For example, the X1 coefficient might
change depending on whether or not an X2 term was included
in the model. This is not the case when the design is
orthogonal, as is a 23 full factorial design. For orthogonal
designs, the estimates for the previously included terms do not
change as additional terms are added. This means the ranked
list of parameter estimates are the least-squares coefficient
estimates for progressively more complicated models.

Example
Prediction
Equation

We use the parameter estimates derived from a least-squares
analysis for the eddy current data set to create an example
prediction equation.

     Parameter    Estimate
     ---------    --------
     Mean          2.65875    
     X1            1.55125 
     X2           -0.43375
     X1*X2         0.06375  
     X3            0.10625    
     X1*X3         0.12375   
     X2*X3         0.14875
     X1*X2*X3      0.07125 

A prediction equation predicts a value of the reponse variable
for given values of the factors. The equation we select can
include all the factors shown above, or it can include a subset
of the factors. For example, one possible prediction equation
using only two factors, X1 and X2, is:

The least-squares parameter estimates in the prediction
equation reflect the change in response for a one-unit change
in the factor value. To obtain "full" effect estimates (as
computed using the Yates algorithm) for the change in factor
levels from -1 to +1, the effect estimates (except for the
intercept) would be multiplied by two.

Remember that the Yates algorithm is just a convenient

http://www.itl.nist.gov/div898/handbook/index.htm
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method for computing effects, any statistical software package
with least-squares regression capabilities will produce the
same effects as well as many other useful analyses.

Model
Selection

We want to select the most appropriate model for our data
while balancing the following two goals.

1. We want the model to include all important factors.
2. We want the model to be parsimonious. That is, the

model should be as simple as possible.

Note that the residual standard deviation alone is insufficient
for determining the most appropriate model as it will always
be decreased by adding additional factors. The next section
describes a number of approaches for determining which
factors (and interactions) to include in the model.
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1.3.5.18.2. Important Factors

Identify
Important
Factors

We want to select the most appropriate model to represent our data. This requires balancing
the following two goals.

1. We want the model to include all important factors.
2. We want the model to be parsimonious. That is, the model should be as simple as

possible.

In short, we want our model to include all the important factors and interactions and to omit
the unimportant factors and interactions.

Seven criteria are utilized to define important factors. These seven criteria are not all equally
important, nor will they yield identical subsets, in which case a consensus subset or a
weighted consensus subset must be extracted. In practice, some of these criteria may not apply
in all situations.

These criteria will be examined in the context of the eddy current data set. The parameter
estimates computed using least-squares analysis are shown below.

     Parameter    Estimate
     ---------    --------
     Mean          2.65875
     X1            1.55125
     X2           -0.43375
     X1*X2         0.06375
     X3            0.10625
     X1*X3         0.12375
     X2*X3         0.14875
     X1*X2*X3      0.07125

In practice, not all of these criteria will be used with every analysis (and some analysts may
have additional criteria). These critierion are given as useful guidelines. Most analysts will
focus on those criteria that they find most useful.

Criteria for
Including
Terms in
the Model

The seven criteria that we can use in determining whether to keep a factor in the model can be
summarized as follows.

1. Parameters: Engineering Significance
2. Parameters: Order of Magnitude
3. Parameters: Statistical Significance
4. Parameters: Probability Plots
5. Effects: Youden Plot
6. Residual Standard Deviation: Engineering Significance
7. Residual Standard Deviation: Statistical Significance

The first four criteria focus on parameter estimates with three numeric criteria and one
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graphical criteria. The fifth criteria focuses on effects, which are twice the parameter
estimates. The last two criteria focus on the residual standard deviation of the model. We
discuss each of these seven criteria in detail in the sections that following.

Parameters:
Engineering
Significance

The minimum engineering significant difference is defined as

where  is the absolute value of the parameter estimate and  is the minimum engineering
significant difference.

That is, declare a factor as "important" if the parameter estimate is greater than some a priori
declared engineering difference. This implies that the engineering staff have in fact stated
what a minimum difference will be. Oftentimes this is not the case. In the absence of an a
priori difference, a good rough rule for the minimum engineering significant  is to keep only
those factors whose parameter estimate is greater than, say, 10% of the current production
average. In this case, let's say that the average detector has a sensitivity of 2.5 ohms. This
would suggest that we would declare all factors whose parameter is greater than 10 % of 2.5
ohms = 0.25 ohm to be significant (from an engineering point of view).

Based on this minimum engineering significant difference criterion, we conclude that we
should keep two terms: X1 and X2.

Parameters:
Order of
Magnitude

The order of magnitude criterion is defined as

That is, exclude any factor that is less than 10 % of the maximum parameter size. We may or
may not keep the other factors. This criterion is neither engineering nor statistical, but it does
offer some additional numerical insight. For the current example, the largest parameter is from
X1 (1.55125 ohms), and so 10 % of that is 0.155 ohms, which suggests keeping all factors
whose parameters exceed 0.155 ohms.

Based on the order-of-magnitude criterion, we thus conclude that we should keep two terms:
X1 and X2. A third term, X2*X3 (0.14875), is just slightly under the cutoff level, so we may
consider keeping it based on the other criterion.

Parameters:
Statistical
Significance

Statistical significance is defined as

That is, declare a factor as important if its parameter is more than 2 standard deviations away
from 0 (0, by definition, meaning "no effect").

The "2" comes from normal theory (more specifically, a value of 1.96 yields a 95 %
confidence interval). More precise values would come from t-distribution theory.

The difficulty with this is that in order to invoke this criterion we need the standard deviation, 
, of an observation. This is problematic because

1. the engineer may not know ;
2. the experiment might not have replication, and so a model-free estimate of  is not

obtainable;
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3. obtaining an estimate of  by assuming the sometimes- employed assumption of
ignoring 3-term interactions and higher may be incorrect from an engineering point of
view.

For the eddy current example:

1. the engineer did not know ;
2. the design (a 23 full factorial) did not have replication;
3. ignoring 3-term interactions and higher interactions leads to an estimate of  based on

omitting only a single term: the X1*X2*X3 interaction.

For the eddy current example, if one assumes that the 3-term interaction is nil and hence
represents a single drawing from a population centered at zero, then an estimate of the
standard deviation of a parameter is simply the estimate of the 3-factor interaction (0.07125).
Two standard deviations is thus 0.1425. For this example, the rule is thus to keep all  >
0.1425.

This results in keeping three terms: X1 (1.55125), X2 (-0.43375), and X1*X2 (0.14875).

Parameters:
Probability
Plots

Probability plots can be used in the following manner.

1. Normal Probability Plot: Keep a factor as "important" if it is well off the line through
zero on a normal probability plot of the parameter estimates.

2. Half-Normal Probability Plot: Keep a factor as "important" if it is well off the line near
zero on a half-normal probability plot of the absolute value of parameter estimates.

Both of these methods are based on the fact that the least-squares estimates of parameters for
these two-level orthogonal designs are simply half the difference of averages and so the
central limit theorem, loosely applied, suggests that (if no factor were important) the
parameter estimates should have approximately a normal distribution with mean zero and the
absolute value of the estimates should have a half-normal distribution.

Since the half-normal probability plot is only concerned with parmeter magnitudes as opposed
to signed parameters (which are subject to the vagaries of how the initial factor codings +1
and -1 were assigned), the half-normal probability plot is preferred by some over the normal
probability plot.

Normal
Probablity
Plot of
Parameters

The following normal probability plot shows the parameter estimates for the eddy current
data.

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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For the example at hand, the probability plot clearly shows two factors (X1 and X2) displaced
off the line. All of the remaining five parameters are behaving like random drawings from a
normal distribution centered at zero, and so are deemed to be statistically non-significant. In
conclusion, this rule keeps two factors: X1 (1.55125) and X2 (-0.43375).

Averages:
Youden Plot

A Youden plot can be used in the following way. Keep a factor as "important" if it is
displaced away from the central-tendancy "bunch" in a Youden plot of high and low averages.
By definition, a factor is important when its average response for the low (-1) setting is
significantly different from its average response for the high (+1) setting. (Note that effects are
twice the parameter estimates.) Conversely, if the low and high averages are about the same,
then what difference does it make which setting to use and so why would such a factor be
considered important? This fact in combination with the intrinsic benefits of the Youden plot
for comparing pairs of items leads to the technique of generating a Youden plot of the low
and high averages.

Youden Plot
of Effect
Estimates

The following is the Youden plot of the effect estimatess for the eddy current data.

http://www.itl.nist.gov/div898/handbook/eda/section3/youdplot.htm
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For the example at hand, the Youden plot clearly shows a cluster of points near the grand
average (2.65875) with two displaced points above (factor 1) and below (factor 2). Based on
the Youden plot, we conclude to keep two factors: X1 (1.55125) and X2 (-0.43375).

Residual
Standard
Deviation:
Engineering
Significance

This criterion is defined as

Residual Standard Deviation > Cutoff

That is, declare a factor as "important" if the cumulative model that includes the factor (and
all larger factors) has a residual standard deviation smaller than an a priori engineering-
specified minimum residual standard deviation.

This criterion is different from the others in that it is model focused. In practice, this criterion
states that starting with the largest parameter, we cumulatively keep adding terms to the model
and monitor how the residual standard deviation for each progressively more complicated
model becomes smaller. At some point, the cumulative model will become complicated
enough and comprehensive enough that the resulting residual standard deviation will drop
below the pre-specified engineering cutoff for the residual standard deviation. At that point,
we stop adding terms and declare all of the model-included terms to be "important" and
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everything not in the model to be "unimportant".

This approach implies that the engineer has considered what a minimum residual standard
deviation should be. In effect, this relates to what the engineer can tolerate for the magnitude
of the typical residual (the difference between the raw data and the predicted value from the
model). In other words, how good does the engineer want the prediction equation to be.
Unfortunately, this engineering specification has not always been formulated and so this
criterion can become moot.

In the absence of a prior specified cutoff, a good rough rule for the minimum engineering
residual standard deviation is to keep adding terms until the residual standard deviation just
dips below, say, 5 % of the current production average. For the eddy current data, let's say
that the average detector has a sensitivity of 2.5 ohms. Then this would suggest that we would
keep adding terms to the model until the residual standard deviation falls below 5 % of 2.5
ohms = 0.125 ohms.

                                                            Residual 
Model                                                      Std. Dev.
-----------------------------------------------------      ---------
Mean + X1                                                    0.57272
Mean + X1 + X2                                               0.30429
Mean + X1 + X2 + X2*X3                                       0.26737
Mean + X1 + X2 + X2*X3 + X1*X3                               0.23341
Mean + X1 + X2 + X2*X3 + X1*X3 + X3                          0.19121
Mean + X1 + X2 + X2*X3 + X1*X3 + X3 + X1*X2*X3               0.18031
Mean + X1 + X2 + X2*X3 + X1*X3 + X3 + X1*X2*X3 + X1*X2            NA

Based on the minimum residual standard deviation criteria, and we would include all terms in
order to drive the residual standard deviation below 0.125. Again, the 5 % rule is a rough-
and-ready rule that has no basis in engineering or statistics, but is simply a "numerics".
Ideally, the engineer has a better cutoff for the residual standard deviation that is based on
how well he/she wants the equation to peform in practice. If such a number were available,
then for this criterion and data set we would select something less than the entire collection of
terms.

Residual
Standard
Deviation:
Statistical
Significance

This criterion is defined as

Residual Standard Deviation > 

where  is the standard deviation of an observation under replicated conditions.

That is, declare a term as "important" until the cumulative model that includes the term has a
residual standard deviation smaller than . In essence, we are allowing that we cannot demand
a model fit any better than what we would obtain if we had replicated data; that is, we cannot
demand that the residual standard deviation from any fitted model be any smaller than the
(theoretical or actual) replication standard deviation. We can drive the fitted standard
deviation down (by adding terms) until it achieves a value close to , but to attempt to drive it
down further means that we are, in effect, trying to fit noise.

In practice, this criterion may be difficult to apply because

1. the engineer may not know ;
2. the experiment might not have replication, and so a model-free estimate of  is not

obtainable.

For the current case study:

1. the engineer did not know ;
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2. the design (a 23 full factorial) did not have replication. The most common way of
having replication in such designs is to have replicated center points at the center of the
cube ((X1,X2,X3) = (0,0,0)).

Thus for this current case, this criteria could not be used to yield a subset of "important"
factors.

Conclusions In summary, the seven criteria for specifying "important" factors yielded the following for the
eddy current data:

1. Parameters, Engineering Significance: X1, X2

2. Parameters, Numerically Significant: X1, X2

3. Parameters, Statistically Significant: X1, X2, X2*X3

4. Parameters, Probability Plots: X1, X2

5. Effects, Youden Plot: X1, X2

6. Residual SD, Engineering Significance: all 7 terms

7. Residual SD, Statistical Significance: not applicable

Such conflicting results are common. Arguably, the three most important criteria (listed in
order of most important) are:

4. Parameters, Probability Plots: X1, X2

1. Parameters, Engineering Significance: X1, X2

3. Residual SD, Engineering Significance: all 7 terms

Scanning all of the above, we thus declare the following consensus for the eddy current data:

1. Important Factors: X1 and X2
2. Parsimonious Prediction Equation:

(with a residual standard deviation of 0.30429 ohms)

Note that this is the initial model selection. We still need to perform model validation with a
residual analysis.
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Probability
Distributions

Probability distributions are a fundamental concept in
statistics. They are used both on a theoretical level and a
practical level.

Some practical uses of probability distributions are:

To calculate confidence intervals for parameters and
to calculate critical regions for hypothesis tests.
For univariate data, it is often useful to determine a
reasonable distributional model for the data.
Statistical intervals and hypothesis tests are often
based on specific distributional assumptions. Before
computing an interval or test based on a distributional
assumption, we need to verify that the assumption is
justified for the given data set. In this case, the
distribution does not need to be the best-fitting
distribution for the data, but an adequate enough
model so that the statistical technique yields valid
conclusions.
Simulation studies with random numbers generated
from using a specific probability distribution are often
needed.

Table of
Contents

1. What is a probability distribution?
2. Related probability functions
3. Families of distributions
4. Location and scale parameters
5. Estimating the parameters of a distribution
6. A gallery of common distributions
7. Tables for probability distributions
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1.3.6.1. What is a Probability Distribution

Discrete
Distributions

The mathematical definition of a discrete probability
function, p(x), is a function that satisfies the following
properties.

1. The probability that x can take a specific value is p(x).
That is

2. p(x) is non-negative for all real x.

3. The sum of p(x) over all possible values of x is 1, that
is

where j represents all possible values that x can have
and pj is the probability at xj.

One consequence of properties 2 and 3 is that 0 <=
p(x) <= 1.

What does this actually mean? A discrete probability
function is a function that can take a discrete number of
values (not necessarily finite). This is most often the non-
negative integers or some subset of the non-negative
integers. There is no mathematical restriction that discrete
probability functions only be defined at integers, but in
practice this is usually what makes sense. For example, if
you toss a coin 6 times, you can get 2 heads or 3 heads but
not 2 1/2 heads. Each of the discrete values has a certain
probability of occurrence that is between zero and one. That
is, a discrete function that allows negative values or values
greater than one is not a probability function. The condition
that the probabilities sum to one means that at least one of
the values has to occur.

Continuous
Distributions

The mathematical definition of a continuous probability
function, f(x), is a function that satisfies the following
properties.

http://www.itl.nist.gov/div898/handbook/index.htm
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1. The probability that x is between two points a and b is

2. It is non-negative for all real x.

3. The integral of the probability function is one, that is

What does this actually mean? Since continuous probability
functions are defined for an infinite number of points over a
continuous interval, the probability at a single point is
always zero. Probabilities are measured over intervals, not
single points. That is, the area under the curve between two
distinct points defines the probability for that interval. This
means that the height of the probability function can in fact
be greater than one. The property that the integral must
equal one is equivalent to the property for discrete
distributions that the sum of all the probabilities must equal
one.

Probability
Mass
Functions
Versus
Probability
Density
Functions

Discrete probability functions are referred to as probability
mass functions and continuous probability functions are
referred to as probability density functions. The term
probability functions covers both discrete and continuous
distributions. When we are referring to probability functions
in generic terms, we may use the term probability density
functions to mean both discrete and continuous probability
functions.
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1.3.6.2. Related Distributions

Probability distributions are typically defined in terms of the
probability density function. However, there are a number of
probability functions used in applications.

Probability
Density
Function

For a continuous function, the probability density function
(pdf) is the probability that the variate has the value x. Since
for continuous distributions the probability at a single point is
zero, this is often expressed in terms of an integral between
two points.

For a discrete distribution, the pdf is the probability that the
variate takes the value x.

The following is the plot of the normal probability density
function.

Cumulative
Distribution
Function

The cumulative distribution function (cdf) is the probability
that the variable takes a value less than or equal to x. That is

http://www.itl.nist.gov/div898/handbook/index.htm
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For a continuous distribution, this can be expressed
mathematically as

For a discrete distribution, the cdf can be expressed as

The following is the plot of the normal cumulative
distribution function.

The horizontal axis is the allowable domain for the given
probability function. Since the vertical axis is a probability, it
must fall between zero and one. It increases from zero to one
as we go from left to right on the horizontal axis.

Percent
Point
Function

The percent point function (ppf) is the inverse of the
cumulative distribution function. For this reason, the percent
point function is also commonly referred to as the inverse
distribution function. That is, for a distribution function we
calculate the probability that the variable is less than or equal
to x for a given x. For the percent point function, we start
with the probability and compute the corresponding x for the
cumulative distribution. Mathematically, this can be
expressed as

or alternatively

The following is the plot of the normal percent point
function.
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Since the horizontal axis is a probability, it goes from zero to
one. The vertical axis goes from the smallest to the largest
value of the cumulative distribution function.

Hazard
Function

The hazard function is the ratio of the probability density
function to the survival function, S(x).

The following is the plot of the normal distribution hazard
function.

Hazard plots are most commonly used in reliability
applications. Note that Johnson, Kotz, and Balakrishnan refer
to this as the conditional failure density function rather than
the hazard function.

Cumulative
Hazard

The cumulative hazard function is the integral of the hazard
function.
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Function

This can alternatively be expressed as

The following is the plot of the normal cumulative hazard
function.

Cumulative hazard plots are most commonly used in
reliability applications. Note that Johnson, Kotz, and
Balakrishnan refer to this as the hazard function rather than
the cumulative hazard function.

Survival
Function

Survival functions are most often used in reliability and
related fields. The survival function is the probability that the
variate takes a value greater than x.

The following is the plot of the normal distribution survival
function.
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For a survival function, the y value on the graph starts at 1
and monotonically decreases to zero. The survival function
should be compared to the cumulative distribution function.

Inverse
Survival
Function

Just as the percent point function is the inverse of the
cumulative distribution function, the survival function also
has an inverse function. The inverse survival function can be
defined in terms of the percent point function.

The following is the plot of the normal distribution inverse
survival function.

As with the percent point function, the horizontal axis is a
probability. Therefore the horizontal axis goes from 0 to 1
regardless of the particular distribution. The appearance is
similar to the percent point function. However, instead of
going from the smallest to the largest value on the vertical
axis, it goes from the largest to the smallest value.



1.3.6.2. Related Distributions

http://www.itl.nist.gov/div898/handbook/eda/section3/eda362.htm[6/27/2012 2:02:15 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.3.6.3. Families of Distributions

http://www.itl.nist.gov/div898/handbook/eda/section3/eda363.htm[6/27/2012 2:02:17 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.6. Probability Distributions 

1.3.6.3. Families of Distributions

Shape
Parameters

Many probability distributions are not a single distribution,
but are in fact a family of distributions. This is due to the
distribution having one or more shape parameters.

Shape parameters allow a distribution to take on a variety of
shapes, depending on the value of the shape parameter. These
distributions are particularly useful in modeling applications
since they are flexible enough to model a variety of data sets.

Example:
Weibull
Distribution

The Weibull distribution is an example of a distribution that
has a shape parameter. The following graph plots the Weibull
pdf with the following values for the shape parameter: 0.5,
1.0, 2.0, and 5.0.

The shapes above include an exponential distribution, a right-
skewed distribution, and a relatively symmetric distribution.

The Weibull distribution has a relatively simple distributional
form. However, the shape parameter allows the Weibull to
assume a wide variety of shapes. This combination of
simplicity and flexibility in the shape of the Weibull
distribution has made it an effective distributional model in
reliability applications. This ability to model a wide variety
of distributional shapes using a relatively simple
distributional form is possible with many other distributional
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families as well.

PPCC Plots The PPCC plot is an effective graphical tool for selecting the
member of a distributional family with a single shape
parameter that best fits a given set of data.
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1.3.6.4. Location and Scale Parameters

Normal
PDF

A probability distribution is characterized by location and
scale parameters. Location and scale parameters are typically
used in modeling applications.

For example, the following graph is the probability density
function for the standard normal distribution, which has the
location parameter equal to zero and scale parameter equal to
one.

Location
Parameter

The next plot shows the probability density function for a
normal distribution with a location parameter of 10 and a
scale parameter of 1.
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The effect of the location parameter is to translate the graph,
relative to the standard normal distribution, 10 units to the
right on the horizontal axis. A location parameter of -10
would have shifted the graph 10 units to the left on the
horizontal axis.

That is, a location parameter simply shifts the graph left or
right on the horizontal axis.

Scale
Parameter

The next plot has a scale parameter of 3 (and a location
parameter of zero). The effect of the scale parameter is to
stretch out the graph. The maximum y value is approximately
0.13 as opposed 0.4 in the previous graphs. The y value, i.e.,
the vertical axis value, approaches zero at about (+/-) 9 as
opposed to (+/-) 3 with the first graph.

In contrast, the next graph has a scale parameter of 1/3
(=0.333). The effect of this scale parameter is to squeeze the
pdf. That is, the maximum y value is approximately 1.2 as
opposed to 0.4 and the y value is near zero at (+/-) 1 as
opposed to (+/-) 3.
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The effect of a scale parameter greater than one is to stretch
the pdf. The greater the magnitude, the greater the stretching.
The effect of a scale parameter less than one is to compress
the pdf. The compressing approaches a spike as the scale
parameter goes to zero. A scale parameter of 1 leaves the pdf
unchanged (if the scale parameter is 1 to begin with) and
non-positive scale parameters are not allowed.

Location
and Scale
Together

The following graph shows the effect of both a location and
a scale parameter. The plot has been shifted right 10 units
and stretched by a factor of 3.

Standard
Form

The standard form of any distribution is the form that has
location parameter zero and scale parameter one.

It is common in statistical software packages to only
compute the standard form of the distribution. There are
formulas for converting from the standard form to the form
with other location and scale parameters. These formulas are
independent of the particular probability distribution.
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Formulas
for Location
and Scale
Based on
the
Standard
Form

The following are the formulas for computing various
probability functions based on the standard form of the
distribution. The parameter a refers to the location parameter
and the parameter b refers to the scale parameter. Shape
parameters are not included.
Cumulative Distribution
Function

F(x;a,b) = F((x-a)/b;0,1)

Probability Density Function f(x;a,b) = (1/b)f((x-a)/b;0,1)
Percent Point Function G( ;a,b) = a + bG( ;0,1)
Hazard Function h(x;a,b) = (1/b)h((x-a)/b;0,1)
Cumulative Hazard Function H(x;a,b) = H((x-a)/b;0,1)
Survival Function S(x;a,b) = S((x-a)/b;0,1)
Inverse Survival Function Z( ;a,b) = a + bZ( ;0,1)
Random Numbers Y(a,b) = a + bY(0,1)

Relationship
to Mean
and
Standard
Deviation

For the normal distribution, the location and scale parameters
correspond to the mean and standard deviation, respectively.
However, this is not necessarily true for other distributions.
In fact, it is not true for most distributions.
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1.3.6.5. Estimating the Parameters of a
Distribution

Model a
univariate
data set
with a
probability
distribution

One common application of probability distributions is
modeling univariate data with a specific probability
distribution. This involves the following two steps:

1. Determination of the "best-fitting" distribution.
2. Estimation of the parameters (shape, location, and scale

parameters) for that distribution.

Various
Methods

There are various methods, both numerical and graphical, for
estimating the parameters of a probability distribution.

1. Method of moments
2. Maximum likelihood
3. Least squares
4. PPCC and probability plots
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1.3.6.5.1. Method of Moments

Method of
Moments

The method of moments equates sample moments to parameter
estimates. When moment methods are available, they have the
advantage of simplicity. The disadvantage is that they are often
not available and they do not have the desirable optimality
properties of maximum likelihood and least squares estimators.

The primary use of moment estimates is as starting values for
the more precise maximum likelihood and least squares
estimates.

Software Most general purpose statistical software does not include
explicit method of moments parameter estimation commands.
However, when utilized, the method of moment formulas tend
to be straightforward and can be easily implemented in most
statistical software programs.
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1.3.6.5.2. Maximum Likelihood

Maximum
Likelihood

Maximum likelihood estimation begins with the
mathematical expression known as a likelihood function of
the sample data. Loosely speaking, the likelihood of a set
of data is the probability of obtaining that particular set of
data given the chosen probability model. This expression
contains the unknown parameters. Those values of the
parameter that maximize the sample likelihood are known
as the maximum likelihood estimates.

The reliability chapter contains some examples of the
likelihood functions for a few of the commonly used
distributions in reliability analysis.

Advantages The advantages of this method are:

Maximum likelihood provides a consistent approach
to parameter estimation problems. This means that
maximum likelihood estimates can be developed for
a large variety of estimation situations. For example,
they can be applied in reliability analysis to
censored data under various censoring models.

Maximum likelihood methods have desirable
mathematical and optimality properties. Specifically,

1. They become minimum variance unbiased
estimators as the sample size increases. By
unbiased, we mean that if we take (a very
large number of) random samples with
replacement from a population, the average
value of the parameter estimates will be
theoretically exactly equal to the population
value. By minimum variance, we mean that
the estimator has the smallest variance, and
thus the narrowest confidence interval, of all
estimators of that type.

2. They have approximate normal distributions
and approximate sample variances that can be
used to generate confidence bounds and
hypothesis tests for the parameters.

Several popular statistical software packages provide

http://www.itl.nist.gov/div898/handbook/index.htm
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excellent algorithms for maximum likelihood
estimates for many of the commonly used
distributions. This helps mitigate the computational
complexity of maximum likelihood estimation.

Disadvantages The disadvantages of this method are:

The likelihood equations need to be specifically
worked out for a given distribution and estimation
problem. The mathematics is often non-trivial,
particularly if confidence intervals for the
parameters are desired.

The numerical estimation is usually non-trivial.
Except for a few cases where the maximum
likelihood formulas are in fact simple, it is generally
best to rely on high quality statistical software to
obtain maximum likelihood estimates. Fortunately,
high quality maximum likelihood software is
becoming increasingly common.

Maximum likelihood estimates can be heavily biased
for small samples. The optimality properties may not
apply for small samples.

Maximum likelihood can be sensitive to the choice
of starting values.

Software Most general purpose statistical software programs support
maximum likelihood estimation (MLE) in some form.
MLE estimation can be supported in two ways.

1. A software program may provide a generic function
minimization (or equivalently, maximization)
capability. This is also referred to as function
optimization. Maximum likelihood estimation is
essentially a function optimization problem.

This type of capability is particularly common in
mathematical software programs.

2. A software program may provide MLE
computations for a specific problem. For example, it
may generate ML estimates for the parameters of a
Weibull distribution.

Statistical software programs will often provide ML
estimates for many specific problems even when
they do not support general function optimization.

The advantage of function minimization software is that it
can be applied to many different MLE problems. The
drawback is that you have to specify the maximum
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likelihood equations to the software. As the functions can
be non-trivial, there is potential for error in entering the
equations.

The advantage of the specific MLE procedures is that
greater efficiency and better numerical stability can often
be obtained by taking advantage of the properties of the
specific estimation problem. The specific methods often
return explicit confidence intervals. In addition, you do not
have to know or specify the likelihood equations to the
software. The disadvantage is that each MLE problem
must be specifically coded.
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1.3.6.5.3. Least Squares

Least Squares Non-linear least squares provides an alternative to
maximum likelihood.

Advantages The advantages of this method are:

Non-linear least squares software may be available
in many statistical software packages that do not
support maximum likelihood estimates.

It can be applied more generally than maximum
likelihood. That is, if your software provides non-
linear fitting and it has the ability to specify the
probability function you are interested in, then you
can generate least squares estimates for that
distribution. This will allow you to obtain reasonable
estimates for distributions even if the software does
not provide maximum likelihood estimates.

Disadvantages The disadvantages of this method are:

It is not readily applicable to censored data.

It is generally considered to have less desirable
optimality properties than maximum likelihood.

It can be quite sensitive to the choice of starting
values.

Software Non-linear least squares fitting is available in many
general purpose statistical software programs.
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1.3.6.5.4. PPCC and Probability Plots

PPCC and
Probability
Plots

The PPCC plot can be used to estimate the shape
parameter of a distribution with a single shape parameter.
After finding the best value of the shape parameter, the
probability plot can be used to estimate the location and
scale parameters of a probability distribution.

Advantages The advantages of this method are:

It is based on two well-understood concepts.
1. The linearity (i.e., straightness) of the

probability plot is a good measure of the
adequacy of the distributional fit.

2. The correlation coefficient between the points
on the probability plot is a good measure of
the linearity of the probability plot.

It is an easy technique to implement for a wide
variety of distributions with a single shape
parameter. The basic requirement is to be able to
compute the percent point function, which is needed
in the computation of both the probability plot and
the PPCC plot.

The PPCC plot provides insight into the sensitivity
of the shape parameter. That is, if the PPCC plot is
relatively flat in the neighborhood of the optimal
value of the shape parameter, this is a strong
indication that the fitted model will not be sensitive
to small deviations, or even large deviations in some
cases, in the value of the shape parameter.

The maximum correlation value provides a method
for comparing across distributions as well as
identifying the best value of the shape parameter for
a given distribution. For example, we could use the
PPCC and probability fits for the Weibull,
lognormal, and possibly several other distributions.
Comparing the maximum correlation coefficient
achieved for each distribution can help in selecting
which is the best distribution to use.

http://www.itl.nist.gov/div898/handbook/index.htm
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Disadvantages The disadvantages of this method are:

It is limited to distributions with a single shape
parameter.

PPCC plots are not widely available in statistical
software packages other than Dataplot (Dataplot
provides PPCC plots for 40+ distributions).
Probability plots are generally available. However,
many statistical software packages only provide
them for a limited number of distributions.

Significance levels for the correlation coefficient
(i.e., if the maximum correlation value is above a
given value, then the distribution provides an
adequate fit for the data with a given confidence
level) have only been worked out for a limited
number of distributions.

Other
Graphical
Methods

For reliability applications, the hazard plot and the Weibull
plot are alternative graphical methods that are commonly
used to estimate parameters.
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1.3.6.6. Gallery of Distributions

Gallery of
Common
Distributions

Detailed information on a few of the most common
distributions is available below. There are a large number of
distributions used in statistical applications. It is beyond the
scope of this Handbook to discuss more than a few of these.
Two excellent sources for additional detailed information on
a large array of distributions are Johnson, Kotz, and
Balakrishnan and Evans, Hastings, and Peacock. Equations
for the probability functions are given for the standard form
of the distribution. Formulas exist for defining the functions
with location and scale parameters in terms of the standard
form of the distribution.

The sections on parameter estimation are restricted to the
method of moments and maximum likelihood. This is
because the least squares and PPCC and probability plot
estimation procedures are generic. The maximum likelihood
equations are not listed if they involve solving simultaneous
equations. This is because these methods require
sophisticated computer software to solve. Except where the
maximum likelihood estimates are trivial, you should depend
on a statistical software program to compute them.
References are given for those who are interested.

Be aware that different sources may give formulas that are
different from those shown here. In some cases, these are
simply mathematically equivalent formulations. In other
cases, a different parameterization may be used.

Continuous
Distributions

Normal
Distribution

Uniform
Distribution

Cauchy
Distribution

http://www.itl.nist.gov/div898/handbook/index.htm
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t Distribution F Distribution Chi-Square
Distribution

Exponential
Distribution

Weibull
Distribution

Lognormal
Distribution

Birnbaum-
Saunders

(Fatigue Life)
Distribution

Gamma
Distribution

Double
Exponential
Distribution

Power Normal
Distribution

Power
Lognormal
Distribution

Tukey-Lambda
Distribution

Extreme Value
Type I

Distribution

Beta Distribution

Discrete
Distributions

Binomial
Distribution

Poisson
Distribution
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1.3.6.6.1. Normal Distribution

Probability
Density
Function

The general formula for the probability density function of
the normal distribution is

where  is the location parameter and  is the scale
parameter. The case where  = 0 and  = 1 is called the
standard normal distribution. The equation for the standard
normal distribution is

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the
function.

The following is the plot of the standard normal probability
density function.

Cumulative The formula for the cumulative distribution function of the

http://www.itl.nist.gov/div898/handbook/index.htm
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Distribution
Function

normal distribution does not exist in a simple closed formula.
It is computed numerically.

The following is the plot of the normal cumulative
distribution function.

Percent
Point
Function

The formula for the percent point function of the normal
distribution does not exist in a simple closed formula. It is
computed numerically.

The following is the plot of the normal percent point
function.

Hazard
Function

The formula for the hazard function of the normal
distribution is

where  is the cumulative distribution function of the
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standard normal distribution and  is the probability density
function of the standard normal distribution.

The following is the plot of the normal hazard function.

Cumulative
Hazard
Function

The normal cumulative hazard function can be computed
from the normal cumulative distribution function.

The following is the plot of the normal cumulative hazard
function.

Survival
Function

The normal survival function can be computed from the
normal cumulative distribution function.

The following is the plot of the normal survival function.
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Inverse
Survival
Function

The normal inverse survival function can be computed from
the normal percent point function.

The following is the plot of the normal inverse survival
function.

Common
Statistics

Mean The location parameter .
Median The location parameter .
Mode The location parameter .
Range Infinity in both directions.
Standard
Deviation

The scale parameter .

Coefficient of
Variation
Skewness 0
Kurtosis 3

Parameter The location and scale parameters of the normal distribution
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Estimation can be estimated with the sample mean and sample standard
deviation, respectively.

Comments For both theoretical and practical reasons, the normal
distribution is probably the most important distribution in
statistics. For example,

Many classical statistical tests are based on the
assumption that the data follow a normal distribution.
This assumption should be tested before applying these
tests.

In modeling applications, such as linear and non-linear
regression, the error term is often assumed to follow a
normal distribution with fixed location and scale.

The normal distribution is used to find significance
levels in many hypothesis tests and confidence
intervals.

Theroretical
Justification
- Central
Limit
Theorem

The normal distribution is widely used. Part of the appeal is
that it is well behaved and mathematically tractable.
However, the central limit theorem provides a theoretical
basis for why it has wide applicability.

The central limit theorem basically states that as the sample
size (N) becomes large, the following occur:

1. The sampling distribution of the mean becomes
approximately normal regardless of the distribution of
the original variable.

2. The sampling distribution of the mean is centered at
the population mean, , of the original variable. In
addition, the standard deviation of the sampling
distribution of the mean approaches .

Software Most general purpose statistical software programs support at
least some of the probability functions for the normal
distribution.
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1.3.6.6.2. Uniform Distribution

Probability
Density
Function

The general formula for the probability density function of the uniform
distribution is

where A is the location parameter and (B - A) is the scale parameter. The
case where A = 0 and B = 1 is called the standard uniform distribution.
The equation for the standard uniform distribution is

Since the general form of probability functions can be expressed in terms of
the standard distribution, all subsequent formulas in this section are given
for the standard form of the function.

The following is the plot of the uniform probability density function.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the uniform
distribution is

The following is the plot of the uniform cumulative distribution function.
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Percent
Point
Function

The formula for the percent point function of the uniform distribution is

The following is the plot of the uniform percent point function.

Hazard
Function

The formula for the hazard function of the uniform distribution is

The following is the plot of the uniform hazard function.
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the uniform distribution
is

The following is the plot of the uniform cumulative hazard function.

Survival
Function

The uniform survival function can be computed from the uniform
cumulative distribution function.

The following is the plot of the uniform survival function.
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Inverse
Survival
Function

The uniform inverse survival function can be computed from the uniform
percent point function.

The following is the plot of the uniform inverse survival function.

Common
Statistics

Mean (A + B)/2
Median (A + B)/2
Range B - A
Standard Deviation

Coefficient of
Variation

Skewness 0
Kurtosis 9/5

Parameter
Estimation

The method of moments estimators for A and B are
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The maximum likelihood estimators are usually given in terms of the
parameters a and h where

A = a - h 
B = a + h

The maximum likelihood estimators for a and h are

 

This gives the following maximum likelihood estimators for A and B

Comments The uniform distribution defines equal probability over a given range for a
continuous distribution. For this reason, it is important as a reference
distribution.

One of the most important applications of the uniform distribution is in the
generation of random numbers. That is, almost all random number
generators generate random numbers on the (0,1) interval. For other
distributions, some transformation is applied to the uniform random
numbers.

Software Most general purpose statistical software programs support at least some of
the probability functions for the uniform distribution.
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1.3.6.6.3. Cauchy Distribution

Probability
Density
Function

The general formula for the probability density function of
the Cauchy distribution is

where t is the location parameter and s is the scale parameter.
The case where t = 0 and s = 1 is called the standard
Cauchy distribution. The equation for the standard Cauchy
distribution reduces to

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the
function.

The following is the plot of the standard Cauchy probability
density function.

Cumulative
Distribution

The formula for the cumulative distribution function for the
Cauchy distribution is

http://www.itl.nist.gov/div898/handbook/index.htm
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Function

The following is the plot of the Cauchy cumulative
distribution function.

Percent
Point
Function

The formula for the percent point function of the Cauchy
distribution is

The following is the plot of the Cauchy percent point
function.

Hazard
Function

The Cauchy hazard function can be computed from the
Cauchy probability density and cumulative distribution
functions.

The following is the plot of the Cauchy hazard function.



1.3.6.6.3. Cauchy Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm[6/27/2012 2:02:28 PM]

Cumulative
Hazard
Function

The Cauchy cumulative hazard function can be computed
from the Cauchy cumulative distribution function.

The following is the plot of the Cauchy cumulative hazard
function.

Survival
Function

The Cauchy survival function can be computed from the
Cauchy cumulative distribution function.

The following is the plot of the Cauchy survival function.



1.3.6.6.3. Cauchy Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm[6/27/2012 2:02:28 PM]

Inverse
Survival
Function

The Cauchy inverse survival function can be computed from
the Cauchy percent point function.

The following is the plot of the Cauchy inverse survival
function.

Common
Statistics

Mean The mean is undefined.
Median The location parameter t.
Mode The location parameter t.
Range Infinity in both directions.
Standard
Deviation

The standard deviation is undefined.

Coefficient of
Variation

The coefficient of variation is undefined.

Skewness The skewness is undefined.
Kurtosis The kurtosis is undefined.

Parameter The likelihood functions for the Cauchy maximum likelihood
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Estimation estimates are given in chapter 16 of Johnson, Kotz, and
Balakrishnan. These equations typically must be solved
numerically on a computer.

Comments The Cauchy distribution is important as an example of a
pathological case. Cauchy distributions look similar to a
normal distribution. However, they have much heavier tails.
When studying hypothesis tests that assume normality, seeing
how the tests perform on data from a Cauchy distribution is a
good indicator of how sensitive the tests are to heavy-tail
departures from normality. Likewise, it is a good check for
robust techniques that are designed to work well under a wide
variety of distributional assumptions.

The mean and standard deviation of the Cauchy distribution
are undefined. The practical meaning of this is that collecting
1,000 data points gives no more accurate an estimate of the
mean and standard deviation than does a single point.

Software Many general purpose statistical software programs support
at least some of the probability functions for the Cauchy
distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.4. t Distribution

Probability
Density
Function

The formula for the probability density function of the t
distribution is

where  is the beta function and  is a positive integer shape
parameter. The formula for the beta function is

In a testing context, the t distribution is treated as a
"standardized distribution" (i.e., no location or scale
parameters). However, in a distributional modeling context
(as with other probability distributions), the t distribution
itself can be transformed with a location parameter, , and a
scale parameter, .

The following is the plot of the t probability density function
for 4 different values of the shape parameter.

These plots all have a similar shape. The difference is in the
heaviness of the tails. In fact, the t distribution with  equal

http://www.itl.nist.gov/div898/handbook/index.htm
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to 1 is a Cauchy distribution. The t distribution approaches a
normal distribution as  becomes large. The approximation is
quite good for values of  > 30.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the t
distribution is complicated and is not included here. It is
given in the Evans, Hastings, and Peacock book.

The following are the plots of the t cumulative distribution
function with the same values of  as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the t
distribution does not exist in a simple closed form. It is
computed numerically.

The following are the plots of the t percent point function
with the same values of  as the pdf plots above.

Other
Probability
Functions

Since the t distribution is typically used to develop hypothesis
tests and confidence intervals and rarely for modeling
applications, we omit the formulas and plots for the hazard,
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cumulative hazard, survival, and inverse survival probability
functions.

Common
Statistics

Mean 0 (It is undefined for  equal to 1.)
Median 0
Mode 0
Range Infinity in both directions.
Standard
Deviation

It is undefined for  equal to 1 or 2.
Coefficient of
Variation

Undefined

Skewness 0. It is undefined for  less than or equal
to 3. However, the t distribution is
symmetric in all cases.

Kurtosis

It is undefined for  less than or equal to
4.

Parameter
Estimation

Since the t distribution is typically used to develop hypothesis
tests and confidence intervals and rarely for modeling
applications, we omit any discussion of parameter estimation.

Comments The t distribution is used in many cases for the critical
regions for hypothesis tests and in determining confidence
intervals. The most common example is testing if data are
consistent with the assumed process mean.

Software Most general purpose statistical software programs support at
least some of the probability functions for the t distribution.

http://www.itl.nist.gov/div898/handbook/prc/section2/prc22.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc22.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.5. F Distribution

Probability
Density
Function

The F distribution is the ratio of two chi-square distributions
with degrees of freedom  and , respectively, where each
chi-square has first been divided by its degrees of freedom.
The formula for the probability density function of the F
distribution is

where  and  are the shape parameters and  is the gamma
function. The formula for the gamma function is

In a testing context, the F distribution is treated as a
"standardized distribution" (i.e., no location or scale
parameters). However, in a distributional modeling context
(as with other probability distributions), the F distribution
itself can be transformed with a location parameter, , and a
scale parameter, .

The following is the plot of the F probability density function
for 4 different values of the shape parameters.

http://www.itl.nist.gov/div898/handbook/index.htm
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Cumulative
Distribution
Function

The formula for the Cumulative distribution function of the F
distribution is

where k = / (  + *x) and Ik is the incomplete beta
function. The formula for the incomplete beta function is

where B is the beta function

The following is the plot of the F cumulative distribution
function with the same values of  and  as the pdf plots
above.

Percent
Point
Function

The formula for the percent point function of the F
distribution does not exist in a simple closed form. It is
computed numerically.

The following is the plot of the F percent point function with
the same values of  and  as the pdf plots above.
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Other
Probability
Functions

Since the F distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit the formulas and plots for the
hazard, cumulative hazard, survival, and inverse survival
probability functions.

Common
Statistics

The formulas below are for the case where the location
parameter is zero and the scale parameter is one.
Mean

Mode

Range 0 to positive infinity
Standard
Deviation

Coefficient of
Variation

Skewness

Parameter
Estimation

Since the F distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit any discussion of parameter
estimation.

Comments The F distribution is used in many cases for the critical
regions for hypothesis tests and in determining confidence
intervals. Two common examples are the analysis of variance
and the F test to determine if the variances of two populations
are equal.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
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Software Most general purpose statistical software programs support at
least some of the probability functions for the F distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.6. Chi-Square Distribution

Probability
Density
Function

The chi-square distribution results when  independent
variables with standard normal distributions are squared and
summed. The formula for the probability density function of
the chi-square distribution is

where  is the shape parameter and  is the gamma function.
The formula for the gamma function is

In a testing context, the chi-square distribution is treated as a
"standardized distribution" (i.e., no location or scale
parameters). However, in a distributional modeling context
(as with other probability distributions), the chi-square
distribution itself can be transformed with a location
parameter, , and a scale parameter, .

The following is the plot of the chi-square probability density
function for 4 different values of the shape parameter.

http://www.itl.nist.gov/div898/handbook/index.htm
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the
chi-square distribution is

where  is the gamma function defined above and  is the
incomplete gamma function. The formula for the incomplete
gamma function is

The following is the plot of the chi-square cumulative
distribution function with the same values of  as the pdf
plots above.

Percent
Point
Function

The formula for the percent point function of the chi-square
distribution does not exist in a simple closed form. It is
computed numerically.

The following is the plot of the chi-square percent point
function with the same values of  as the pdf plots above.
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Other
Probability
Functions

Since the chi-square distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit the formulas and plots for the
hazard, cumulative hazard, survival, and inverse survival
probability functions.

Common
Statistics

Mean
Median approximately  - 2/3 for large 
Mode
Range 0 to positive infinity
Standard
Deviation
Coefficient of
Variation

Skewness

Kurtosis

Parameter
Estimation

Since the chi-square distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit any discussion of parameter
estimation.

Comments The chi-square distribution is used in many cases for the
critical regions for hypothesis tests and in determining
confidence intervals. Two common examples are the chi-
square test for independence in an RxC contingency table
and the chi-square test to determine if the standard deviation
of a population is equal to a pre-specified value.

Software Most general purpose statistical software programs support at
least some of the probability functions for the chi-square
distribution.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc45.htm
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1.3.6.6.7. Exponential Distribution

Probability
Density
Function

The general formula for the probability density function of
the exponential distribution is

where  is the location parameter and  is the scale
parameter (the scale parameter is often referred to as  which
equals ). The case where  = 0 and  = 1 is called the
standard exponential distribution. The equation for the
standard exponential distribution is

The general form of probability functions can be expressed
in terms of the standard distribution. Subsequent formulas in
this section are given for the 1-parameter (i.e., with scale
parameter) form of the function.

The following is the plot of the exponential probability
density function.

Cumulative
Distribution

The formula for the cumulative distribution function of the
exponential distribution is

http://www.itl.nist.gov/div898/handbook/index.htm
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Function

The following is the plot of the exponential cumulative
distribution function.

Percent
Point
Function

The formula for the percent point function of the exponential
distribution is

The following is the plot of the exponential percent point
function.

Hazard
Function

The formula for the hazard function of the exponential
distribution is

The following is the plot of the exponential hazard function.
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the
exponential distribution is

The following is the plot of the exponential cumulative
hazard function.

Survival
Function

The formula for the survival function of the exponential
distribution is

The following is the plot of the exponential survival function.
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Inverse
Survival
Function

The formula for the inverse survival function of the
exponential distribution is

The following is the plot of the exponential inverse survival
function.

Common
Statistics

Mean
Median
Mode Zero
Range Zero to plus infinity
Standard
Deviation
Coefficient of
Variation

1

Skewness 2
Kurtosis 9
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Parameter
Estimation

For the full sample case, the maximum likelihood estimator
of the scale parameter is the sample mean. Maximum
likelihood estimation for the exponential distribution is
discussed in the chapter on reliability (Chapter 8). It is also
discussed in chapter 19 of Johnson, Kotz, and Balakrishnan.

Comments The exponential distribution is primarily used in reliability
applications. The exponential distribution is used to model
data with a constant failure rate (indicated by the hazard plot
which is simply equal to a constant).

Software Most general purpose statistical software programs support at
least some of the probability functions for the exponential
distribution.

http://www.itl.nist.gov/div898/handbook/apr/section4/apr412.htm#LikelihoodFunctionExamplesforReliabilityData
http://www.itl.nist.gov/div898/handbook/apr/section4/apr412.htm#LikelihoodFunctionExamplesforReliabilityData
http://www.itl.nist.gov/div898/handbook/apr/apr.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.8. Weibull Distribution

Probability
Density
Function

The formula for the probability density function of the general Weibull
distribution is

where  is the shape parameter,  is the location parameter and  is the
scale parameter. The case where  = 0 and  = 1 is called the standard
Weibull distribution. The case where  = 0 is called the 2-parameter
Weibull distribution. The equation for the standard Weibull distribution
reduces to

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this
section are given for the standard form of the function.

The following is the plot of the Weibull probability density function.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the Weibull
distribution is

http://www.itl.nist.gov/div898/handbook/index.htm
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The following is the plot of the Weibull cumulative distribution
function with the same values of  as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the Weibull distribution is

The following is the plot of the Weibull percent point function with the
same values of  as the pdf plots above.

Hazard
Function

The formula for the hazard function of the Weibull distribution is

The following is the plot of the Weibull hazard function with the same
values of  as the pdf plots above.



1.3.6.6.8. Weibull Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3668.htm[6/27/2012 2:02:35 PM]

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the Weibull
distribution is

The following is the plot of the Weibull cumulative hazard function
with the same values of  as the pdf plots above.

Survival
Function

The formula for the survival function of the Weibull distribution is

The following is the plot of the Weibull survival function with the same
values of  as the pdf plots above.
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Inverse
Survival
Function

The formula for the inverse survival function of the Weibull
distribution is

The following is the plot of the Weibull inverse survival function with
the same values of  as the pdf plots above.

Common
Statistics

The formulas below are with the location parameter equal to zero and
the scale parameter equal to one.

Mean

where  is the gamma function

Median
Mode
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Range Zero to positive infinity.
Standard Deviation

Coefficient of
Variation

Parameter
Estimation

Maximum likelihood estimation for the Weibull distribution is
discussed in the Reliability chapter (Chapter 8). It is also discussed in
Chapter 21 of Johnson, Kotz, and Balakrishnan.

Comments The Weibull distribution is used extensively in reliability applications
to model failure times.

Software Most general purpose statistical software programs support at least
some of the probability functions for the Weibull distribution.

http://www.itl.nist.gov/div898/handbook/apr/section4/apr413.htm
http://www.itl.nist.gov/div898/handbook/apr/apr.htm
http://www.itl.nist.gov/div898/handbook/apr/apr.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/
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1.3.6.6.9. Lognormal Distribution

Probability
Density
Function

A variable X is lognormally distributed if Y = LN(X) is
normally distributed with "LN" denoting the natural
logarithm. The general formula for the probability density
function of the lognormal distribution is

where  is the shape parameter,  is the location parameter
and m is the scale parameter. The case where  = 0 and m =
1 is called the standard lognormal distribution. The case
where  equals zero is called the 2-parameter lognormal
distribution.

The equation for the standard lognormal distribution is

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the
function.

The following is the plot of the lognormal probability density
function for four values of .

http://www.itl.nist.gov/div898/handbook/
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There are several common parameterizations of the
lognormal distribution. The form given here is from Evans,
Hastings, and Peacock.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the
lognormal distribution is

where  is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal cumulative
distribution function with the same values of  as the pdf
plots above.

Percent
Point
Function

The formula for the percent point function of the lognormal
distribution is
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where  is the percent point function of the normal
distribution.

The following is the plot of the lognormal percent point
function with the same values of  as the pdf plots above.

Hazard
Function

The formula for the hazard function of the lognormal
distribution is

where  is the probability density function of the normal
distribution and  is the cumulative distribution function of
the normal distribution.

The following is the plot of the lognormal hazard function
with the same values of  as the pdf plots above.
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Cumulative
Hazard
Function

The formula for the cumulative hazard function of the
lognormal distribution is

where  is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal cumulative hazard
function with the same values of  as the pdf plots above.

Survival
Function

The formula for the survival function of the lognormal
distribution is

where  is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal survival function
with the same values of  as the pdf plots above.
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Inverse
Survival
Function

The formula for the inverse survival function of the
lognormal distribution is

where  is the percent point function of the normal
distribution.

The following is the plot of the lognormal inverse survival
function with the same values of  as the pdf plots above.

Common
Statistics

The formulas below are with the location parameter equal to
zero and the scale parameter equal to one.

Mean
Median Scale parameter m (= 1 if scale parameter

not specified).
Mode

Range Zero to positive infinity
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Standard
Deviation
Skewness

Kurtosis
Coefficient of
Variation

Parameter
Estimation

The maximum likelihood estimates for the scale parameter,
m, and the shape parameter, , are

and

where

If the location parameter is known, it can be subtracted from
the original data points before computing the maximum
likelihood estimates of the shape and scale parameters.

Comments The lognormal distribution is used extensively in reliability
applications to model failure times. The lognormal and
Weibull distributions are probably the most commonly used
distributions in reliability applications.

Software Most general purpose statistical software programs support at
least some of the probability functions for the lognormal
distribution.

http://www.itl.nist.gov/div898/handbook/apr/apr.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/main.htm
http://www.itl.nist.gov/div898/handbook/
http://www.sematech.org/
http://www.nist.gov/
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.10. Birnbaum-Saunders (Fatigue Life)
Distribution

Probability
Density
Function

The Birnbaum-Saunders distribution is also commonly known as the
fatigue life distribution. There are several alternative formulations of
the Birnbaum-Saunders distribution in the literature.

The general formula for the probability density function of the
Birnbaum-Saunders distribution is

where  is the shape parameter,  is the location parameter,  is the
scale parameter,  is the probability density function of the standard
normal distribution, and  is the cumulative distribution function of
the standard normal distribution. The case where  = 0 and  = 1 is
called the standard Birnbaum-Saunders distribution. The equation
for the standard Birnbaum-Saunders distribution reduces to

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in this
section are given for the standard form of the function.

The following is the plot of the Birnbaum-Saunders probability density
function.

http://www.itl.nist.gov/div898/handbook/index.htm
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the Birnbaum-
Saunders distribution is

where  is the cumulative distribution function of the standard normal
distribution. The following is the plot of the Birnbaum-Saunders
cumulative distribution function with the same values of  as the pdf
plots above.

Percent
Point
Function

The formula for the percent point function of the Birnbaum-Saunders
distribution is

where  is the percent point function of the standard normal
distribution. The following is the plot of the Birnbaum-Saunders
percent point function with the same values of  as the pdf plots
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above.

Hazard
Function

The Birnbaum-Saunders hazard function can be computed from the
Birnbaum-Saunders probability density and cumulative distribution
functions.

The following is the plot of the Birnbaum-Saunders hazard function
with the same values of  as the pdf plots above.

Cumulative
Hazard
Function

The Birnbaum-Saunders cumulative hazard function can be computed
from the Birnbaum-Saunders cumulative distribution function.

The following is the plot of the Birnbaum-Saunders cumulative hazard
function with the same values of  as the pdf plots above.
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Survival
Function

The Birnbaum-Saunders survival function can be computed from the
Birnbaum-Saunders cumulative distribution function.

The following is the plot of the Birnbaum-Saunders survival function
with the same values of  as the pdf plots above.

Inverse
Survival
Function

The Birnbaum-Saunders inverse survival function can be computed
from the Birnbaum-Saunders percent point function.

The following is the plot of the gamma inverse survival function with
the same values of  as the pdf plots above.
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Common
Statistics

The formulas below are with the location parameter equal to zero and
the scale parameter equal to one.

Mean

Range Zero to positive infinity.
Standard Deviation

Coefficient of
Variation

Parameter
Estimation

Maximum likelihood estimation for the Birnbaum-Saunders
distribution is discussed in the Reliability chapter.

Comments The Birnbaum-Saunders distribution is used extensively in reliability
applications to model failure times.

Software Some general purpose statistical software programs, including
Dataplot, support at least some of the probability functions for the
Birnbaum-Saunders distribution. Support for this distribution is likely
to be available for statistical programs that emphasize reliability
applications.

The "bs" package implements support for the Birnbaum-Saunders
distribution for the R package. See

Leiva, V., Hernandez, H., and Riquelme, M. (2006). A New
Package for the Birnbaum-Saunders Distribution. Rnews, 6/4,
35-40. (http://www.r-project.org)

http://www.itl.nist.gov/div898/handbook/apr/section4/apr413#fatigue life
http://www.itl.nist.gov/div898/handbook/apr/section4/apr413#fatigue life
http://www.itl.nist.gov/div898/handbook/apr/apr.htm
http://www.itl.nist.gov/div898/handbook/apr/apr.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda44.htm#FLDIST
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.r-project.org
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.3.6.6.11. Gamma Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm[6/27/2012 2:02:40 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.6. Probability Distributions 
1.3.6.6. Gallery of Distributions 

1.3.6.6.11. Gamma Distribution

Probability
Density
Function

The general formula for the probability density function of
the gamma distribution is

where  is the shape parameter,  is the location parameter, 
 is the scale parameter, and  is the gamma function which

has the formula

The case where  = 0 and  = 1 is called the standard
gamma distribution. The equation for the standard gamma
distribution reduces to

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the
function.

The following is the plot of the gamma probability density
function.

http://www.itl.nist.gov/div898/handbook/index.htm


1.3.6.6.11. Gamma Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366b.htm[6/27/2012 2:02:40 PM]

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the
gamma distribution is

where  is the gamma function defined above and  is
the incomplete gamma function. The incomplete gamma
function has the formula

The following is the plot of the gamma cumulative
distribution function with the same values of  as the pdf
plots above.

Percent
Point
Function

The formula for the percent point function of the gamma
distribution does not exist in a simple closed form. It is
computed numerically.
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The following is the plot of the gamma percent point function
with the same values of  as the pdf plots above.

Hazard
Function

The formula for the hazard function of the gamma
distribution is

The following is the plot of the gamma hazard function with
the same values of  as the pdf plots above.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the
gamma distribution is

where  is the gamma function defined above and  is
the incomplete gamma function defined above.
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The following is the plot of the gamma cumulative hazard
function with the same values of  as the pdf plots above.

Survival
Function

The formula for the survival function of the gamma
distribution is

where  is the gamma function defined above and  is
the incomplete gamma function defined above.

The following is the plot of the gamma survival function with
the same values of  as the pdf plots above.

Inverse
Survival
Function

The gamma inverse survival function does not exist in simple
closed form. It is computed numberically.

The following is the plot of the gamma inverse survival
function with the same values of  as the pdf plots above.
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Common
Statistics

The formulas below are with the location parameter equal to
zero and the scale parameter equal to one.

Mean
Mode
Range Zero to positive infinity.
Standard
Deviation
Skewness

Kurtosis

Coefficient of
Variation

Parameter
Estimation

The method of moments estimators of the gamma distribution
are

where  and s are the sample mean and standard deviation,
respectively.

The equations for the maximum likelihood estimation of the
shape and scale parameters are given in Chapter 18 of Evans,
Hastings, and Peacock and Chapter 17 of Johnson, Kotz, and
Balakrishnan. These equations need to be solved numerically;
this is typically accomplished by using statistical software
packages.
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Software Some general purpose statistical software programs support
at least some of the probability functions for the gamma
distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.12. Double Exponential Distribution

Probability
Density
Function

The general formula for the probability density function of
the double exponential distribution is

where  is the location parameter and  is the scale
parameter. The case where  = 0 and  = 1 is called the
standard double exponential distribution. The equation for
the standard double exponential distribution is

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the
function.

The following is the plot of the double exponential
probability density function.

Cumulative
Distribution

The formula for the cumulative distribution function of the
double exponential distribution is

http://www.itl.nist.gov/div898/handbook/index.htm
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Function

The following is the plot of the double exponential
cumulative distribution function.

Percent
Point
Function

The formula for the percent point function of the double
exponential distribution is

The following is the plot of the double exponential percent
point function.

Hazard
Function

The formula for the hazard function of the double exponential
distribution is
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The following is the plot of the double exponential hazard
function.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the double
exponential distribution is

The following is the plot of the double exponential
cumulative hazard function.

Survival
Function

The double exponential survival function can be computed
from the cumulative distribution function of the double
exponential distribution.

The following is the plot of the double exponential survival
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function.

Inverse
Survival
Function

The formula for the inverse survival function of the double
exponential distribution is

The following is the plot of the double exponential inverse
survival function.

Common
Statistics

Mean
Median
Mode
Range Negative infinity to positive infinity
Standard
Deviation
Skewness 0
Kurtosis 6
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Coefficient of
Variation

Parameter
Estimation

The maximum likelihood estimators of the location and scale
parameters of the double exponential distribution are

where  is the sample median.

Software Some general purpose statistical software programs support
at least some of the probability functions for the double
exponential distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.13. Power Normal Distribution

Probability
Density
Function

The formula for the probability density function of the
standard form of the power normal distribution is

where p is the shape parameter (also referred to as the power
parameter),  is the cumulative distribution function of the
standard normal distribution, and  is the probability density
function of the standard normal distribution.

As with other probability distributions, the power normal
distribution can be transformed with a location parameter, ,
and a scale parameter, . We omit the equation for the
general form of the power normal distribution. Since the
general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulas in
this section are given for the standard form of the function.

The following is the plot of the power normal probability
density function with four values of p.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the
power normal distribution is

http://www.itl.nist.gov/div898/handbook/index.htm
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where  is the cumulative distribution function of the
standard normal distribution.

The following is the plot of the power normal cumulative
distribution function with the same values of p as the pdf
plots above.

Percent
Point
Function

The formula for the percent point function of the power
normal distribution is

where  is the percent point function of the standard
normal distribution.

The following is the plot of the power normal percent point
function with the same values of p as the pdf plots above.

Hazard The formula for the hazard function of the power normal
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Function distribution is

The following is the plot of the power normal hazard function
with the same values of p as the pdf plots above.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the power
normal distribution is

The following is the plot of the power normal cumulative
hazard function with the same values of p as the pdf plots
above.

Survival
Function

The formula for the survival function of the power normal
distribution is
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The following is the plot of the power normal survival
function with the same values of p as the pdf plots above.

Inverse
Survival
Function

The formula for the inverse survival function of the power
normal distribution is

The following is the plot of the power normal inverse
survival function with the same values of p as the pdf plots
above.

Common
Statistics

The statistics for the power normal distribution are
complicated and require tables. Nelson discusses the mean,
median, mode, and standard deviation of the power normal
distribution and provides references to the appropriate tables.

Software Most general purpose statistical software programs do not
support the probability functions for the power normal
distribution.
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1.3.6.6.14. Power Lognormal Distribution

Probability
Density
Function

The formula for the probability density function of the standard form of
the power lognormal distribution is

where p (also referred to as the power parameter) and  are the shape
parameters,  is the cumulative distribution function of the standard
normal distribution, and  is the probability density function of the
standard normal distribution.

As with other probability distributions, the power lognormal distribution
can be transformed with a location parameter, , and a scale parameter,
B. We omit the equation for the general form of the power lognormal
distribution. Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent formulas
in this section are given for the standard form of the function.

The following is the plot of the power lognormal probability density
function with four values of p and  set to 1.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the power
lognormal distribution is

http://www.itl.nist.gov/div898/handbook/index.htm
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where  is the cumulative distribution function of the standard normal
distribution.

The following is the plot of the power lognormal cumulative
distribution function with the same values of p as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the power lognormal
distribution is

where  is the percent point function of the standard normal
distribution.

The following is the plot of the power lognormal percent point function
with the same values of p as the pdf plots above.

Hazard The formula for the hazard function of the power lognormal distribution
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Function is

where  is the cumulative distribution function of the standard normal
distribution, and  is the probability density function of the standard
normal distribution.

Note that this is simply a multiple (p) of the lognormal hazard function.

The following is the plot of the power lognormal hazard function with
the same values of p as the pdf plots above.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the power lognormal
distribution is

The following is the plot of the power lognormal cumulative hazard
function with the same values of p as the pdf plots above.
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Survival
Function

The formula for the survival function of the power lognormal
distribution is

The following is the plot of the power lognormal survival function with
the same values of p as the pdf plots above.

Inverse
Survival
Function

The formula for the inverse survival function of the power lognormal
distribution is

The following is the plot of the power lognormal inverse survival
function with the same values of p as the pdf plots above.
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Common
Statistics

The statistics for the power lognormal distribution are complicated and
require tables. Nelson discusses the mean, median, mode, and standard
deviation of the power lognormal distribution and provides references to
the appropriate tables.

Parameter
Estimation

Nelson discusses maximum likelihood estimation for the power
lognormal distribution. These estimates need to be performed with
computer software. Software for maximum likelihood estimation of the
parameters of the power lognormal distribution is not as readily
available as for other reliability distributions such as the exponential,
Weibull, and lognormal.

Software Most general purpose statistical software programs do not support the
probability functions for the power lognormal distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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1.3.6.6.15. Tukey-Lambda Distribution

Probability
Density
Function

The Tukey-Lambda density function does not have a simple,
closed form. It is computed numerically.

The Tukey-Lambda distribution has the shape parameter .
As with other probability distributions, the Tukey-Lambda
distribution can be transformed with a location parameter, ,
and a scale parameter, . Since the general form of
probability functions can be expressed in terms of the
standard distribution, all subsequent formulas in this section
are given for the standard form of the function.

The following is the plot of the Tukey-Lambda probability
density function for four values of .

Cumulative
Distribution
Function

The Tukey-Lambda distribution does not have a simple,
closed form. It is computed numerically.

The following is the plot of the Tukey-Lambda cumulative
distribution function with the same values of  as the pdf
plots above.

http://www.itl.nist.gov/div898/handbook/index.htm
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Percent
Point
Function

The formula for the percent point function of the standard
form of the Tukey-Lambda distribution is

The following is the plot of the Tukey-Lambda percent point
function with the same values of  as the pdf plots above.

Other
Probability
Functions

The Tukey-Lambda distribution is typically used to identify
an appropriate distribution (see the comments below) and not
used in statistical models directly. For this reason, we omit
the formulas, and plots for the hazard, cumulative hazard,
survival, and inverse survival functions. We also omit the
common statistics and parameter estimation sections.

Comments The Tukey-Lambda distribution is actually a family of
distributions that can approximate a number of common
distributions. For example,

 = -1 approximately Cauchy
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 = 0 exactly logistic
 = 0.14 approximately normal
 = 0.5 U-shaped
 = 1 exactly uniform (from -1 to +1)

The most common use of this distribution is to generate a
Tukey-Lambda PPCC plot of a data set. Based on the ppcc
plot, an appropriate model for the data is suggested. For
example, if the maximum correlation occurs for a value of 
at or near 0.14, then the data can be modeled with a normal
distribution. Values of  less than this imply a heavy-tailed
distribution (with -1 approximating a Cauchy). That is, as the
optimal value of  goes from 0.14 to -1, increasingly heavy
tails are implied. Similarly, as the optimal value of  becomes
greater than 0.14, shorter tails are implied.

As the Tukey-Lambda distribution is a symmetric
distribution, the use of the Tukey-Lambda PPCC plot to
determine a reasonable distribution to model the data only
applies to symmetric distributuins. A histogram of the data
should provide evidence as to whether the data can be
reasonably modeled with a symmetric distribution.

Software Most general purpose statistical software programs do not
support the probability functions for the Tukey-Lambda
distribution.

http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.6.16. Extreme Value Type I Distribution

Probability
Density
Function

The extreme value type I distribution has two forms. One is
based on the smallest extreme and the other is based on the
largest extreme. We call these the minimum and maximum
cases, respectively. Formulas and plots for both cases are
given. The extreme value type I distribution is also referred to
as the Gumbel distribution.

The general formula for the probability density function of
the Gumbel (minimum) distribution is

where  is the location parameter and  is the scale
parameter. The case where  = 0 and  = 1 is called the
standard Gumbel distribution. The equation for the
standard Gumbel distribution (minimum) reduces to

The following is the plot of the Gumbel probability density
function for the minimum case.

The general formula for the probability density function of

http://www.itl.nist.gov/div898/handbook/index.htm
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the Gumbel (maximum) distribution is

where  is the location parameter and  is the scale
parameter. The case where  = 0 and  = 1 is called the
standard Gumbel distribution. The equation for the
standard Gumbel distribution (maximum) reduces to

The following is the plot of the Gumbel probability density
function for the maximum case.

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the
function.

Cumulative
Distribution
Function

The formula for the cumulative distribution function of the
Gumbel distribution (minimum) is

The following is the plot of the Gumbel cumulative
distribution function for the minimum case.
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The formula for the cumulative distribution function of the
Gumbel distribution (maximum) is

The following is the plot of the Gumbel cumulative
distribution function for the maximum case.

Percent
Point
Function

The formula for the percent point function of the Gumbel
distribution (minimum) is

The following is the plot of the Gumbel percent point
function for the minimum case.
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The formula for the percent point function of the Gumbel
distribution (maximum) is

The following is the plot of the Gumbel percent point
function for the maximum case.

Hazard
Function

The formula for the hazard function of the Gumbel
distribution (minimum) is

The following is the plot of the Gumbel hazard function for
the minimum case.
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The formula for the hazard function of the Gumbel
distribution (maximum) is

The following is the plot of the Gumbel hazard function for
the maximum case.

Cumulative
Hazard
Function

The formula for the cumulative hazard function of the
Gumbel distribution (minimum) is

The following is the plot of the Gumbel cumulative hazard
function for the minimum case.
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The formula for the cumulative hazard function of the
Gumbel distribution (maximum) is

The following is the plot of the Gumbel cumulative hazard
function for the maximum case.

Survival
Function

The formula for the survival function of the Gumbel
distribution (minimum) is

The following is the plot of the Gumbel survival function for
the minimum case.
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The formula for the survival function of the Gumbel
distribution (maximum) is

The following is the plot of the Gumbel survival function for
the maximum case.

Inverse
Survival
Function

The formula for the inverse survival function of the Gumbel
distribution (minimum) is

The following is the plot of the Gumbel inverse survival
function for the minimum case.
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The formula for the inverse survival function of the Gumbel
distribution (maximum) is

The following is the plot of the Gumbel inverse survival
function for the maximum case.

Common
Statistics

The formulas below are for the maximum order statistic case.

Mean

The constant 0.5772 is Euler's number.
Median
Mode
Range Negative infinity to positive infinity.
Standard
Deviation
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Skewness 1.13955
Kurtosis 5.4
Coefficient of
Variation

Parameter
Estimation

The method of moments estimators of the Gumbel
(maximum) distribution are

where  and s are the sample mean and standard deviation,
respectively.

The equations for the maximum likelihood estimation of the
shape and scale parameters are discussed in Chapter 15 of
Evans, Hastings, and Peacock and Chapter 22 of Johnson,
Kotz, and Balakrishnan. These equations need to be solved
numerically and this is typically accomplished by using
statistical software packages.

Software Some general purpose statistical software programs support
at least some of the probability functions for the extreme
value type I distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.6.6.17. Beta Distribution

Probability
Density
Function

The general formula for the probability density function of the beta
distribution is

where p and q are the shape parameters, a and b are the lower and upper
bounds, respectively, of the distribution, and B(p,q) is the beta function.
The beta function has the formula

The case where a = 0 and b = 1 is called the standard beta distribution.
The equation for the standard beta distribution is

Typically we define the general form of a distribution in terms of location
and scale parameters. The beta is different in that we define the general
distribution in terms of the lower and upper bounds. However, the location
and scale parameters can be defined in terms of the lower and upper limits
as follows:

location = a 
scale = b - a

Since the general form of probability functions can be expressed in terms
of the standard distribution, all subsequent formulas in this section are
given for the standard form of the function.

The following is the plot of the beta probability density function for four
different values of the shape parameters.

http://www.itl.nist.gov/div898/handbook/index.htm
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Cumulative
Distribution
Function

The formula for the cumulative distribution function of the beta distribution
is also called the incomplete beta function ratio (commonly denoted by Ix)
and is defined as

where B is the beta function defined above.

The following is the plot of the beta cumulative distribution function with
the same values of the shape parameters as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the beta distribution does not
exist in a simple closed form. It is computed numerically.

The following is the plot of the beta percent point function with the same
values of the shape parameters as the pdf plots above.
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Other
Probability
Functions

Since the beta distribution is not typically used for reliability applications,
we omit the formulas and plots for the hazard, cumulative hazard, survival,
and inverse survival probability functions.

Common
Statistics

The formulas below are for the case where the lower limit is zero and the
upper limit is one.
Mean

Mode

Range 0 to 1
Standard Deviation

Coefficient of
Variation

Skewness

Parameter
Estimation

First consider the case where a and b are assumed to be known. For this
case, the method of moments estimates are

where  is the sample mean and s2 is the sample variance. If a and b are

not 0 and 1, respectively, then replace  with  and s2 with 

in the above equations.

For the case when a and b are known, the maximum likelihood estimates
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can be obtained by solving the following set of equations

The maximum likelihood equations for the case when a and b are not
known are given in pages 221-235 of Volume II of Johnson, Kotz, and
Balakrishan.

Software Most general purpose statistical software programs support at least some of
the probability functions for the beta distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.3.6.6.18. Binomial Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm[6/27/2012 2:02:50 PM]

 

1. Exploratory Data Analysis 
1.3. EDA Techniques 
1.3.6. Probability Distributions 
1.3.6.6. Gallery of Distributions 

1.3.6.6.18. Binomial Distribution

Probability
Mass
Function

The binomial distribution is used when there are exactly two
mutually exclusive outcomes of a trial. These outcomes are
appropriately labeled "success" and "failure". The binomial
distribution is used to obtain the probability of observing x successes
in N trials, with the probability of success on a single trial denoted
by p. The binomial distribution assumes that p is fixed for all trials.

The formula for the binomial probability mass function is

where

The following is the plot of the binomial probability density function
for four values of p and n = 100.

Cumulative
Distribution
Function

The formula for the binomial cumulative probability function is

http://www.itl.nist.gov/div898/handbook/index.htm
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The following is the plot of the binomial cumulative distribution
function with the same values of p as the pdf plots above.

Percent
Point
Function

The binomial percent point function does not exist in simple closed
form. It is computed numerically. Note that because this is a discrete
distribution that is only defined for integer values of x, the percent
point function is not smooth in the way the percent point function
typically is for a continuous distribution.

The following is the plot of the binomial percent point function with
the same values of p as the pdf plots above.

Common
Statistics

Mean
Mode
Range 0 to N
Standard Deviation
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Coefficient of
Variation

Skewness

Kurtosis

Comments The binomial distribution is probably the most commonly used
discrete distribution.

Parameter
Estimation

The maximum likelihood estimator of p (n is fixed) is

Software Most general purpose statistical software programs support at least
some of the probability functions for the binomial distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
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1.3.6.6.19. Poisson Distribution

Probability
Mass
Function

The Poisson distribution is used to model the number of
events occurring within a given time interval.

The formula for the Poisson probability mass function is

 is the shape parameter which indicates the average number
of events in the given time interval.

The following is the plot of the Poisson probability density
function for four values of .

Cumulative
Distribution
Function

The formula for the Poisson cumulative probability function
is

The following is the plot of the Poisson cumulative
distribution function with the same values of  as the pdf
plots above.

http://www.itl.nist.gov/div898/handbook/index.htm
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Percent
Point
Function

The Poisson percent point function does not exist in simple
closed form. It is computed numerically. Note that because
this is a discrete distribution that is only defined for integer
values of x, the percent point function is not smooth in the
way the percent point function typically is for a continuous
distribution.

The following is the plot of the Poisson percent point
function with the same values of  as the pdf plots above.

Common
Statistics

Mean
Mode For non-integer , it is the largest integer

less than . For integer , x =  and x = 
- 1 are both the mode.

Range 0 to positive infinity
Standard
Deviation
Coefficient of
Variation
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Skewness

Kurtosis

Parameter
Estimation

The maximum likelihood estimator of  is

where  is the sample mean.

Software Most general purpose statistical software programs support at
least some of the probability functions for the Poisson
distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.3.6.7. Tables for Probability Distributions

Tables Several commonly used tables for probability distributions can
be referenced below.

The values from these tables can also be obtained from most
general purpose statistical software programs. Most
introductory statistics textbooks (e.g., Snedecor and Cochran)
contain more extensive tables than are included here. These
tables are included for convenience.

1. Cumulative distribution function for the standard normal
distribution

2. Upper critical values of Student's t-distribution with 
degrees of freedom

3. Upper critical values of the F-distribution with  and 
degrees of freedom

4. Upper critical values of the chi-square distribution with 
 degrees of freedom

5. Critical values of t* distribution for testing the output of
a linear calibration line at 3 points

6. Upper critical values of the normal PPCC distribution

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.7.1. Cumulative Distribution Function of
the Standard Normal Distribution

How to
Use This
Table

The table below contains the area under the standard normal
curve from 0 to z. This can be used to compute the cumulative
distribution function values for the standard normal
distribution.

The table utilizes the symmetry of the normal distribution, so
what in fact is given is

where a is the value of interest. This is demonstrated in the
graph below for a = 0.5. The shaded area of the curve
represents the probability that x is between 0 and a.

This can be clarified by a few simple examples.

1. What is the probability that x is less than or equal to
1.53? Look for 1.5 in the X column, go right to the 0.03
column to find the value 0.43699. Now add 0.5 (for the
probability less than zero) to obtain the final result of
0.93699.

2. What is the probability that x is less than or equal to -

http://www.itl.nist.gov/div898/handbook/index.htm
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1.53? For negative values, use the relationship

From the first example, this gives 1 - 0.93699 =
0.06301.

3. What is the probability that x is between -1 and 0.5?
Look up the values for 0.5 (0.5 + 0.19146 = 0.69146)
and -1 (1 - (0.5 + 0.34134) = 0.15866). Then subtract
the results (0.69146 - 0.15866) to obtain the result
0.5328.

To use this table with a non-standard normal distribution
(either the location parameter is not 0 or the scale parameter is
not 1), standardize your value by subtracting the mean and
dividing the result by the standard deviation. Then look up the
value for this standardized value.

A few particularly important numbers derived from the table
below, specifically numbers that are commonly used in
significance tests, are summarized in the following table:

p 0.001 0.005 0.010 0.025 0.050 0.100
Zp -3.090 -2.576 -2.326 -1.960 -1.645 -1.282

p 0.999 0.995 0.990 0.975 0.950 0.900
Zp +3.090 +2.576 +2.326 +1.960 +1.645 +1.282

These are critical values for the normal distribution.

                           Area under the Normal Curve from 0 
to X

X       0.00    0.01    0.02    0.03    0.04    0.05    0.06    
0.07    0.08    0.09

0.0     0.00000 0.00399 0.00798 0.01197 0.01595 0.01994 0.02392 
0.02790 0.03188 0.03586
0.1     0.03983 0.04380 0.04776 0.05172 0.05567 0.05962 0.06356 
0.06749 0.07142 0.07535
0.2     0.07926 0.08317 0.08706 0.09095 0.09483 0.09871 0.10257 
0.10642 0.11026 0.11409
0.3     0.11791 0.12172 0.12552 0.12930 0.13307 0.13683 0.14058 
0.14431 0.14803 0.15173
0.4     0.15542 0.15910 0.16276 0.16640 0.17003 0.17364 0.17724 
0.18082 0.18439 0.18793
0.5     0.19146 0.19497 0.19847 0.20194 0.20540 0.20884 0.21226 
0.21566 0.21904 0.22240
0.6     0.22575 0.22907 0.23237 0.23565 0.23891 0.24215 0.24537 
0.24857 0.25175 0.25490
0.7     0.25804 0.26115 0.26424 0.26730 0.27035 0.27337 0.27637 
0.27935 0.28230 0.28524
0.8     0.28814 0.29103 0.29389 0.29673 0.29955 0.30234 0.30511 
0.30785 0.31057 0.31327
0.9     0.31594 0.31859 0.32121 0.32381 0.32639 0.32894 0.33147 
0.33398 0.33646 0.33891
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1.0     0.34134 0.34375 0.34614 0.34849 0.35083 0.35314 0.35543 
0.35769 0.35993 0.36214
1.1     0.36433 0.36650 0.36864 0.37076 0.37286 0.37493 0.37698 
0.37900 0.38100 0.38298
1.2     0.38493 0.38686 0.38877 0.39065 0.39251 0.39435 0.39617 
0.39796 0.39973 0.40147
1.3     0.40320 0.40490 0.40658 0.40824 0.40988 0.41149 0.41308 
0.41466 0.41621 0.41774
1.4     0.41924 0.42073 0.42220 0.42364 0.42507 0.42647 0.42785 
0.42922 0.43056 0.43189
1.5     0.43319 0.43448 0.43574 0.43699 0.43822 0.43943 0.44062 
0.44179 0.44295 0.44408
1.6     0.44520 0.44630 0.44738 0.44845 0.44950 0.45053 0.45154 
0.45254 0.45352 0.45449
1.7     0.45543 0.45637 0.45728 0.45818 0.45907 0.45994 0.46080 
0.46164 0.46246 0.46327
1.8     0.46407 0.46485 0.46562 0.46638 0.46712 0.46784 0.46856 
0.46926 0.46995 0.47062
1.9     0.47128 0.47193 0.47257 0.47320 0.47381 0.47441 0.47500 
0.47558 0.47615 0.47670
2.0     0.47725 0.47778 0.47831 0.47882 0.47932 0.47982 0.48030 
0.48077 0.48124 0.48169
2.1     0.48214 0.48257 0.48300 0.48341 0.48382 0.48422 0.48461 
0.48500 0.48537 0.48574
2.2     0.48610 0.48645 0.48679 0.48713 0.48745 0.48778 0.48809 
0.48840 0.48870 0.48899
2.3     0.48928 0.48956 0.48983 0.49010 0.49036 0.49061 0.49086 
0.49111 0.49134 0.49158
2.4     0.49180 0.49202 0.49224 0.49245 0.49266 0.49286 0.49305 
0.49324 0.49343 0.49361
2.5     0.49379 0.49396 0.49413 0.49430 0.49446 0.49461 0.49477 
0.49492 0.49506 0.49520
2.6     0.49534 0.49547 0.49560 0.49573 0.49585 0.49598 0.49609 
0.49621 0.49632 0.49643
2.7     0.49653 0.49664 0.49674 0.49683 0.49693 0.49702 0.49711 
0.49720 0.49728 0.49736
2.8     0.49744 0.49752 0.49760 0.49767 0.49774 0.49781 0.49788 
0.49795 0.49801 0.49807
2.9     0.49813 0.49819 0.49825 0.49831 0.49836 0.49841 0.49846 
0.49851 0.49856 0.49861
3.0     0.49865 0.49869 0.49874 0.49878 0.49882 0.49886 0.49889 
0.49893 0.49896 0.49900
3.1     0.49903 0.49906 0.49910 0.49913 0.49916 0.49918 0.49921 
0.49924 0.49926 0.49929
3.2     0.49931 0.49934 0.49936 0.49938 0.49940 0.49942 0.49944 
0.49946 0.49948 0.49950
3.3     0.49952 0.49953 0.49955 0.49957 0.49958 0.49960 0.49961 
0.49962 0.49964 0.49965
3.4     0.49966 0.49968 0.49969 0.49970 0.49971 0.49972 0.49973 
0.49974 0.49975 0.49976
3.5     0.49977 0.49978 0.49978 0.49979 0.49980 0.49981 0.49981 
0.49982 0.49983 0.49983
3.6     0.49984 0.49985 0.49985 0.49986 0.49986 0.49987 0.49987 
0.49988 0.49988 0.49989
3.7     0.49989 0.49990 0.49990 0.49990 0.49991 0.49991 0.49992 
0.49992 0.49992 0.49992
3.8     0.49993 0.49993 0.49993 0.49994 0.49994 0.49994 0.49994 
0.49995 0.49995 0.49995
3.9     0.49995 0.49995 0.49996 0.49996 0.49996 0.49996 0.49996 
0.49996 0.49997 0.49997
4.0     0.49997 0.49997 0.49997 0.49997 0.49997 0.49997 0.49998 
0.49998 0.49998 0.49998
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1.3.6.7.2. Critical Values of the Student's t
Distribution

How to
Use This
Table

This table contains critical values of the Student's t
distribution computed using the cumulative distribution
function. The t distribution is symmetric so that

t1-α,ν = -tα,ν.

The t table can be used for both one-sided (lower and upper)
and two-sided tests using the appropriate value of α.

The significance level, α, is demonstrated in the graph below,
which displays a t distribution with 10 degrees of freedom.
The most commonly used significance level is α = 0.05. For a
two-sided test, we compute 1 - α/2, or 1 - 0.05/2 = 0.975 when
α = 0.05. If the absolute value of the test statistic is greater
than the critical value (0.975), then we reject the null
hypothesis. Due to the symmetry of the t distribution, we only
tabulate the positive critical values in the table below.

Given a specified value for α :

1. For a two-sided test, find the column corresponding to
1-α/2 and reject the null hypothesis if the absolute value

http://www.itl.nist.gov/div898/handbook/index.htm
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of the test statistic is greater than the value of t1-α/2,ν in
the table below.

2. For an upper, one-sided test, find the column
corresponding to 1-α and reject the null hypothesis if the
test statistic is greater than the table value.

3. For a lower, one-sided test, find the column
corresponding to 1-α and reject the null hypothesis if the
test statistic is less than the negative of the table value.

Critical values of Student's t distribution with ν degrees of
freedom

     Probability less than the critical value 
(t1-α,ν)

           0.90    0.95   0.975    0.99   0.995   
0.999

  1.       3.078   6.314  12.706  31.821  63.657 
318.313
  2.       1.886   2.920   4.303   6.965   9.925  
22.327
  3.       1.638   2.353   3.182   4.541   5.841  
10.215
  4.       1.533   2.132   2.776   3.747   4.604   
7.173
  5.       1.476   2.015   2.571   3.365   4.032   
5.893
  6.       1.440   1.943   2.447   3.143   3.707   
5.208
  7.       1.415   1.895   2.365   2.998   3.499   
4.782
  8.       1.397   1.860   2.306   2.896   3.355   
4.499
  9.       1.383   1.833   2.262   2.821   3.250   
4.296
 10.       1.372   1.812   2.228   2.764   3.169   
4.143
 11.       1.363   1.796   2.201   2.718   3.106   
4.024
 12.       1.356   1.782   2.179   2.681   3.055   
3.929
 13.       1.350   1.771   2.160   2.650   3.012   
3.852
 14.       1.345   1.761   2.145   2.624   2.977   
3.787
 15.       1.341   1.753   2.131   2.602   2.947   
3.733
 16.       1.337   1.746   2.120   2.583   2.921   
3.686
 17.       1.333   1.740   2.110   2.567   2.898   
3.646
 18.       1.330   1.734   2.101   2.552   2.878   
3.610
 19.       1.328   1.729   2.093   2.539   2.861   
3.579
 20.       1.325   1.725   2.086   2.528   2.845   
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3.552
 21.       1.323   1.721   2.080   2.518   2.831   
3.527
 22.       1.321   1.717   2.074   2.508   2.819   
3.505
 23.       1.319   1.714   2.069   2.500   2.807   
3.485
 24.       1.318   1.711   2.064   2.492   2.797   
3.467
 25.       1.316   1.708   2.060   2.485   2.787   
3.450
 26.       1.315   1.706   2.056   2.479   2.779   
3.435
 27.       1.314   1.703   2.052   2.473   2.771   
3.421
 28.       1.313   1.701   2.048   2.467   2.763   
3.408
 29.       1.311   1.699   2.045   2.462   2.756   
3.396
 30.       1.310   1.697   2.042   2.457   2.750   
3.385
 31.       1.309   1.696   2.040   2.453   2.744   
3.375
 32.       1.309   1.694   2.037   2.449   2.738   
3.365
 33.       1.308   1.692   2.035   2.445   2.733   
3.356
 34.       1.307   1.691   2.032   2.441   2.728   
3.348
 35.       1.306   1.690   2.030   2.438   2.724   
3.340
 36.       1.306   1.688   2.028   2.434   2.719   
3.333
 37.       1.305   1.687   2.026   2.431   2.715   
3.326
 38.       1.304   1.686   2.024   2.429   2.712   
3.319
 39.       1.304   1.685   2.023   2.426   2.708   
3.313
 40.       1.303   1.684   2.021   2.423   2.704   
3.307
 41.       1.303   1.683   2.020   2.421   2.701   
3.301
 42.       1.302   1.682   2.018   2.418   2.698   
3.296
 43.       1.302   1.681   2.017   2.416   2.695   
3.291
 44.       1.301   1.680   2.015   2.414   2.692   
3.286
 45.       1.301   1.679   2.014   2.412   2.690   
3.281
 46.       1.300   1.679   2.013   2.410   2.687   
3.277
 47.       1.300   1.678   2.012   2.408   2.685   
3.273
 48.       1.299   1.677   2.011   2.407   2.682   
3.269
 49.       1.299   1.677   2.010   2.405   2.680   
3.265
 50.       1.299   1.676   2.009   2.403   2.678   
3.261
 51.       1.298   1.675   2.008   2.402   2.676   
3.258
 52.       1.298   1.675   2.007   2.400   2.674   



1.3.6.7.2. Critical Values of the Student's-t Distribution

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3672.htm[6/27/2012 2:02:54 PM]

3.255
 53.       1.298   1.674   2.006   2.399   2.672   
3.251
 54.       1.297   1.674   2.005   2.397   2.670   
3.248
 55.       1.297   1.673   2.004   2.396   2.668   
3.245
 56.       1.297   1.673   2.003   2.395   2.667   
3.242
 57.       1.297   1.672   2.002   2.394   2.665   
3.239
 58.       1.296   1.672   2.002   2.392   2.663   
3.237
 59.       1.296   1.671   2.001   2.391   2.662   
3.234
 60.       1.296   1.671   2.000   2.390   2.660   
3.232
 61.       1.296   1.670   2.000   2.389   2.659   
3.229
 62.       1.295   1.670   1.999   2.388   2.657   
3.227
 63.       1.295   1.669   1.998   2.387   2.656   
3.225
 64.       1.295   1.669   1.998   2.386   2.655   
3.223
 65.       1.295   1.669   1.997   2.385   2.654   
3.220
 66.       1.295   1.668   1.997   2.384   2.652   
3.218
 67.       1.294   1.668   1.996   2.383   2.651   
3.216
 68.       1.294   1.668   1.995   2.382   2.650   
3.214
 69.       1.294   1.667   1.995   2.382   2.649   
3.213
 70.       1.294   1.667   1.994   2.381   2.648   
3.211
 71.       1.294   1.667   1.994   2.380   2.647   
3.209
 72.       1.293   1.666   1.993   2.379   2.646   
3.207
 73.       1.293   1.666   1.993   2.379   2.645   
3.206
 74.       1.293   1.666   1.993   2.378   2.644   
3.204
 75.       1.293   1.665   1.992   2.377   2.643   
3.202
 76.       1.293   1.665   1.992   2.376   2.642   
3.201
 77.       1.293   1.665   1.991   2.376   2.641   
3.199
 78.       1.292   1.665   1.991   2.375   2.640   
3.198
 79.       1.292   1.664   1.990   2.374   2.640   
3.197
 80.       1.292   1.664   1.990   2.374   2.639   
3.195
 81.       1.292   1.664   1.990   2.373   2.638   
3.194
 82.       1.292   1.664   1.989   2.373   2.637   
3.193
 83.       1.292   1.663   1.989   2.372   2.636   
3.191
 84.       1.292   1.663   1.989   2.372   2.636   
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3.190
 85.       1.292   1.663   1.988   2.371   2.635   
3.189
 86.       1.291   1.663   1.988   2.370   2.634   
3.188
 87.       1.291   1.663   1.988   2.370   2.634   
3.187
 88.       1.291   1.662   1.987   2.369   2.633   
3.185
 89.       1.291   1.662   1.987   2.369   2.632   
3.184
 90.       1.291   1.662   1.987   2.368   2.632   
3.183
 91.       1.291   1.662   1.986   2.368   2.631   
3.182
 92.       1.291   1.662   1.986   2.368   2.630   
3.181
 93.       1.291   1.661   1.986   2.367   2.630   
3.180
 94.       1.291   1.661   1.986   2.367   2.629   
3.179
 95.       1.291   1.661   1.985   2.366   2.629   
3.178
 96.       1.290   1.661   1.985   2.366   2.628   
3.177
 97.       1.290   1.661   1.985   2.365   2.627   
3.176
 98.       1.290   1.661   1.984   2.365   2.627   
3.175
 99.       1.290   1.660   1.984   2.365   2.626   
3.175
100.       1.290   1.660   1.984   2.364   2.626   
3.174
          1.282   1.645   1.960   2.326   2.576   
3.090

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.7.3. Upper Critical Values of the F
Distribution

How to
Use This
Table

This table contains the upper critical values of the F
distribution. This table is used for one-sided F tests at the  =
0.05, 0.10, and 0.01 levels.

More specifically, a test statistic is computed with  and 
degrees of freedom, and the result is compared to this table.
For a one-sided test, the null hypothesis is rejected when the
test statistic is greater than the tabled value. This is
demonstrated with the graph of an F distribution with  = 10
and  = 10. The shaded area of the graph indicates the
rejection region at the  significance level. Since this is a one-
sided test, we have  probability in the upper tail of exceeding
the critical value and zero in the lower tail. Because the F
distribution is asymmetric, a two-sided test requires a set of of
tables (not included here) that contain the rejection regions for
both the lower and upper tails.

Contents The following tables for  from 1 to 100 are included:

1. One sided, 5% significance level,  = 1 - 10
2. One sided, 5% significance level,  = 11 - 20
3. One sided, 10% significance level,  = 1 - 10
4. One sided, 10% significance level,  = 11 - 20

http://www.itl.nist.gov/div898/handbook/index.htm
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5. One sided, 1% significance level,  = 1 - 10
6. One sided, 1% significance level,  = 11 - 20

Upper critical values of the F distribution
for  numerator degrees of freedom and  denominator

degrees of freedom

5% significance level

     \    1       2       3       4       5       
6       7       8       9      10

   

  1      161.448 199.500 215.707 224.583 230.162 
233.986 236.768 238.882 240.543 241.882
  2       18.513  19.000  19.164  19.247  19.296  
19.330  19.353  19.371  19.385  19.396
  3       10.128   9.552   9.277   9.117   9.013   
8.941   8.887   8.845   8.812   8.786
  4        7.709   6.944   6.591   6.388   6.256   
6.163   6.094   6.041   5.999   5.964
  5        6.608   5.786   5.409   5.192   5.050   
4.950   4.876   4.818   4.772   4.735
  6        5.987   5.143   4.757   4.534   4.387   
4.284   4.207   4.147   4.099   4.060
  7        5.591   4.737   4.347   4.120   3.972   
3.866   3.787   3.726   3.677   3.637
  8        5.318   4.459   4.066   3.838   3.687   
3.581   3.500   3.438   3.388   3.347
  9        5.117   4.256   3.863   3.633   3.482   
3.374   3.293   3.230   3.179   3.137
 10        4.965   4.103   3.708   3.478   3.326   
3.217   3.135   3.072   3.020   2.978
 11        4.844   3.982   3.587   3.357   3.204   
3.095   3.012   2.948   2.896   2.854
 12        4.747   3.885   3.490   3.259   3.106   
2.996   2.913   2.849   2.796   2.753
 13        4.667   3.806   3.411   3.179   3.025   
2.915   2.832   2.767   2.714   2.671
 14        4.600   3.739   3.344   3.112   2.958   
2.848   2.764   2.699   2.646   2.602
 15        4.543   3.682   3.287   3.056   2.901   
2.790   2.707   2.641   2.588   2.544
 16        4.494   3.634   3.239   3.007   2.852   
2.741   2.657   2.591   2.538   2.494
 17        4.451   3.592   3.197   2.965   2.810   
2.699   2.614   2.548   2.494   2.450
 18        4.414   3.555   3.160   2.928   2.773   
2.661   2.577   2.510   2.456   2.412
 19        4.381   3.522   3.127   2.895   2.740   
2.628   2.544   2.477   2.423   2.378
 20        4.351   3.493   3.098   2.866   2.711   
2.599   2.514   2.447   2.393   2.348
 21        4.325   3.467   3.072   2.840   2.685   
2.573   2.488   2.420   2.366   2.321
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 22        4.301   3.443   3.049   2.817   2.661   
2.549   2.464   2.397   2.342   2.297
 23        4.279   3.422   3.028   2.796   2.640   
2.528   2.442   2.375   2.320   2.275
 24        4.260   3.403   3.009   2.776   2.621   
2.508   2.423   2.355   2.300   2.255
 25        4.242   3.385   2.991   2.759   2.603   
2.490   2.405   2.337   2.282   2.236
 26        4.225   3.369   2.975   2.743   2.587   
2.474   2.388   2.321   2.265   2.220
 27        4.210   3.354   2.960   2.728   2.572   
2.459   2.373   2.305   2.250   2.204
 28        4.196   3.340   2.947   2.714   2.558   
2.445   2.359   2.291   2.236   2.190
 29        4.183   3.328   2.934   2.701   2.545   
2.432   2.346   2.278   2.223   2.177
 30        4.171   3.316   2.922   2.690   2.534   
2.421   2.334   2.266   2.211   2.165
 31        4.160   3.305   2.911   2.679   2.523   
2.409   2.323   2.255   2.199   2.153
 32        4.149   3.295   2.901   2.668   2.512   
2.399   2.313   2.244   2.189   2.142
 33        4.139   3.285   2.892   2.659   2.503   
2.389   2.303   2.235   2.179   2.133
 34        4.130   3.276   2.883   2.650   2.494   
2.380   2.294   2.225   2.170   2.123
 35        4.121   3.267   2.874   2.641   2.485   
2.372   2.285   2.217   2.161   2.114
 36        4.113   3.259   2.866   2.634   2.477   
2.364   2.277   2.209   2.153   2.106
 37        4.105   3.252   2.859   2.626   2.470   
2.356   2.270   2.201   2.145   2.098
 38        4.098   3.245   2.852   2.619   2.463   
2.349   2.262   2.194   2.138   2.091
 39        4.091   3.238   2.845   2.612   2.456   
2.342   2.255   2.187   2.131   2.084
 40        4.085   3.232   2.839   2.606   2.449   
2.336   2.249   2.180   2.124   2.077
 41        4.079   3.226   2.833   2.600   2.443   
2.330   2.243   2.174   2.118   2.071
 42        4.073   3.220   2.827   2.594   2.438   
2.324   2.237   2.168   2.112   2.065
 43        4.067   3.214   2.822   2.589   2.432   
2.318   2.232   2.163   2.106   2.059
 44        4.062   3.209   2.816   2.584   2.427   
2.313   2.226   2.157   2.101   2.054
 45        4.057   3.204   2.812   2.579   2.422   
2.308   2.221   2.152   2.096   2.049
 46        4.052   3.200   2.807   2.574   2.417   
2.304   2.216   2.147   2.091   2.044
 47        4.047   3.195   2.802   2.570   2.413   
2.299   2.212   2.143   2.086   2.039
 48        4.043   3.191   2.798   2.565   2.409   
2.295   2.207   2.138   2.082   2.035
 49        4.038   3.187   2.794   2.561   2.404   
2.290   2.203   2.134   2.077   2.030
 50        4.034   3.183   2.790   2.557   2.400   
2.286   2.199   2.130   2.073   2.026
 51        4.030   3.179   2.786   2.553   2.397   
2.283   2.195   2.126   2.069   2.022
 52        4.027   3.175   2.783   2.550   2.393   
2.279   2.192   2.122   2.066   2.018
 53        4.023   3.172   2.779   2.546   2.389   
2.275   2.188   2.119   2.062   2.015
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 54        4.020   3.168   2.776   2.543   2.386   
2.272   2.185   2.115   2.059   2.011
 55        4.016   3.165   2.773   2.540   2.383   
2.269   2.181   2.112   2.055   2.008
 56        4.013   3.162   2.769   2.537   2.380   
2.266   2.178   2.109   2.052   2.005
 57        4.010   3.159   2.766   2.534   2.377   
2.263   2.175   2.106   2.049   2.001
 58        4.007   3.156   2.764   2.531   2.374   
2.260   2.172   2.103   2.046   1.998
 59        4.004   3.153   2.761   2.528   2.371   
2.257   2.169   2.100   2.043   1.995
 60        4.001   3.150   2.758   2.525   2.368   
2.254   2.167   2.097   2.040   1.993
 61        3.998   3.148   2.755   2.523   2.366   
2.251   2.164   2.094   2.037   1.990
 62        3.996   3.145   2.753   2.520   2.363   
2.249   2.161   2.092   2.035   1.987
 63        3.993   3.143   2.751   2.518   2.361   
2.246   2.159   2.089   2.032   1.985
 64        3.991   3.140   2.748   2.515   2.358   
2.244   2.156   2.087   2.030   1.982
 65        3.989   3.138   2.746   2.513   2.356   
2.242   2.154   2.084   2.027   1.980
 66        3.986   3.136   2.744   2.511   2.354   
2.239   2.152   2.082   2.025   1.977
 67        3.984   3.134   2.742   2.509   2.352   
2.237   2.150   2.080   2.023   1.975
 68        3.982   3.132   2.740   2.507   2.350   
2.235   2.148   2.078   2.021   1.973
 69        3.980   3.130   2.737   2.505   2.348   
2.233   2.145   2.076   2.019   1.971
 70        3.978   3.128   2.736   2.503   2.346   
2.231   2.143   2.074   2.017   1.969
 71        3.976   3.126   2.734   2.501   2.344   
2.229   2.142   2.072   2.015   1.967
 72        3.974   3.124   2.732   2.499   2.342   
2.227   2.140   2.070   2.013   1.965
 73        3.972   3.122   2.730   2.497   2.340   
2.226   2.138   2.068   2.011   1.963
 74        3.970   3.120   2.728   2.495   2.338   
2.224   2.136   2.066   2.009   1.961
 75        3.968   3.119   2.727   2.494   2.337   
2.222   2.134   2.064   2.007   1.959
 76        3.967   3.117   2.725   2.492   2.335   
2.220   2.133   2.063   2.006   1.958
 77        3.965   3.115   2.723   2.490   2.333   
2.219   2.131   2.061   2.004   1.956
 78        3.963   3.114   2.722   2.489   2.332   
2.217   2.129   2.059   2.002   1.954
 79        3.962   3.112   2.720   2.487   2.330   
2.216   2.128   2.058   2.001   1.953
 80        3.960   3.111   2.719   2.486   2.329   
2.214   2.126   2.056   1.999   1.951
 81        3.959   3.109   2.717   2.484   2.327   
2.213   2.125   2.055   1.998   1.950
 82        3.957   3.108   2.716   2.483   2.326   
2.211   2.123   2.053   1.996   1.948
 83        3.956   3.107   2.715   2.482   2.324   
2.210   2.122   2.052   1.995   1.947
 84        3.955   3.105   2.713   2.480   2.323   
2.209   2.121   2.051   1.993   1.945
 85        3.953   3.104   2.712   2.479   2.322   
2.207   2.119   2.049   1.992   1.944
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 86        3.952   3.103   2.711   2.478   2.321   
2.206   2.118   2.048   1.991   1.943
 87        3.951   3.101   2.709   2.476   2.319   
2.205   2.117   2.047   1.989   1.941
 88        3.949   3.100   2.708   2.475   2.318   
2.203   2.115   2.045   1.988   1.940
 89        3.948   3.099   2.707   2.474   2.317   
2.202   2.114   2.044   1.987   1.939
 90        3.947   3.098   2.706   2.473   2.316   
2.201   2.113   2.043   1.986   1.938
 91        3.946   3.097   2.705   2.472   2.315   
2.200   2.112   2.042   1.984   1.936
 92        3.945   3.095   2.704   2.471   2.313   
2.199   2.111   2.041   1.983   1.935
 93        3.943   3.094   2.703   2.470   2.312   
2.198   2.110   2.040   1.982   1.934
 94        3.942   3.093   2.701   2.469   2.311   
2.197   2.109   2.038   1.981   1.933
 95        3.941   3.092   2.700   2.467   2.310   
2.196   2.108   2.037   1.980   1.932
 96        3.940   3.091   2.699   2.466   2.309   
2.195   2.106   2.036   1.979   1.931
 97        3.939   3.090   2.698   2.465   2.308   
2.194   2.105   2.035   1.978   1.930
 98        3.938   3.089   2.697   2.465   2.307   
2.193   2.104   2.034   1.977   1.929
 99        3.937   3.088   2.696   2.464   2.306   
2.192   2.103   2.033   1.976   1.928
100        3.936   3.087   2.696   2.463   2.305   
2.191   2.103   2.032   1.975   1.927

     \    11      12      13      14      15      
16      17      18      19      20

   

  1      242.983 243.906 244.690 245.364 245.950 
246.464 246.918 247.323 247.686 248.013
  2       19.405  19.413  19.419  19.424  19.429  
19.433  19.437  19.440  19.443  19.446
  3        8.763   8.745   8.729   8.715   8.703   
8.692   8.683   8.675   8.667   8.660
  4        5.936   5.912   5.891   5.873   5.858   
5.844   5.832   5.821   5.811   5.803
  5        4.704   4.678   4.655   4.636   4.619   
4.604   4.590   4.579   4.568   4.558
  6        4.027   4.000   3.976   3.956   3.938   
3.922   3.908   3.896   3.884   3.874
  7        3.603   3.575   3.550   3.529   3.511   
3.494   3.480   3.467   3.455   3.445
  8        3.313   3.284   3.259   3.237   3.218   
3.202   3.187   3.173   3.161   3.150
  9        3.102   3.073   3.048   3.025   3.006   
2.989   2.974   2.960   2.948   2.936
 10        2.943   2.913   2.887   2.865   2.845   
2.828   2.812   2.798   2.785   2.774
 11        2.818   2.788   2.761   2.739   2.719   
2.701   2.685   2.671   2.658   2.646
 12        2.717   2.687   2.660   2.637   2.617   
2.599   2.583   2.568   2.555   2.544
 13        2.635   2.604   2.577   2.554   2.533   
2.515   2.499   2.484   2.471   2.459
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 14        2.565   2.534   2.507   2.484   2.463   
2.445   2.428   2.413   2.400   2.388
 15        2.507   2.475   2.448   2.424   2.403   
2.385   2.368   2.353   2.340   2.328
 16        2.456   2.425   2.397   2.373   2.352   
2.333   2.317   2.302   2.288   2.276
 17        2.413   2.381   2.353   2.329   2.308   
2.289   2.272   2.257   2.243   2.230
 18        2.374   2.342   2.314   2.290   2.269   
2.250   2.233   2.217   2.203   2.191
 19        2.340   2.308   2.280   2.256   2.234   
2.215   2.198   2.182   2.168   2.155
 20        2.310   2.278   2.250   2.225   2.203   
2.184   2.167   2.151   2.137   2.124
 21        2.283   2.250   2.222   2.197   2.176   
2.156   2.139   2.123   2.109   2.096
 22        2.259   2.226   2.198   2.173   2.151   
2.131   2.114   2.098   2.084   2.071
 23        2.236   2.204   2.175   2.150   2.128   
2.109   2.091   2.075   2.061   2.048
 24        2.216   2.183   2.155   2.130   2.108   
2.088   2.070   2.054   2.040   2.027
 25        2.198   2.165   2.136   2.111   2.089   
2.069   2.051   2.035   2.021   2.007
 26        2.181   2.148   2.119   2.094   2.072   
2.052   2.034   2.018   2.003   1.990
 27        2.166   2.132   2.103   2.078   2.056   
2.036   2.018   2.002   1.987   1.974
 28        2.151   2.118   2.089   2.064   2.041   
2.021   2.003   1.987   1.972   1.959
 29        2.138   2.104   2.075   2.050   2.027   
2.007   1.989   1.973   1.958   1.945
 30        2.126   2.092   2.063   2.037   2.015   
1.995   1.976   1.960   1.945   1.932
 31        2.114   2.080   2.051   2.026   2.003   
1.983   1.965   1.948   1.933   1.920
 32        2.103   2.070   2.040   2.015   1.992   
1.972   1.953   1.937   1.922   1.908
 33        2.093   2.060   2.030   2.004   1.982   
1.961   1.943   1.926   1.911   1.898
 34        2.084   2.050   2.021   1.995   1.972   
1.952   1.933   1.917   1.902   1.888
 35        2.075   2.041   2.012   1.986   1.963   
1.942   1.924   1.907   1.892   1.878
 36        2.067   2.033   2.003   1.977   1.954   
1.934   1.915   1.899   1.883   1.870
 37        2.059   2.025   1.995   1.969   1.946   
1.926   1.907   1.890   1.875   1.861
 38        2.051   2.017   1.988   1.962   1.939   
1.918   1.899   1.883   1.867   1.853
 39        2.044   2.010   1.981   1.954   1.931   
1.911   1.892   1.875   1.860   1.846
 40        2.038   2.003   1.974   1.948   1.924   
1.904   1.885   1.868   1.853   1.839
 41        2.031   1.997   1.967   1.941   1.918   
1.897   1.879   1.862   1.846   1.832
 42        2.025   1.991   1.961   1.935   1.912   
1.891   1.872   1.855   1.840   1.826
 43        2.020   1.985   1.955   1.929   1.906   
1.885   1.866   1.849   1.834   1.820
 44        2.014   1.980   1.950   1.924   1.900   
1.879   1.861   1.844   1.828   1.814
 45        2.009   1.974   1.945   1.918   1.895   
1.874   1.855   1.838   1.823   1.808
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 46        2.004   1.969   1.940   1.913   1.890   
1.869   1.850   1.833   1.817   1.803
 47        1.999   1.965   1.935   1.908   1.885   
1.864   1.845   1.828   1.812   1.798
 48        1.995   1.960   1.930   1.904   1.880   
1.859   1.840   1.823   1.807   1.793
 49        1.990   1.956   1.926   1.899   1.876   
1.855   1.836   1.819   1.803   1.789
 50        1.986   1.952   1.921   1.895   1.871   
1.850   1.831   1.814   1.798   1.784
 51        1.982   1.947   1.917   1.891   1.867   
1.846   1.827   1.810   1.794   1.780
 52        1.978   1.944   1.913   1.887   1.863   
1.842   1.823   1.806   1.790   1.776
 53        1.975   1.940   1.910   1.883   1.859   
1.838   1.819   1.802   1.786   1.772
 54        1.971   1.936   1.906   1.879   1.856   
1.835   1.816   1.798   1.782   1.768
 55        1.968   1.933   1.903   1.876   1.852   
1.831   1.812   1.795   1.779   1.764
 56        1.964   1.930   1.899   1.873   1.849   
1.828   1.809   1.791   1.775   1.761
 57        1.961   1.926   1.896   1.869   1.846   
1.824   1.805   1.788   1.772   1.757
 58        1.958   1.923   1.893   1.866   1.842   
1.821   1.802   1.785   1.769   1.754
 59        1.955   1.920   1.890   1.863   1.839   
1.818   1.799   1.781   1.766   1.751
 60        1.952   1.917   1.887   1.860   1.836   
1.815   1.796   1.778   1.763   1.748
 61        1.949   1.915   1.884   1.857   1.834   
1.812   1.793   1.776   1.760   1.745
 62        1.947   1.912   1.882   1.855   1.831   
1.809   1.790   1.773   1.757   1.742
 63        1.944   1.909   1.879   1.852   1.828   
1.807   1.787   1.770   1.754   1.739
 64        1.942   1.907   1.876   1.849   1.826   
1.804   1.785   1.767   1.751   1.737
 65        1.939   1.904   1.874   1.847   1.823   
1.802   1.782   1.765   1.749   1.734
 66        1.937   1.902   1.871   1.845   1.821   
1.799   1.780   1.762   1.746   1.732
 67        1.935   1.900   1.869   1.842   1.818   
1.797   1.777   1.760   1.744   1.729
 68        1.932   1.897   1.867   1.840   1.816   
1.795   1.775   1.758   1.742   1.727
 69        1.930   1.895   1.865   1.838   1.814   
1.792   1.773   1.755   1.739   1.725
 70        1.928   1.893   1.863   1.836   1.812   
1.790   1.771   1.753   1.737   1.722
 71        1.926   1.891   1.861   1.834   1.810   
1.788   1.769   1.751   1.735   1.720
 72        1.924   1.889   1.859   1.832   1.808   
1.786   1.767   1.749   1.733   1.718
 73        1.922   1.887   1.857   1.830   1.806   
1.784   1.765   1.747   1.731   1.716
 74        1.921   1.885   1.855   1.828   1.804   
1.782   1.763   1.745   1.729   1.714
 75        1.919   1.884   1.853   1.826   1.802   
1.780   1.761   1.743   1.727   1.712
 76        1.917   1.882   1.851   1.824   1.800   
1.778   1.759   1.741   1.725   1.710
 77        1.915   1.880   1.849   1.822   1.798   
1.777   1.757   1.739   1.723   1.708
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 78        1.914   1.878   1.848   1.821   1.797   
1.775   1.755   1.738   1.721   1.707
 79        1.912   1.877   1.846   1.819   1.795   
1.773   1.754   1.736   1.720   1.705
 80        1.910   1.875   1.845   1.817   1.793   
1.772   1.752   1.734   1.718   1.703
 81        1.909   1.874   1.843   1.816   1.792   
1.770   1.750   1.733   1.716   1.702
 82        1.907   1.872   1.841   1.814   1.790   
1.768   1.749   1.731   1.715   1.700
 83        1.906   1.871   1.840   1.813   1.789   
1.767   1.747   1.729   1.713   1.698
 84        1.905   1.869   1.838   1.811   1.787   
1.765   1.746   1.728   1.712   1.697
 85        1.903   1.868   1.837   1.810   1.786   
1.764   1.744   1.726   1.710   1.695
 86        1.902   1.867   1.836   1.808   1.784   
1.762   1.743   1.725   1.709   1.694
 87        1.900   1.865   1.834   1.807   1.783   
1.761   1.741   1.724   1.707   1.692
 88        1.899   1.864   1.833   1.806   1.782   
1.760   1.740   1.722   1.706   1.691
 89        1.898   1.863   1.832   1.804   1.780   
1.758   1.739   1.721   1.705   1.690
 90        1.897   1.861   1.830   1.803   1.779   
1.757   1.737   1.720   1.703   1.688
 91        1.895   1.860   1.829   1.802   1.778   
1.756   1.736   1.718   1.702   1.687
 92        1.894   1.859   1.828   1.801   1.776   
1.755   1.735   1.717   1.701   1.686
 93        1.893   1.858   1.827   1.800   1.775   
1.753   1.734   1.716   1.699   1.684
 94        1.892   1.857   1.826   1.798   1.774   
1.752   1.733   1.715   1.698   1.683
 95        1.891   1.856   1.825   1.797   1.773   
1.751   1.731   1.713   1.697   1.682
 96        1.890   1.854   1.823   1.796   1.772   
1.750   1.730   1.712   1.696   1.681
 97        1.889   1.853   1.822   1.795   1.771   
1.749   1.729   1.711   1.695   1.680
 98        1.888   1.852   1.821   1.794   1.770   
1.748   1.728   1.710   1.694   1.679
 99        1.887   1.851   1.820   1.793   1.769   
1.747   1.727   1.709   1.693   1.678
100        1.886   1.850   1.819   1.792   1.768   
1.746   1.726   1.708   1.691   1.676

Upper critical values of the F distribution
for  numerator degrees of freedom and  denominator

degrees of freedom

10% significance level

     \    1       2       3       4       5       
6       7       8       9      10
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  1       39.863  49.500  53.593  55.833  57.240  
58.204  58.906  59.439  59.858  60.195
  2        8.526   9.000   9.162   9.243   9.293   
9.326   9.349   9.367   9.381   9.392
  3        5.538   5.462   5.391   5.343   5.309   
5.285   5.266   5.252   5.240   5.230
  4        4.545   4.325   4.191   4.107   4.051   
4.010   3.979   3.955   3.936   3.920
  5        4.060   3.780   3.619   3.520   3.453   
3.405   3.368   3.339   3.316   3.297
  6        3.776   3.463   3.289   3.181   3.108   
3.055   3.014   2.983   2.958   2.937
  7        3.589   3.257   3.074   2.961   2.883   
2.827   2.785   2.752   2.725   2.703
  8        3.458   3.113   2.924   2.806   2.726   
2.668   2.624   2.589   2.561   2.538
  9        3.360   3.006   2.813   2.693   2.611   
2.551   2.505   2.469   2.440   2.416
 10        3.285   2.924   2.728   2.605   2.522   
2.461   2.414   2.377   2.347   2.323
 11        3.225   2.860   2.660   2.536   2.451   
2.389   2.342   2.304   2.274   2.248
 12        3.177   2.807   2.606   2.480   2.394   
2.331   2.283   2.245   2.214   2.188
 13        3.136   2.763   2.560   2.434   2.347   
2.283   2.234   2.195   2.164   2.138
 14        3.102   2.726   2.522   2.395   2.307   
2.243   2.193   2.154   2.122   2.095
 15        3.073   2.695   2.490   2.361   2.273   
2.208   2.158   2.119   2.086   2.059
 16        3.048   2.668   2.462   2.333   2.244   
2.178   2.128   2.088   2.055   2.028
 17        3.026   2.645   2.437   2.308   2.218   
2.152   2.102   2.061   2.028   2.001
 18        3.007   2.624   2.416   2.286   2.196   
2.130   2.079   2.038   2.005   1.977
 19        2.990   2.606   2.397   2.266   2.176   
2.109   2.058   2.017   1.984   1.956
 20        2.975   2.589   2.380   2.249   2.158   
2.091   2.040   1.999   1.965   1.937
 21        2.961   2.575   2.365   2.233   2.142   
2.075   2.023   1.982   1.948   1.920
 22        2.949   2.561   2.351   2.219   2.128   
2.060   2.008   1.967   1.933   1.904
 23        2.937   2.549   2.339   2.207   2.115   
2.047   1.995   1.953   1.919   1.890
 24        2.927   2.538   2.327   2.195   2.103   
2.035   1.983   1.941   1.906   1.877
 25        2.918   2.528   2.317   2.184   2.092   
2.024   1.971   1.929   1.895   1.866
 26        2.909   2.519   2.307   2.174   2.082   
2.014   1.961   1.919   1.884   1.855
 27        2.901   2.511   2.299   2.165   2.073   
2.005   1.952   1.909   1.874   1.845
 28        2.894   2.503   2.291   2.157   2.064   
1.996   1.943   1.900   1.865   1.836
 29        2.887   2.495   2.283   2.149   2.057   
1.988   1.935   1.892   1.857   1.827
 30        2.881   2.489   2.276   2.142   2.049   
1.980   1.927   1.884   1.849   1.819
 31        2.875   2.482   2.270   2.136   2.042   
1.973   1.920   1.877   1.842   1.812
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 32        2.869   2.477   2.263   2.129   2.036   
1.967   1.913   1.870   1.835   1.805
 33        2.864   2.471   2.258   2.123   2.030   
1.961   1.907   1.864   1.828   1.799
 34        2.859   2.466   2.252   2.118   2.024   
1.955   1.901   1.858   1.822   1.793
 35        2.855   2.461   2.247   2.113   2.019   
1.950   1.896   1.852   1.817   1.787
 36        2.850   2.456   2.243   2.108   2.014   
1.945   1.891   1.847   1.811   1.781
 37        2.846   2.452   2.238   2.103   2.009   
1.940   1.886   1.842   1.806   1.776
 38        2.842   2.448   2.234   2.099   2.005   
1.935   1.881   1.838   1.802   1.772
 39        2.839   2.444   2.230   2.095   2.001   
1.931   1.877   1.833   1.797   1.767
 40        2.835   2.440   2.226   2.091   1.997   
1.927   1.873   1.829   1.793   1.763
 41        2.832   2.437   2.222   2.087   1.993   
1.923   1.869   1.825   1.789   1.759
 42        2.829   2.434   2.219   2.084   1.989   
1.919   1.865   1.821   1.785   1.755
 43        2.826   2.430   2.216   2.080   1.986   
1.916   1.861   1.817   1.781   1.751
 44        2.823   2.427   2.213   2.077   1.983   
1.913   1.858   1.814   1.778   1.747
 45        2.820   2.425   2.210   2.074   1.980   
1.909   1.855   1.811   1.774   1.744
 46        2.818   2.422   2.207   2.071   1.977   
1.906   1.852   1.808   1.771   1.741
 47        2.815   2.419   2.204   2.068   1.974   
1.903   1.849   1.805   1.768   1.738
 48        2.813   2.417   2.202   2.066   1.971   
1.901   1.846   1.802   1.765   1.735
 49        2.811   2.414   2.199   2.063   1.968   
1.898   1.843   1.799   1.763   1.732
 50        2.809   2.412   2.197   2.061   1.966   
1.895   1.840   1.796   1.760   1.729
 51        2.807   2.410   2.194   2.058   1.964   
1.893   1.838   1.794   1.757   1.727
 52        2.805   2.408   2.192   2.056   1.961   
1.891   1.836   1.791   1.755   1.724
 53        2.803   2.406   2.190   2.054   1.959   
1.888   1.833   1.789   1.752   1.722
 54        2.801   2.404   2.188   2.052   1.957   
1.886   1.831   1.787   1.750   1.719
 55        2.799   2.402   2.186   2.050   1.955   
1.884   1.829   1.785   1.748   1.717
 56        2.797   2.400   2.184   2.048   1.953   
1.882   1.827   1.782   1.746   1.715
 57        2.796   2.398   2.182   2.046   1.951   
1.880   1.825   1.780   1.744   1.713
 58        2.794   2.396   2.181   2.044   1.949   
1.878   1.823   1.779   1.742   1.711
 59        2.793   2.395   2.179   2.043   1.947   
1.876   1.821   1.777   1.740   1.709
 60        2.791   2.393   2.177   2.041   1.946   
1.875   1.819   1.775   1.738   1.707
 61        2.790   2.392   2.176   2.039   1.944   
1.873   1.818   1.773   1.736   1.705
 62        2.788   2.390   2.174   2.038   1.942   
1.871   1.816   1.771   1.735   1.703
 63        2.787   2.389   2.173   2.036   1.941   
1.870   1.814   1.770   1.733   1.702
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 64        2.786   2.387   2.171   2.035   1.939   
1.868   1.813   1.768   1.731   1.700
 65        2.784   2.386   2.170   2.033   1.938   
1.867   1.811   1.767   1.730   1.699
 66        2.783   2.385   2.169   2.032   1.937   
1.865   1.810   1.765   1.728   1.697
 67        2.782   2.384   2.167   2.031   1.935   
1.864   1.808   1.764   1.727   1.696
 68        2.781   2.382   2.166   2.029   1.934   
1.863   1.807   1.762   1.725   1.694
 69        2.780   2.381   2.165   2.028   1.933   
1.861   1.806   1.761   1.724   1.693
 70        2.779   2.380   2.164   2.027   1.931   
1.860   1.804   1.760   1.723   1.691
 71        2.778   2.379   2.163   2.026   1.930   
1.859   1.803   1.758   1.721   1.690
 72        2.777   2.378   2.161   2.025   1.929   
1.858   1.802   1.757   1.720   1.689
 73        2.776   2.377   2.160   2.024   1.928   
1.856   1.801   1.756   1.719   1.687
 74        2.775   2.376   2.159   2.022   1.927   
1.855   1.800   1.755   1.718   1.686
 75        2.774   2.375   2.158   2.021   1.926   
1.854   1.798   1.754   1.716   1.685
 76        2.773   2.374   2.157   2.020   1.925   
1.853   1.797   1.752   1.715   1.684
 77        2.772   2.373   2.156   2.019   1.924   
1.852   1.796   1.751   1.714   1.683
 78        2.771   2.372   2.155   2.018   1.923   
1.851   1.795   1.750   1.713   1.682
 79        2.770   2.371   2.154   2.017   1.922   
1.850   1.794   1.749   1.712   1.681
 80        2.769   2.370   2.154   2.016   1.921   
1.849   1.793   1.748   1.711   1.680
 81        2.769   2.369   2.153   2.016   1.920   
1.848   1.792   1.747   1.710   1.679
 82        2.768   2.368   2.152   2.015   1.919   
1.847   1.791   1.746   1.709   1.678
 83        2.767   2.368   2.151   2.014   1.918   
1.846   1.790   1.745   1.708   1.677
 84        2.766   2.367   2.150   2.013   1.917   
1.845   1.790   1.744   1.707   1.676
 85        2.765   2.366   2.149   2.012   1.916   
1.845   1.789   1.744   1.706   1.675
 86        2.765   2.365   2.149   2.011   1.915   
1.844   1.788   1.743   1.705   1.674
 87        2.764   2.365   2.148   2.011   1.915   
1.843   1.787   1.742   1.705   1.673
 88        2.763   2.364   2.147   2.010   1.914   
1.842   1.786   1.741   1.704   1.672
 89        2.763   2.363   2.146   2.009   1.913   
1.841   1.785   1.740   1.703   1.671
 90        2.762   2.363   2.146   2.008   1.912   
1.841   1.785   1.739   1.702   1.670
 91        2.761   2.362   2.145   2.008   1.912   
1.840   1.784   1.739   1.701   1.670
 92        2.761   2.361   2.144   2.007   1.911   
1.839   1.783   1.738   1.701   1.669
 93        2.760   2.361   2.144   2.006   1.910   
1.838   1.782   1.737   1.700   1.668
 94        2.760   2.360   2.143   2.006   1.910   
1.838   1.782   1.736   1.699   1.667
 95        2.759   2.359   2.142   2.005   1.909   
1.837   1.781   1.736   1.698   1.667
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 96        2.759   2.359   2.142   2.004   1.908   
1.836   1.780   1.735   1.698   1.666
 97        2.758   2.358   2.141   2.004   1.908   
1.836   1.780   1.734   1.697   1.665
 98        2.757   2.358   2.141   2.003   1.907   
1.835   1.779   1.734   1.696   1.665
 99        2.757   2.357   2.140   2.003   1.906   
1.835   1.778   1.733   1.696   1.664
100        2.756   2.356   2.139   2.002   1.906   
1.834   1.778   1.732   1.695   1.663

     \   11      12      13      14      15      
16      17      18      19      20

   

  1       60.473  60.705  60.903  61.073  61.220  
61.350  61.464  61.566  61.658  61.740
  2        9.401   9.408   9.415   9.420   9.425   
9.429   9.433   9.436   9.439   9.441
  3        5.222   5.216   5.210   5.205   5.200   
5.196   5.193   5.190   5.187   5.184
  4        3.907   3.896   3.886   3.878   3.870   
3.864   3.858   3.853   3.849   3.844
  5        3.282   3.268   3.257   3.247   3.238   
3.230   3.223   3.217   3.212   3.207
  6        2.920   2.905   2.892   2.881   2.871   
2.863   2.855   2.848   2.842   2.836
  7        2.684   2.668   2.654   2.643   2.632   
2.623   2.615   2.607   2.601   2.595
  8        2.519   2.502   2.488   2.475   2.464   
2.455   2.446   2.438   2.431   2.425
  9        2.396   2.379   2.364   2.351   2.340   
2.329   2.320   2.312   2.305   2.298
 10        2.302   2.284   2.269   2.255   2.244   
2.233   2.224   2.215   2.208   2.201
 11        2.227   2.209   2.193   2.179   2.167   
2.156   2.147   2.138   2.130   2.123
 12        2.166   2.147   2.131   2.117   2.105   
2.094   2.084   2.075   2.067   2.060
 13        2.116   2.097   2.080   2.066   2.053   
2.042   2.032   2.023   2.014   2.007
 14        2.073   2.054   2.037   2.022   2.010   
1.998   1.988   1.978   1.970   1.962
 15        2.037   2.017   2.000   1.985   1.972   
1.961   1.950   1.941   1.932   1.924
 16        2.005   1.985   1.968   1.953   1.940   
1.928   1.917   1.908   1.899   1.891
 17        1.978   1.958   1.940   1.925   1.912   
1.900   1.889   1.879   1.870   1.862
 18        1.954   1.933   1.916   1.900   1.887   
1.875   1.864   1.854   1.845   1.837
 19        1.932   1.912   1.894   1.878   1.865   
1.852   1.841   1.831   1.822   1.814
 20        1.913   1.892   1.875   1.859   1.845   
1.833   1.821   1.811   1.802   1.794
 21        1.896   1.875   1.857   1.841   1.827   
1.815   1.803   1.793   1.784   1.776
 22        1.880   1.859   1.841   1.825   1.811   
1.798   1.787   1.777   1.768   1.759
 23        1.866   1.845   1.827   1.811   1.796   
1.784   1.772   1.762   1.753   1.744
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 24        1.853   1.832   1.814   1.797   1.783   
1.770   1.759   1.748   1.739   1.730
 25        1.841   1.820   1.802   1.785   1.771   
1.758   1.746   1.736   1.726   1.718
 26        1.830   1.809   1.790   1.774   1.760   
1.747   1.735   1.724   1.715   1.706
 27        1.820   1.799   1.780   1.764   1.749   
1.736   1.724   1.714   1.704   1.695
 28        1.811   1.790   1.771   1.754   1.740   
1.726   1.715   1.704   1.694   1.685
 29        1.802   1.781   1.762   1.745   1.731   
1.717   1.705   1.695   1.685   1.676
 30        1.794   1.773   1.754   1.737   1.722   
1.709   1.697   1.686   1.676   1.667
 31        1.787   1.765   1.746   1.729   1.714   
1.701   1.689   1.678   1.668   1.659
 32        1.780   1.758   1.739   1.722   1.707   
1.694   1.682   1.671   1.661   1.652
 33        1.773   1.751   1.732   1.715   1.700   
1.687   1.675   1.664   1.654   1.645
 34        1.767   1.745   1.726   1.709   1.694   
1.680   1.668   1.657   1.647   1.638
 35        1.761   1.739   1.720   1.703   1.688   
1.674   1.662   1.651   1.641   1.632
 36        1.756   1.734   1.715   1.697   1.682   
1.669   1.656   1.645   1.635   1.626
 37        1.751   1.729   1.709   1.692   1.677   
1.663   1.651   1.640   1.630   1.620
 38        1.746   1.724   1.704   1.687   1.672   
1.658   1.646   1.635   1.624   1.615
 39        1.741   1.719   1.700   1.682   1.667   
1.653   1.641   1.630   1.619   1.610
 40        1.737   1.715   1.695   1.678   1.662   
1.649   1.636   1.625   1.615   1.605
 41        1.733   1.710   1.691   1.673   1.658   
1.644   1.632   1.620   1.610   1.601
 42        1.729   1.706   1.687   1.669   1.654   
1.640   1.628   1.616   1.606   1.596
 43        1.725   1.703   1.683   1.665   1.650   
1.636   1.624   1.612   1.602   1.592
 44        1.721   1.699   1.679   1.662   1.646   
1.632   1.620   1.608   1.598   1.588
 45        1.718   1.695   1.676   1.658   1.643   
1.629   1.616   1.605   1.594   1.585
 46        1.715   1.692   1.672   1.655   1.639   
1.625   1.613   1.601   1.591   1.581
 47        1.712   1.689   1.669   1.652   1.636   
1.622   1.609   1.598   1.587   1.578
 48        1.709   1.686   1.666   1.648   1.633   
1.619   1.606   1.594   1.584   1.574
 49        1.706   1.683   1.663   1.645   1.630   
1.616   1.603   1.591   1.581   1.571
 50        1.703   1.680   1.660   1.643   1.627   
1.613   1.600   1.588   1.578   1.568
 51        1.700   1.677   1.658   1.640   1.624   
1.610   1.597   1.586   1.575   1.565
 52        1.698   1.675   1.655   1.637   1.621   
1.607   1.594   1.583   1.572   1.562
 53        1.695   1.672   1.652   1.635   1.619   
1.605   1.592   1.580   1.570   1.560
 54        1.693   1.670   1.650   1.632   1.616   
1.602   1.589   1.578   1.567   1.557
 55        1.691   1.668   1.648   1.630   1.614   
1.600   1.587   1.575   1.564   1.555
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 56        1.688   1.666   1.645   1.628   1.612   
1.597   1.585   1.573   1.562   1.552
 57        1.686   1.663   1.643   1.625   1.610   
1.595   1.582   1.571   1.560   1.550
 58        1.684   1.661   1.641   1.623   1.607   
1.593   1.580   1.568   1.558   1.548
 59        1.682   1.659   1.639   1.621   1.605   
1.591   1.578   1.566   1.555   1.546
 60        1.680   1.657   1.637   1.619   1.603   
1.589   1.576   1.564   1.553   1.543
 61        1.679   1.656   1.635   1.617   1.601   
1.587   1.574   1.562   1.551   1.541
 62        1.677   1.654   1.634   1.616   1.600   
1.585   1.572   1.560   1.549   1.540
 63        1.675   1.652   1.632   1.614   1.598   
1.583   1.570   1.558   1.548   1.538
 64        1.673   1.650   1.630   1.612   1.596   
1.582   1.569   1.557   1.546   1.536
 65        1.672   1.649   1.628   1.610   1.594   
1.580   1.567   1.555   1.544   1.534
 66        1.670   1.647   1.627   1.609   1.593   
1.578   1.565   1.553   1.542   1.532
 67        1.669   1.646   1.625   1.607   1.591   
1.577   1.564   1.552   1.541   1.531
 68        1.667   1.644   1.624   1.606   1.590   
1.575   1.562   1.550   1.539   1.529
 69        1.666   1.643   1.622   1.604   1.588   
1.574   1.560   1.548   1.538   1.527
 70        1.665   1.641   1.621   1.603   1.587   
1.572   1.559   1.547   1.536   1.526
 71        1.663   1.640   1.619   1.601   1.585   
1.571   1.557   1.545   1.535   1.524
 72        1.662   1.639   1.618   1.600   1.584   
1.569   1.556   1.544   1.533   1.523
 73        1.661   1.637   1.617   1.599   1.583   
1.568   1.555   1.543   1.532   1.522
 74        1.659   1.636   1.616   1.597   1.581   
1.567   1.553   1.541   1.530   1.520
 75        1.658   1.635   1.614   1.596   1.580   
1.565   1.552   1.540   1.529   1.519
 76        1.657   1.634   1.613   1.595   1.579   
1.564   1.551   1.539   1.528   1.518
 77        1.656   1.632   1.612   1.594   1.578   
1.563   1.550   1.538   1.527   1.516
 78        1.655   1.631   1.611   1.593   1.576   
1.562   1.548   1.536   1.525   1.515
 79        1.654   1.630   1.610   1.592   1.575   
1.561   1.547   1.535   1.524   1.514
 80        1.653   1.629   1.609   1.590   1.574   
1.559   1.546   1.534   1.523   1.513
 81        1.652   1.628   1.608   1.589   1.573   
1.558   1.545   1.533   1.522   1.512
 82        1.651   1.627   1.607   1.588   1.572   
1.557   1.544   1.532   1.521   1.511
 83        1.650   1.626   1.606   1.587   1.571   
1.556   1.543   1.531   1.520   1.509
 84        1.649   1.625   1.605   1.586   1.570   
1.555   1.542   1.530   1.519   1.508
 85        1.648   1.624   1.604   1.585   1.569   
1.554   1.541   1.529   1.518   1.507
 86        1.647   1.623   1.603   1.584   1.568   
1.553   1.540   1.528   1.517   1.506
 87        1.646   1.622   1.602   1.583   1.567   
1.552   1.539   1.527   1.516   1.505
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 88        1.645   1.622   1.601   1.583   1.566   
1.551   1.538   1.526   1.515   1.504
 89        1.644   1.621   1.600   1.582   1.565   
1.550   1.537   1.525   1.514   1.503
 90        1.643   1.620   1.599   1.581   1.564   
1.550   1.536   1.524   1.513   1.503
 91        1.643   1.619   1.598   1.580   1.564   
1.549   1.535   1.523   1.512   1.502
 92        1.642   1.618   1.598   1.579   1.563   
1.548   1.534   1.522   1.511   1.501
 93        1.641   1.617   1.597   1.578   1.562   
1.547   1.534   1.521   1.510   1.500
 94        1.640   1.617   1.596   1.578   1.561   
1.546   1.533   1.521   1.509   1.499
 95        1.640   1.616   1.595   1.577   1.560   
1.545   1.532   1.520   1.509   1.498
 96        1.639   1.615   1.594   1.576   1.560   
1.545   1.531   1.519   1.508   1.497
 97        1.638   1.614   1.594   1.575   1.559   
1.544   1.530   1.518   1.507   1.497
 98        1.637   1.614   1.593   1.575   1.558   
1.543   1.530   1.517   1.506   1.496
 99        1.637   1.613   1.592   1.574   1.557   
1.542   1.529   1.517   1.505   1.495
100        1.636   1.612   1.592   1.573   1.557   
1.542   1.528   1.516   1.505   1.494

Upper critical values of the F distribution
for  numerator degrees of freedom and  denominator

degrees of freedom

1% significance level

     \    1       2       3       4       5       
6       7       8       9      10

   

  1      4052.19 4999.52 5403.34 5624.62 5763.65 
5858.97 5928.33 5981.10 6022.50 6055.85
  2       98.502  99.000  99.166  99.249  99.300  
99.333  99.356  99.374  99.388  99.399
  3       34.116  30.816  29.457  28.710  28.237  
27.911  27.672  27.489  27.345  27.229
  4       21.198  18.000  16.694  15.977  15.522  
15.207  14.976  14.799  14.659  14.546
  5       16.258  13.274  12.060  11.392  10.967  
10.672  10.456  10.289  10.158  10.051
  6       13.745  10.925   9.780   9.148   8.746   
8.466   8.260   8.102   7.976   7.874
  7       12.246   9.547   8.451   7.847   7.460   
7.191   6.993   6.840   6.719   6.620
  8       11.259   8.649   7.591   7.006   6.632   
6.371   6.178   6.029   5.911   5.814
  9       10.561   8.022   6.992   6.422   6.057   
5.802   5.613   5.467   5.351   5.257
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 10       10.044   7.559   6.552   5.994   5.636   
5.386   5.200   5.057   4.942   4.849
 11        9.646   7.206   6.217   5.668   5.316   
5.069   4.886   4.744   4.632   4.539
 12        9.330   6.927   5.953   5.412   5.064   
4.821   4.640   4.499   4.388   4.296
 13        9.074   6.701   5.739   5.205   4.862   
4.620   4.441   4.302   4.191   4.100
 14        8.862   6.515   5.564   5.035   4.695   
4.456   4.278   4.140   4.030   3.939
 15        8.683   6.359   5.417   4.893   4.556   
4.318   4.142   4.004   3.895   3.805
 16        8.531   6.226   5.292   4.773   4.437   
4.202   4.026   3.890   3.780   3.691
 17        8.400   6.112   5.185   4.669   4.336   
4.102   3.927   3.791   3.682   3.593
 18        8.285   6.013   5.092   4.579   4.248   
4.015   3.841   3.705   3.597   3.508
 19        8.185   5.926   5.010   4.500   4.171   
3.939   3.765   3.631   3.523   3.434
 20        8.096   5.849   4.938   4.431   4.103   
3.871   3.699   3.564   3.457   3.368
 21        8.017   5.780   4.874   4.369   4.042   
3.812   3.640   3.506   3.398   3.310
 22        7.945   5.719   4.817   4.313   3.988   
3.758   3.587   3.453   3.346   3.258
 23        7.881   5.664   4.765   4.264   3.939   
3.710   3.539   3.406   3.299   3.211
 24        7.823   5.614   4.718   4.218   3.895   
3.667   3.496   3.363   3.256   3.168
 25        7.770   5.568   4.675   4.177   3.855   
3.627   3.457   3.324   3.217   3.129
 26        7.721   5.526   4.637   4.140   3.818   
3.591   3.421   3.288   3.182   3.094
 27        7.677   5.488   4.601   4.106   3.785   
3.558   3.388   3.256   3.149   3.062
 28        7.636   5.453   4.568   4.074   3.754   
3.528   3.358   3.226   3.120   3.032
 29        7.598   5.420   4.538   4.045   3.725   
3.499   3.330   3.198   3.092   3.005
 30        7.562   5.390   4.510   4.018   3.699   
3.473   3.305   3.173   3.067   2.979
 31        7.530   5.362   4.484   3.993   3.675   
3.449   3.281   3.149   3.043   2.955
 32        7.499   5.336   4.459   3.969   3.652   
3.427   3.258   3.127   3.021   2.934
 33        7.471   5.312   4.437   3.948   3.630   
3.406   3.238   3.106   3.000   2.913
 34        7.444   5.289   4.416   3.927   3.611   
3.386   3.218   3.087   2.981   2.894
 35        7.419   5.268   4.396   3.908   3.592   
3.368   3.200   3.069   2.963   2.876
 36        7.396   5.248   4.377   3.890   3.574   
3.351   3.183   3.052   2.946   2.859
 37        7.373   5.229   4.360   3.873   3.558   
3.334   3.167   3.036   2.930   2.843
 38        7.353   5.211   4.343   3.858   3.542   
3.319   3.152   3.021   2.915   2.828
 39        7.333   5.194   4.327   3.843   3.528   
3.305   3.137   3.006   2.901   2.814
 40        7.314   5.179   4.313   3.828   3.514   
3.291   3.124   2.993   2.888   2.801
 41        7.296   5.163   4.299   3.815   3.501   
3.278   3.111   2.980   2.875   2.788
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 42        7.280   5.149   4.285   3.802   3.488   
3.266   3.099   2.968   2.863   2.776
 43        7.264   5.136   4.273   3.790   3.476   
3.254   3.087   2.957   2.851   2.764
 44        7.248   5.123   4.261   3.778   3.465   
3.243   3.076   2.946   2.840   2.754
 45        7.234   5.110   4.249   3.767   3.454   
3.232   3.066   2.935   2.830   2.743
 46        7.220   5.099   4.238   3.757   3.444   
3.222   3.056   2.925   2.820   2.733
 47        7.207   5.087   4.228   3.747   3.434   
3.213   3.046   2.916   2.811   2.724
 48        7.194   5.077   4.218   3.737   3.425   
3.204   3.037   2.907   2.802   2.715
 49        7.182   5.066   4.208   3.728   3.416   
3.195   3.028   2.898   2.793   2.706
 50        7.171   5.057   4.199   3.720   3.408   
3.186   3.020   2.890   2.785   2.698
 51        7.159   5.047   4.191   3.711   3.400   
3.178   3.012   2.882   2.777   2.690
 52        7.149   5.038   4.182   3.703   3.392   
3.171   3.005   2.874   2.769   2.683
 53        7.139   5.030   4.174   3.695   3.384   
3.163   2.997   2.867   2.762   2.675
 54        7.129   5.021   4.167   3.688   3.377   
3.156   2.990   2.860   2.755   2.668
 55        7.119   5.013   4.159   3.681   3.370   
3.149   2.983   2.853   2.748   2.662
 56        7.110   5.006   4.152   3.674   3.363   
3.143   2.977   2.847   2.742   2.655
 57        7.102   4.998   4.145   3.667   3.357   
3.136   2.971   2.841   2.736   2.649
 58        7.093   4.991   4.138   3.661   3.351   
3.130   2.965   2.835   2.730   2.643
 59        7.085   4.984   4.132   3.655   3.345   
3.124   2.959   2.829   2.724   2.637
 60        7.077   4.977   4.126   3.649   3.339   
3.119   2.953   2.823   2.718   2.632
 61        7.070   4.971   4.120   3.643   3.333   
3.113   2.948   2.818   2.713   2.626
 62        7.062   4.965   4.114   3.638   3.328   
3.108   2.942   2.813   2.708   2.621
 63        7.055   4.959   4.109   3.632   3.323   
3.103   2.937   2.808   2.703   2.616
 64        7.048   4.953   4.103   3.627   3.318   
3.098   2.932   2.803   2.698   2.611
 65        7.042   4.947   4.098   3.622   3.313   
3.093   2.928   2.798   2.693   2.607
 66        7.035   4.942   4.093   3.618   3.308   
3.088   2.923   2.793   2.689   2.602
 67        7.029   4.937   4.088   3.613   3.304   
3.084   2.919   2.789   2.684   2.598
 68        7.023   4.932   4.083   3.608   3.299   
3.080   2.914   2.785   2.680   2.593
 69        7.017   4.927   4.079   3.604   3.295   
3.075   2.910   2.781   2.676   2.589
 70        7.011   4.922   4.074   3.600   3.291   
3.071   2.906   2.777   2.672   2.585
 71        7.006   4.917   4.070   3.596   3.287   
3.067   2.902   2.773   2.668   2.581
 72        7.001   4.913   4.066   3.591   3.283   
3.063   2.898   2.769   2.664   2.578
 73        6.995   4.908   4.062   3.588   3.279   
3.060   2.895   2.765   2.660   2.574
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 74        6.990   4.904   4.058   3.584   3.275   
3.056   2.891   2.762   2.657   2.570
 75        6.985   4.900   4.054   3.580   3.272   
3.052   2.887   2.758   2.653   2.567
 76        6.981   4.896   4.050   3.577   3.268   
3.049   2.884   2.755   2.650   2.563
 77        6.976   4.892   4.047   3.573   3.265   
3.046   2.881   2.751   2.647   2.560
 78        6.971   4.888   4.043   3.570   3.261   
3.042   2.877   2.748   2.644   2.557
 79        6.967   4.884   4.040   3.566   3.258   
3.039   2.874   2.745   2.640   2.554
 80        6.963   4.881   4.036   3.563   3.255   
3.036   2.871   2.742   2.637   2.551
 81        6.958   4.877   4.033   3.560   3.252   
3.033   2.868   2.739   2.634   2.548
 82        6.954   4.874   4.030   3.557   3.249   
3.030   2.865   2.736   2.632   2.545
 83        6.950   4.870   4.027   3.554   3.246   
3.027   2.863   2.733   2.629   2.542
 84        6.947   4.867   4.024   3.551   3.243   
3.025   2.860   2.731   2.626   2.539
 85        6.943   4.864   4.021   3.548   3.240   
3.022   2.857   2.728   2.623   2.537
 86        6.939   4.861   4.018   3.545   3.238   
3.019   2.854   2.725   2.621   2.534
 87        6.935   4.858   4.015   3.543   3.235   
3.017   2.852   2.723   2.618   2.532
 88        6.932   4.855   4.012   3.540   3.233   
3.014   2.849   2.720   2.616   2.529
 89        6.928   4.852   4.010   3.538   3.230   
3.012   2.847   2.718   2.613   2.527
 90        6.925   4.849   4.007   3.535   3.228   
3.009   2.845   2.715   2.611   2.524
 91        6.922   4.846   4.004   3.533   3.225   
3.007   2.842   2.713   2.609   2.522
 92        6.919   4.844   4.002   3.530   3.223   
3.004   2.840   2.711   2.606   2.520
 93        6.915   4.841   3.999   3.528   3.221   
3.002   2.838   2.709   2.604   2.518
 94        6.912   4.838   3.997   3.525   3.218   
3.000   2.835   2.706   2.602   2.515
 95        6.909   4.836   3.995   3.523   3.216   
2.998   2.833   2.704   2.600   2.513
 96        6.906   4.833   3.992   3.521   3.214   
2.996   2.831   2.702   2.598   2.511
 97        6.904   4.831   3.990   3.519   3.212   
2.994   2.829   2.700   2.596   2.509
 98        6.901   4.829   3.988   3.517   3.210   
2.992   2.827   2.698   2.594   2.507
 99        6.898   4.826   3.986   3.515   3.208   
2.990   2.825   2.696   2.592   2.505
100        6.895   4.824   3.984   3.513   3.206   
2.988   2.823   2.694   2.590   2.503

     \    11      12      13      14      15      
16      17      18      19      20

   

  1.     6083.35 6106.35 6125.86 6142.70 6157.28 
6170.12 6181.42 6191.52 6200.58 6208.74
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  2.      99.408  99.416  99.422  99.428  99.432  
99.437  99.440  99.444  99.447  99.449
  3.      27.133  27.052  26.983  26.924  26.872  
26.827  26.787  26.751  26.719  26.690
  4.      14.452  14.374  14.307  14.249  14.198  
14.154  14.115  14.080  14.048  14.020
  5.       9.963   9.888   9.825   9.770   9.722   
9.680   9.643   9.610   9.580   9.553
  6.       7.790   7.718   7.657   7.605   7.559   
7.519   7.483   7.451   7.422   7.396
  7.       6.538   6.469   6.410   6.359   6.314   
6.275   6.240   6.209   6.181   6.155
  8.       5.734   5.667   5.609   5.559   5.515   
5.477   5.442   5.412   5.384   5.359
  9.       5.178   5.111   5.055   5.005   4.962   
4.924   4.890   4.860   4.833   4.808
 10.       4.772   4.706   4.650   4.601   4.558   
4.520   4.487   4.457   4.430   4.405
 11.       4.462   4.397   4.342   4.293   4.251   
4.213   4.180   4.150   4.123   4.099
 12.       4.220   4.155   4.100   4.052   4.010   
3.972   3.939   3.909   3.883   3.858
 13.       4.025   3.960   3.905   3.857   3.815   
3.778   3.745   3.716   3.689   3.665
 14.       3.864   3.800   3.745   3.698   3.656   
3.619   3.586   3.556   3.529   3.505
 15.       3.730   3.666   3.612   3.564   3.522   
3.485   3.452   3.423   3.396   3.372
 16.       3.616   3.553   3.498   3.451   3.409   
3.372   3.339   3.310   3.283   3.259
 17.       3.519   3.455   3.401   3.353   3.312   
3.275   3.242   3.212   3.186   3.162
 18.       3.434   3.371   3.316   3.269   3.227   
3.190   3.158   3.128   3.101   3.077
 19.       3.360   3.297   3.242   3.195   3.153   
3.116   3.084   3.054   3.027   3.003
 20.       3.294   3.231   3.177   3.130   3.088   
3.051   3.018   2.989   2.962   2.938
 21.       3.236   3.173   3.119   3.072   3.030   
2.993   2.960   2.931   2.904   2.880
 22.       3.184   3.121   3.067   3.019   2.978   
2.941   2.908   2.879   2.852   2.827
 23.       3.137   3.074   3.020   2.973   2.931   
2.894   2.861   2.832   2.805   2.781
 24.       3.094   3.032   2.977   2.930   2.889   
2.852   2.819   2.789   2.762   2.738
 25.       3.056   2.993   2.939   2.892   2.850   
2.813   2.780   2.751   2.724   2.699
 26.       3.021   2.958   2.904   2.857   2.815   
2.778   2.745   2.715   2.688   2.664
 27.       2.988   2.926   2.871   2.824   2.783   
2.746   2.713   2.683   2.656   2.632
 28.       2.959   2.896   2.842   2.795   2.753   
2.716   2.683   2.653   2.626   2.602
 29.       2.931   2.868   2.814   2.767   2.726   
2.689   2.656   2.626   2.599   2.574
 30.       2.906   2.843   2.789   2.742   2.700   
2.663   2.630   2.600   2.573   2.549
 31.       2.882   2.820   2.765   2.718   2.677   
2.640   2.606   2.577   2.550   2.525
 32.       2.860   2.798   2.744   2.696   2.655   
2.618   2.584   2.555   2.527   2.503
 33.       2.840   2.777   2.723   2.676   2.634   
2.597   2.564   2.534   2.507   2.482
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 34.       2.821   2.758   2.704   2.657   2.615   
2.578   2.545   2.515   2.488   2.463
 35.       2.803   2.740   2.686   2.639   2.597   
2.560   2.527   2.497   2.470   2.445
 36.       2.786   2.723   2.669   2.622   2.580   
2.543   2.510   2.480   2.453   2.428
 37.       2.770   2.707   2.653   2.606   2.564   
2.527   2.494   2.464   2.437   2.412
 38.       2.755   2.692   2.638   2.591   2.549   
2.512   2.479   2.449   2.421   2.397
 39.       2.741   2.678   2.624   2.577   2.535   
2.498   2.465   2.434   2.407   2.382
 40.       2.727   2.665   2.611   2.563   2.522   
2.484   2.451   2.421   2.394   2.369
 41.       2.715   2.652   2.598   2.551   2.509   
2.472   2.438   2.408   2.381   2.356
 42.       2.703   2.640   2.586   2.539   2.497   
2.460   2.426   2.396   2.369   2.344
 43.       2.691   2.629   2.575   2.527   2.485   
2.448   2.415   2.385   2.357   2.332
 44.       2.680   2.618   2.564   2.516   2.475   
2.437   2.404   2.374   2.346   2.321
 45.       2.670   2.608   2.553   2.506   2.464   
2.427   2.393   2.363   2.336   2.311
 46.       2.660   2.598   2.544   2.496   2.454   
2.417   2.384   2.353   2.326   2.301
 47.       2.651   2.588   2.534   2.487   2.445   
2.408   2.374   2.344   2.316   2.291
 48.       2.642   2.579   2.525   2.478   2.436   
2.399   2.365   2.335   2.307   2.282
 49.       2.633   2.571   2.517   2.469   2.427   
2.390   2.356   2.326   2.299   2.274
 50.       2.625   2.562   2.508   2.461   2.419   
2.382   2.348   2.318   2.290   2.265
 51.       2.617   2.555   2.500   2.453   2.411   
2.374   2.340   2.310   2.282   2.257
 52.       2.610   2.547   2.493   2.445   2.403   
2.366   2.333   2.302   2.275   2.250
 53.       2.602   2.540   2.486   2.438   2.396   
2.359   2.325   2.295   2.267   2.242
 54.       2.595   2.533   2.479   2.431   2.389   
2.352   2.318   2.288   2.260   2.235
 55.       2.589   2.526   2.472   2.424   2.382   
2.345   2.311   2.281   2.253   2.228
 56.       2.582   2.520   2.465   2.418   2.376   
2.339   2.305   2.275   2.247   2.222
 57.       2.576   2.513   2.459   2.412   2.370   
2.332   2.299   2.268   2.241   2.215
 58.       2.570   2.507   2.453   2.406   2.364   
2.326   2.293   2.262   2.235   2.209
 59.       2.564   2.502   2.447   2.400   2.358   
2.320   2.287   2.256   2.229   2.203
 60.       2.559   2.496   2.442   2.394   2.352   
2.315   2.281   2.251   2.223   2.198
 61.       2.553   2.491   2.436   2.389   2.347   
2.309   2.276   2.245   2.218   2.192
 62.       2.548   2.486   2.431   2.384   2.342   
2.304   2.270   2.240   2.212   2.187
 63.       2.543   2.481   2.426   2.379   2.337   
2.299   2.265   2.235   2.207   2.182
 64.       2.538   2.476   2.421   2.374   2.332   
2.294   2.260   2.230   2.202   2.177
 65.       2.534   2.471   2.417   2.369   2.327   
2.289   2.256   2.225   2.198   2.172
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 66.       2.529   2.466   2.412   2.365   2.322   
2.285   2.251   2.221   2.193   2.168
 67.       2.525   2.462   2.408   2.360   2.318   
2.280   2.247   2.216   2.188   2.163
 68.       2.520   2.458   2.403   2.356   2.314   
2.276   2.242   2.212   2.184   2.159
 69.       2.516   2.454   2.399   2.352   2.310   
2.272   2.238   2.208   2.180   2.155
 70.       2.512   2.450   2.395   2.348   2.306   
2.268   2.234   2.204   2.176   2.150
 71.       2.508   2.446   2.391   2.344   2.302   
2.264   2.230   2.200   2.172   2.146
 72.       2.504   2.442   2.388   2.340   2.298   
2.260   2.226   2.196   2.168   2.143
 73.       2.501   2.438   2.384   2.336   2.294   
2.256   2.223   2.192   2.164   2.139
 74.       2.497   2.435   2.380   2.333   2.290   
2.253   2.219   2.188   2.161   2.135
 75.       2.494   2.431   2.377   2.329   2.287   
2.249   2.215   2.185   2.157   2.132
 76.       2.490   2.428   2.373   2.326   2.284   
2.246   2.212   2.181   2.154   2.128
 77.       2.487   2.424   2.370   2.322   2.280   
2.243   2.209   2.178   2.150   2.125
 78.       2.484   2.421   2.367   2.319   2.277   
2.239   2.206   2.175   2.147   2.122
 79.       2.481   2.418   2.364   2.316   2.274   
2.236   2.202   2.172   2.144   2.118
 80.       2.478   2.415   2.361   2.313   2.271   
2.233   2.199   2.169   2.141   2.115
 81.       2.475   2.412   2.358   2.310   2.268   
2.230   2.196   2.166   2.138   2.112
 82.       2.472   2.409   2.355   2.307   2.265   
2.227   2.193   2.163   2.135   2.109
 83.       2.469   2.406   2.352   2.304   2.262   
2.224   2.191   2.160   2.132   2.106
 84.       2.466   2.404   2.349   2.302   2.259   
2.222   2.188   2.157   2.129   2.104
 85.       2.464   2.401   2.347   2.299   2.257   
2.219   2.185   2.154   2.126   2.101
 86.       2.461   2.398   2.344   2.296   2.254   
2.216   2.182   2.152   2.124   2.098
 87.       2.459   2.396   2.342   2.294   2.252   
2.214   2.180   2.149   2.121   2.096
 88.       2.456   2.393   2.339   2.291   2.249   
2.211   2.177   2.147   2.119   2.093
 89.       2.454   2.391   2.337   2.289   2.247   
2.209   2.175   2.144   2.116   2.091
 90.       2.451   2.389   2.334   2.286   2.244   
2.206   2.172   2.142   2.114   2.088
 91.       2.449   2.386   2.332   2.284   2.242   
2.204   2.170   2.139   2.111   2.086
 92.       2.447   2.384   2.330   2.282   2.240   
2.202   2.168   2.137   2.109   2.083
 93.       2.444   2.382   2.327   2.280   2.237   
2.200   2.166   2.135   2.107   2.081
 94.       2.442   2.380   2.325   2.277   2.235   
2.197   2.163   2.133   2.105   2.079
 95.       2.440   2.378   2.323   2.275   2.233   
2.195   2.161   2.130   2.102   2.077
 96.       2.438   2.375   2.321   2.273   2.231   
2.193   2.159   2.128   2.100   2.075
 97.       2.436   2.373   2.319   2.271   2.229   
2.191   2.157   2.126   2.098   2.073
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 98.       2.434   2.371   2.317   2.269   2.227   
2.189   2.155   2.124   2.096   2.071
 99.       2.432   2.369   2.315   2.267   2.225   
2.187   2.153   2.122   2.094   2.069
100.       2.430   2.368   2.313   2.265   2.223   
2.185   2.151   2.120   2.092   2.067

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.3.6.7.4. Critical Values of the Chi-Square
Distribution

How to
Use This
Table

This table contains the critical values of the chi-square
distribution. Because of the lack of symmetry of the chi-
square distribution, separate tables are provided for the upper
and lower tails of the distribution.

A test statistic with ν degrees of freedom is computed from
the data. For upper-tail one-sided tests, the test statistic is
compared with a value from the table of upper-tail critical
values. For two-sided tests, the test statistic is compared with
values from both the table for the upper-tail critical values and
the table for the lower-tail critical values.

The significance level, α, is demonstrated with the graph
below which shows a chi-square distribution with 3 degrees of
freedom for a two-sided test at significance level α = 0.05. If
the test statistic is greater than the upper-tail critical value or
less than the lower-tail critical value, we reject the null
hypothesis. Specific instructions are given below.

Given a specified value of α:

1. For a two-sided test, find the column corresponding to
1-α/2 in the table for upper-tail critical values and reject

http://www.itl.nist.gov/div898/handbook/index.htm
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the null hypothesis if the test statistic is greater than the
tabled value. Similarly, find the column corresponding
to α/2 in the table for lower-tail critical values and
reject the null hypothesis if the test statistic is less than
the tabled value.

2. For an upper-tail one-sided test, find the column
corresponding to 1-α in the table containing upper-tail
critical and reject the null hypothesis if the test statistic
is greater than the tabled value.

3. For a lower-tail one-sided test, find the column
corresponding to α in the lower-tail critical values table
and reject the null hypothesis if the computed test
statistic is less than the tabled value.

Upper-tail critical values of chi-square distribution with 
degrees of freedom

                Probability less than the critical 
value
             0.90      0.95     0.975      0.99     
0.999

  1          2.706     3.841     5.024     6.635    
10.828
  2          4.605     5.991     7.378     9.210    
13.816
  3          6.251     7.815     9.348    11.345    
16.266
  4          7.779     9.488    11.143    13.277    
18.467
  5          9.236    11.070    12.833    15.086    
20.515
  6         10.645    12.592    14.449    16.812    
22.458
  7         12.017    14.067    16.013    18.475    
24.322
  8         13.362    15.507    17.535    20.090    
26.125
  9         14.684    16.919    19.023    21.666    
27.877
 10         15.987    18.307    20.483    23.209    
29.588
 11         17.275    19.675    21.920    24.725    
31.264
 12         18.549    21.026    23.337    26.217    
32.910
 13         19.812    22.362    24.736    27.688    
34.528
 14         21.064    23.685    26.119    29.141    
36.123
 15         22.307    24.996    27.488    30.578    
37.697
 16         23.542    26.296    28.845    32.000    
39.252
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 17         24.769    27.587    30.191    33.409    
40.790
 18         25.989    28.869    31.526    34.805    
42.312
 19         27.204    30.144    32.852    36.191    
43.820
 20         28.412    31.410    34.170    37.566    
45.315
 21         29.615    32.671    35.479    38.932    
46.797
 22         30.813    33.924    36.781    40.289    
48.268
 23         32.007    35.172    38.076    41.638    
49.728
 24         33.196    36.415    39.364    42.980    
51.179
 25         34.382    37.652    40.646    44.314    
52.620
 26         35.563    38.885    41.923    45.642    
54.052
 27         36.741    40.113    43.195    46.963    
55.476
 28         37.916    41.337    44.461    48.278    
56.892
 29         39.087    42.557    45.722    49.588    
58.301
 30         40.256    43.773    46.979    50.892    
59.703
 31         41.422    44.985    48.232    52.191    
61.098
 32         42.585    46.194    49.480    53.486    
62.487
 33         43.745    47.400    50.725    54.776    
63.870
 34         44.903    48.602    51.966    56.061    
65.247
 35         46.059    49.802    53.203    57.342    
66.619
 36         47.212    50.998    54.437    58.619    
67.985
 37         48.363    52.192    55.668    59.893    
69.347
 38         49.513    53.384    56.896    61.162    
70.703
 39         50.660    54.572    58.120    62.428    
72.055
 40         51.805    55.758    59.342    63.691    
73.402
 41         52.949    56.942    60.561    64.950    
74.745
 42         54.090    58.124    61.777    66.206    
76.084
 43         55.230    59.304    62.990    67.459    
77.419
 44         56.369    60.481    64.201    68.710    
78.750
 45         57.505    61.656    65.410    69.957    
80.077
 46         58.641    62.830    66.617    71.201    
81.400
 47         59.774    64.001    67.821    72.443    
82.720
 48         60.907    65.171    69.023    73.683    
84.037
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 49         62.038    66.339    70.222    74.919    
85.351
 50         63.167    67.505    71.420    76.154    
86.661
 51         64.295    68.669    72.616    77.386    
87.968
 52         65.422    69.832    73.810    78.616    
89.272
 53         66.548    70.993    75.002    79.843    
90.573
 54         67.673    72.153    76.192    81.069    
91.872
 55         68.796    73.311    77.380    82.292    
93.168
 56         69.919    74.468    78.567    83.513    
94.461
 57         71.040    75.624    79.752    84.733    
95.751
 58         72.160    76.778    80.936    85.950    
97.039
 59         73.279    77.931    82.117    87.166    
98.324
 60         74.397    79.082    83.298    88.379    
99.607
 61         75.514    80.232    84.476    89.591   
100.888
 62         76.630    81.381    85.654    90.802   
102.166
 63         77.745    82.529    86.830    92.010   
103.442
 64         78.860    83.675    88.004    93.217   
104.716
 65         79.973    84.821    89.177    94.422   
105.988
 66         81.085    85.965    90.349    95.626   
107.258
 67         82.197    87.108    91.519    96.828   
108.526
 68         83.308    88.250    92.689    98.028   
109.791
 69         84.418    89.391    93.856    99.228   
111.055
 70         85.527    90.531    95.023   100.425   
112.317
 71         86.635    91.670    96.189   101.621   
113.577
 72         87.743    92.808    97.353   102.816   
114.835
 73         88.850    93.945    98.516   104.010   
116.092
 74         89.956    95.081    99.678   105.202   
117.346
 75         91.061    96.217   100.839   106.393   
118.599
 76         92.166    97.351   101.999   107.583   
119.850
 77         93.270    98.484   103.158   108.771   
121.100
 78         94.374    99.617   104.316   109.958   
122.348
 79         95.476   100.749   105.473   111.144   
123.594
 80         96.578   101.879   106.629   112.329   
124.839
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 81         97.680   103.010   107.783   113.512   
126.083
 82         98.780   104.139   108.937   114.695   
127.324
 83         99.880   105.267   110.090   115.876   
128.565
 84        100.980   106.395   111.242   117.057   
129.804
 85        102.079   107.522   112.393   118.236   
131.041
 86        103.177   108.648   113.544   119.414   
132.277
 87        104.275   109.773   114.693   120.591   
133.512
 88        105.372   110.898   115.841   121.767   
134.746
 89        106.469   112.022   116.989   122.942   
135.978
 90        107.565   113.145   118.136   124.116   
137.208
 91        108.661   114.268   119.282   125.289   
138.438
 92        109.756   115.390   120.427   126.462   
139.666
 93        110.850   116.511   121.571   127.633   
140.893
 94        111.944   117.632   122.715   128.803   
142.119
 95        113.038   118.752   123.858   129.973   
143.344
 96        114.131   119.871   125.000   131.141   
144.567
 97        115.223   120.990   126.141   132.309   
145.789
 98        116.315   122.108   127.282   133.476   
147.010
 99        117.407   123.225   128.422   134.642   
148.230
100        118.498   124.342   129.561   135.807   
149.449
100        118.498   124.342   129.561   135.807   
149.449

Lower-tail critical values of chi-square distribution with 
degrees of freedom

                Probability less than the critical 
value
             0.10     0.05     0.025      0.01     
0.001

  1.          .016      .004      .001      .000      
.000
  2.          .211      .103      .051      .020      
.002
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  3.          .584      .352      .216      .115      
.024
  4.         1.064      .711      .484      .297      
.091
  5.         1.610     1.145      .831      .554      
.210
  6.         2.204     1.635     1.237      .872      
.381
  7.         2.833     2.167     1.690     1.239      
.598
  8.         3.490     2.733     2.180     1.646      
.857
  9.         4.168     3.325     2.700     2.088     
1.152
 10.         4.865     3.940     3.247     2.558     
1.479
 11.         5.578     4.575     3.816     3.053     
1.834
 12.         6.304     5.226     4.404     3.571     
2.214
 13.         7.042     5.892     5.009     4.107     
2.617
 14.         7.790     6.571     5.629     4.660     
3.041
 15.         8.547     7.261     6.262     5.229     
3.483
 16.         9.312     7.962     6.908     5.812     
3.942
 17.        10.085     8.672     7.564     6.408     
4.416
 18.        10.865     9.390     8.231     7.015     
4.905
 19.        11.651    10.117     8.907     7.633     
5.407
 20.        12.443    10.851     9.591     8.260     
5.921
 21.        13.240    11.591    10.283     8.897     
6.447
 22.        14.041    12.338    10.982     9.542     
6.983
 23.        14.848    13.091    11.689    10.196     
7.529
 24.        15.659    13.848    12.401    10.856     
8.085
 25.        16.473    14.611    13.120    11.524     
8.649
 26.        17.292    15.379    13.844    12.198     
9.222
 27.        18.114    16.151    14.573    12.879     
9.803
 28.        18.939    16.928    15.308    13.565    
10.391
 29.        19.768    17.708    16.047    14.256    
10.986
 30.        20.599    18.493    16.791    14.953    
11.588
 31.        21.434    19.281    17.539    15.655    
12.196
 32.        22.271    20.072    18.291    16.362    
12.811
 33.        23.110    20.867    19.047    17.074    
13.431
 34.        23.952    21.664    19.806    17.789    
14.057
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 35.        24.797    22.465    20.569    18.509    
14.688
 36.        25.643    23.269    21.336    19.233    
15.324
 37.        26.492    24.075    22.106    19.960    
15.965
 38.        27.343    24.884    22.878    20.691    
16.611
 39.        28.196    25.695    23.654    21.426    
17.262
 40.        29.051    26.509    24.433    22.164    
17.916
 41.        29.907    27.326    25.215    22.906    
18.575
 42.        30.765    28.144    25.999    23.650    
19.239
 43.        31.625    28.965    26.785    24.398    
19.906
 44.        32.487    29.787    27.575    25.148    
20.576
 45.        33.350    30.612    28.366    25.901    
21.251
 46.        34.215    31.439    29.160    26.657    
21.929
 47.        35.081    32.268    29.956    27.416    
22.610
 48.        35.949    33.098    30.755    28.177    
23.295
 49.        36.818    33.930    31.555    28.941    
23.983
 50.        37.689    34.764    32.357    29.707    
24.674
 51.        38.560    35.600    33.162    30.475    
25.368
 52.        39.433    36.437    33.968    31.246    
26.065
 53.        40.308    37.276    34.776    32.018    
26.765
 54.        41.183    38.116    35.586    32.793    
27.468
 55.        42.060    38.958    36.398    33.570    
28.173
 56.        42.937    39.801    37.212    34.350    
28.881
 57.        43.816    40.646    38.027    35.131    
29.592
 58.        44.696    41.492    38.844    35.913    
30.305
 59.        45.577    42.339    39.662    36.698    
31.020
 60.        46.459    43.188    40.482    37.485    
31.738
 61.        47.342    44.038    41.303    38.273    
32.459
 62.        48.226    44.889    42.126    39.063    
33.181
 63.        49.111    45.741    42.950    39.855    
33.906
 64.        49.996    46.595    43.776    40.649    
34.633
 65.        50.883    47.450    44.603    41.444    
35.362
 66.        51.770    48.305    45.431    42.240    
36.093
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 67.        52.659    49.162    46.261    43.038    
36.826
 68.        53.548    50.020    47.092    43.838    
37.561
 69.        54.438    50.879    47.924    44.639    
38.298
 70.        55.329    51.739    48.758    45.442    
39.036
 71.        56.221    52.600    49.592    46.246    
39.777
 72.        57.113    53.462    50.428    47.051    
40.519
 73.        58.006    54.325    51.265    47.858    
41.264
 74.        58.900    55.189    52.103    48.666    
42.010
 75.        59.795    56.054    52.942    49.475    
42.757
 76.        60.690    56.920    53.782    50.286    
43.507
 77.        61.586    57.786    54.623    51.097    
44.258
 78.        62.483    58.654    55.466    51.910    
45.010
 79.        63.380    59.522    56.309    52.725    
45.764
 80.        64.278    60.391    57.153    53.540    
46.520
 81.        65.176    61.261    57.998    54.357    
47.277
 82.        66.076    62.132    58.845    55.174    
48.036
 83.        66.976    63.004    59.692    55.993    
48.796
 84.        67.876    63.876    60.540    56.813    
49.557
 85.        68.777    64.749    61.389    57.634    
50.320
 86.        69.679    65.623    62.239    58.456    
51.085
 87.        70.581    66.498    63.089    59.279    
51.850
 88.        71.484    67.373    63.941    60.103    
52.617
 89.        72.387    68.249    64.793    60.928    
53.386
 90.        73.291    69.126    65.647    61.754    
54.155
 91.        74.196    70.003    66.501    62.581    
54.926
 92.        75.100    70.882    67.356    63.409    
55.698
 93.        76.006    71.760    68.211    64.238    
56.472
 94.        76.912    72.640    69.068    65.068    
57.246
 95.        77.818    73.520    69.925    65.898    
58.022
 96.        78.725    74.401    70.783    66.730    
58.799
 97.        79.633    75.282    71.642    67.562    
59.577
 98.        80.541    76.164    72.501    68.396    
60.356
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 99.        81.449    77.046    73.361    69.230    
61.137
100.        82.358    77.929    74.222    70.065    
61.918
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1.3.6.7.5. Critical Values of the t* Distribution

How to
Use This
Table

This table contains upper critical values of the t* distribution
that are appropriate for determining whether or not a
calibration line is in a state of statistical control from
measurements on a check standard at three points in the
calibration interval. A test statistic with  degrees of freedom
is compared with the critical value. If the absolute value of the
test statistic exceeds the tabled value, the calibration of the
instrument is judged to be out of control.

Upper critical values of t* distribution at significance level 0.05
for testing the output of a linear calibration line at 3 points

                             

      1     37.544            61      2.455
      2      7.582            62      2.454
      3      4.826            63      2.453
      4      3.941            64      2.452
      5      3.518            65      2.451
      6      3.274            66      2.450
      7      3.115            67      2.449
      8      3.004            68      2.448
      9      2.923            69      2.447
     10      2.860            70      2.446
     11      2.811            71      2.445
     12      2.770            72      2.445
     13      2.737            73      2.444
     14      2.709            74      2.443
     15      2.685            75      2.442
     16      2.665            76      2.441
     17      2.647            77      2.441
     18      2.631            78      2.440
     19      2.617            79      2.439
     20      2.605            80      2.439
     21      2.594            81      2.438
     22      2.584            82      2.437
     23      2.574            83      2.437
     24      2.566            84      2.436
     25      2.558            85      2.436
     26      2.551            86      2.435
     27      2.545            87      2.435
     28      2.539            88      2.434
     29      2.534            89      2.434
     30      2.528            90      2.433
     31      2.524            91      2.432
     32      2.519            92      2.432
     33      2.515            93      2.431
     34      2.511            94      2.431
     35      2.507            95      2.431

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc37.htm
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http://www.itl.nist.gov/div898/handbook/mpc/section3/mpc371.htm
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     36      2.504            96      2.430
     37      2.501            97      2.430
     38      2.498            98      2.429
     39      2.495            99      2.429
     40      2.492           100      2.428
     41      2.489           101      2.428
     42      2.487           102      2.428
     43      2.484           103      2.427
     44      2.482           104      2.427
     45      2.480           105      2.426
     46      2.478           106      2.426
     47      2.476           107      2.426
     48      2.474           108      2.425
     49      2.472           109      2.425
     50      2.470           110      2.425
     51      2.469           111      2.424
     52      2.467           112      2.424
     53      2.466           113      2.424
     54      2.464           114      2.423
     55      2.463           115      2.423
     56      2.461           116      2.423
     57      2.460           117      2.422
     58      2.459           118      2.422
     59      2.457           119      2.422
     60      2.456           120      2.422

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.3.6.7.6. Critical Values of the Normal PPCC
Distribution

How to
Use This
Table

This table contains the critical values of the normal probability
plot correlation coefficient (PPCC) distribution that are
appropriate for determining whether or not a data set came
from a population with approximately a normal distribution. It
is used in conjuction with a normal probability plot. The test
statistic is the correlation coefficient of the points that make up
a normal probability plot. This test statistic is compared with
the critical value below. If the test statistic is less than the
tabulated value, the null hypothesis that the data came from a
population with a normal distribution is rejected.

For example, suppose a set of 50 data points had a correlation
coefficient of 0.985 from the normal probability plot. At the
5% significance level, the critical value is 0.9761. Since 0.985
is greater than 0.9761, we cannot reject the null hypothesis that
the data came from a population with a normal distribution.

Since perferct normality implies perfect correlation (i.e., a
correlation value of 1), we are only interested in rejecting
normality for correlation values that are too low. That is, this
is a lower one-tailed test.

The values in this table were determined from simulation
studies by Filliben and Devaney.

Critical values of the normal PPCC for testing if data come
from a normal distribution

   N          0.01          0.05

   3        0.8687        0.8790
   4        0.8234        0.8666
   5        0.8240        0.8786
   6        0.8351        0.8880
   7        0.8474        0.8970
   8        0.8590        0.9043
   9        0.8689        0.9115
  10        0.8765        0.9173
  11        0.8838        0.9223
  12        0.8918        0.9267
  13        0.8974        0.9310
  14        0.9029        0.9343

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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  15        0.9080        0.9376
  16        0.9121        0.9405
  17        0.9160        0.9433
  18        0.9196        0.9452
  19        0.9230        0.9479
  20        0.9256        0.9498
  21        0.9285        0.9515
  22        0.9308        0.9535
  23        0.9334        0.9548
  24        0.9356        0.9564
  25        0.9370        0.9575
  26        0.9393        0.9590
  27        0.9413        0.9600
  28        0.9428        0.9615
  29        0.9441        0.9622
  30        0.9462        0.9634
  31        0.9476        0.9644
  32        0.9490        0.9652
  33        0.9505        0.9661
  34        0.9521        0.9671
  35        0.9530        0.9678
  36        0.9540        0.9686
  37        0.9551        0.9693
  38        0.9555        0.9700
  39        0.9568        0.9704
  40        0.9576        0.9712
  41        0.9589        0.9719
  42        0.9593        0.9723
  43        0.9609        0.9730
  44        0.9611        0.9734
  45        0.9620        0.9739
  46        0.9629        0.9744
  47        0.9637        0.9748
  48        0.9640        0.9753
  49        0.9643        0.9758
  50        0.9654        0.9761
  55        0.9683        0.9781
  60        0.9706        0.9797
  65        0.9723        0.9809
  70        0.9742        0.9822
  75        0.9758        0.9831
  80        0.9771        0.9841
  85        0.9784        0.9850
  90        0.9797        0.9857
  95        0.9804        0.9864
 100        0.9814        0.9869
 110        0.9830        0.9881
 120        0.9841        0.9889
 130        0.9854        0.9897
 140        0.9865        0.9904
 150        0.9871        0.9909
 160        0.9879        0.9915
 170        0.9887        0.9919
 180        0.9891        0.9923
 190        0.9897        0.9927
 200        0.9903        0.9930
 210        0.9907        0.9933
 220        0.9910        0.9936
 230        0.9914        0.9939
 240        0.9917        0.9941
 250        0.9921        0.9943
 260        0.9924        0.9945
 270        0.9926        0.9947
 280        0.9929        0.9949
 290        0.9931        0.9951
 300        0.9933        0.9952
 310        0.9936        0.9954
 320        0.9937        0.9955
 330        0.9939        0.9956
 340        0.9941        0.9957
 350        0.9942        0.9958
 360        0.9944        0.9959
 370        0.9945        0.9960
 380        0.9947        0.9961
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 390        0.9948        0.9962
 400        0.9949        0.9963
 410        0.9950        0.9964
 420        0.9951        0.9965
 430        0.9953        0.9966
 440        0.9954        0.9966
 450        0.9954        0.9967
 460        0.9955        0.9968
 470        0.9956        0.9968
 480        0.9957        0.9969
 490        0.9958        0.9969
 500        0.9959        0.9970
 525        0.9961        0.9972
 550        0.9963        0.9973
 575        0.9964        0.9974
 600        0.9965        0.9975
 625        0.9967        0.9976
 650        0.9968        0.9977
 675        0.9969        0.9977
 700        0.9970        0.9978
 725        0.9971        0.9979
 750        0.9972        0.9980
 775        0.9973        0.9980
 800        0.9974        0.9981
 825        0.9975        0.9981
 850        0.9975        0.9982
 875        0.9976        0.9982
 900        0.9977        0.9983
 925        0.9977        0.9983
 950        0.9978        0.9984
 975        0.9978        0.9984
1000        0.9979        0.9984
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1. Exploratory Data Analysis 

1.4. EDA Case Studies

Summary This section presents a series of case studies that demonstrate
the application of EDA methods to specific problems. In some
cases, we have focused on just one EDA technique that
uncovers virtually all there is to know about the data. For other
case studies, we need several EDA techniques, the selection of
which is dictated by the outcome of the previous step in the
analaysis sequence. Note in these case studies how the flow of
the analysis is motivated by the focus on underlying
assumptions and general EDA principles.
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1. Exploratory Data Analysis 
1.4. EDA Case Studies 

1.4.1. Case Studies Introduction

Purpose The purpose of the first eight case studies is to show how
EDA graphics and quantitative measures and tests are
applied to data from scientific processes and to critique
those data with regard to the following assumptions that
typically underlie a measurement process; namely, that the
data behave like:

random drawings
from a fixed distribution
with a fixed location
with a fixed standard deviation

Case studies 9 and 10 show the use of EDA techniques in
distributional modeling and the analysis of a designed
experiment, respectively.

Yi = C + Ei If the above assumptions are satisfied, the process is said
to be statistically "in control" with the core characteristic
of having "predictability". That is, probability statements
can be made about the process, not only in the past, but
also in the future.

An appropriate model for an "in control" process is

Yi = C + Ei

where C is a constant (the "deterministic" or "structural"
component), and where Ei is the error term (or "random"
component).

The constant C is the average value of the process--it is the
primary summary number which shows up on any report.
Although C is (assumed) fixed, it is unknown, and so a
primary analysis objective of the engineer is to arrive at an
estimate of C.

This goal partitions into 4 sub-goals:

1. Is the most common estimator of C, , the best
estimator for C? What does "best" mean?

2. If  is best, what is the uncertainty  for . In
particular, is the usual formula for the uncertainty of 
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:

valid? Here, s is the standard deviation of the data
and N is the sample size.

3. If  is not the best estimator for C, what is a better
estimator for C (for example, median, midrange,
midmean)?

4. If there is a better estimator, , what is its
uncertainty? That is, what is ?

EDA and the routine checking of underlying assumptions
provides insight into all of the above.

1. Location and variation checks provide information
as to whether C is really constant.

2. Distributional checks indicate whether  is the best
estimator. Techniques for distributional checking
include histograms, normal probability plots, and
probability plot correlation coefficient plots.

3. Randomness checks ascertain whether the usual

is valid.

4. Distributional tests assist in determining a better
estimator, if needed.

5. Simulator tools (namely bootstrapping) provide
values for the uncertainty of alternative estimators.

Assumptions
not satisfied

If one or more of the above assumptions is not satisfied,
then we use EDA techniques, or some mix of EDA and
classical techniques, to find a more appropriate model for
the data. That is,

Yi = D + Ei

where D is the deterministic part and E is an error
component.

If the data are not random, then we may investigate fitting
some simple time series models to the data. If the constant
location and scale assumptions are violated, we may need
to investigate the measurement process to see if there is an
explanation.

The assumptions on the error term are still quite relevant
in the sense that for an appropriate model the error
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component should follow the assumptions. The criterion
for validating the model, or comparing competing models,
is framed in terms of these assumptions.

Multivariable
data

Although the case studies in this chapter utilize univariate
data, the assumptions above are relevant for multivariable
data as well.

If the data are not univariate, then we are trying to find a
model

Yi = F(X1, ..., Xk) + Ei

where F is some function based on one or more variables.
The error component, which is a univariate data set, of a
good model should satisfy the assumptions given above.
The criterion for validating and comparing models is based
on how well the error component follows these
assumptions.

The load cell calibration case study in the process
modeling chapter shows an example of this in the
regression context.

First three
case studies
utilize data
with known
characteristics

The first three case studies utilize data that are randomly
generated from the following distributions:

normal distribution with mean 0 and standard
deviation 1

uniform distribution with mean 0 and standard
deviation  (uniform over the interval (0,1))

random walk

The other univariate case studies utilize data from
scientific processes. The goal is to determine if

Yi = C + Ei

is a reasonable model. This is done by testing the
underlying assumptions. If the assumptions are satisfied,
then an estimate of C and an estimate of the uncertainty of
C are computed. If the assumptions are not satisfied, we
attempt to find a model where the error component does
satisfy the underlying assumptions.

Graphical
methods that
are applied to
the data

To test the underlying assumptions, each data set is
analyzed using four graphical methods that are particularly
suited for this purpose:

1. run sequence plot which is useful for detecting shifts
of location or scale
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2. lag plot which is useful for detecting non-
randomness in the data

3. histogram which is useful for trying to determine the
underlying distribution

4. normal probability plot for deciding whether the data
follow the normal distribution

There are a number of other techniques for addressing the
underlying assumptions. However, the four plots listed
above provide an excellent opportunity for addressing all
of the assumptions on a single page of graphics.

Additional graphical techniques are used in certain case
studies to develop models that do have error components
that satisfy the underlying assumptions.

Quantitative
methods that
are applied to
the data

The normal and uniform random number data sets are also
analyzed with the following quantitative techniques, which
are explained in more detail in an earlier section:

1. Summary statistics which include:
mean
standard deviation
autocorrelation coefficient to test for
randomness
normal and uniform probability plot
correlation coefficients (ppcc) to test for a
normal or uniform distribution, respectively
Wilk-Shapiro test for a normal distribution

2. Linear fit of the data as a function of time to assess
drift (test for fixed location)

3. Bartlett test for fixed variance

4. Autocorrelation plot and coefficient to test for
randomness

5. Runs test to test for lack of randomness

6. Anderson-Darling test for a normal distribution

7. Grubbs test for outliers

8. Summary report

Although the graphical methods applied to the normal and
uniform random numbers are sufficient to assess the
validity of the underlying assumptions, the quantitative
techniques are used to show the different flavor of the
graphical and quantitative approaches.

The remaining case studies intermix one or more of these
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quantitative techniques into the analysis where appropriate.
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1.4.2.1. Normal Random Numbers

Normal
Random
Numbers

This example illustrates the univariate analysis of a set of
normal random numbers.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself
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1.4.2.1.1. Background and Data

Generation The normal random numbers used in this case study are from
a Rand Corporation publication.

The motivation for studying a set of normal random numbers
is to illustrate the ideal case where all four underlying
assumptions hold.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following is the set of normal random numbers used for
this case study.

 -1.2760 -1.2180 -0.4530 -0.3500  0.7230
  0.6760 -1.0990 -0.3140 -0.3940 -0.6330
 -0.3180 -0.7990 -1.6640  1.3910  0.3820
  0.7330  0.6530  0.2190 -0.6810  1.1290
 -1.3770 -1.2570  0.4950 -0.1390 -0.8540
  0.4280 -1.3220 -0.3150 -0.7320 -1.3480
  2.3340 -0.3370 -1.9550 -0.6360 -1.3180
 -0.4330  0.5450  0.4280 -0.2970  0.2760
 -1.1360  0.6420  3.4360 -1.6670  0.8470
 -1.1730 -0.3550  0.0350  0.3590  0.9300
  0.4140 -0.0110  0.6660 -1.1320 -0.4100
 -1.0770  0.7340  1.4840 -0.3400  0.7890
 -0.4940  0.3640 -1.2370 -0.0440 -0.1110
 -0.2100  0.9310  0.6160 -0.3770 -0.4330
  1.0480  0.0370  0.7590  0.6090 -2.0430
 -0.2900  0.4040 -0.5430  0.4860  0.8690
  0.3470  2.8160 -0.4640 -0.6320 -1.6140
  0.3720 -0.0740 -0.9160  1.3140 -0.0380
  0.6370  0.5630 -0.1070  0.1310 -1.8080
 -1.1260  0.3790  0.6100 -0.3640 -2.6260
  2.1760  0.3930 -0.9240  1.9110 -1.0400
 -1.1680  0.4850  0.0760 -0.7690  1.6070
 -1.1850 -0.9440 -1.6040  0.1850 -0.2580
 -0.3000 -0.5910 -0.5450  0.0180 -0.4850
  0.9720  1.7100  2.6820  2.8130 -1.5310
 -0.4900  2.0710  1.4440 -1.0920  0.4780
  1.2100  0.2940 -0.2480  0.7190  1.1030
  1.0900  0.2120 -1.1850 -0.3380 -1.1340
  2.6470  0.7770  0.4500  2.2470  1.1510
 -1.6760  0.3840  1.1330  1.3930  0.8140
  0.3980  0.3180 -0.9280  2.4160 -0.9360
  1.0360  0.0240 -0.5600  0.2030 -0.8710
  0.8460 -0.6990 -0.3680  0.3440 -0.9260
 -0.7970 -1.4040 -1.4720 -0.1180  1.4560
  0.6540 -0.9550  2.9070  1.6880  0.7520
 -0.4340  0.7460  0.1490 -0.1700 -0.4790
  0.5220  0.2310 -0.6190 -0.2650  0.4190
  0.5580 -0.5490  0.1920 -0.3340  1.3730
 -1.2880 -0.5390 -0.8240  0.2440 -1.0700
  0.0100  0.4820 -0.4690 -0.0900  1.1710
  1.3720  1.7690 -1.0570  1.6460  0.4810
 -0.6000 -0.5920  0.6100 -0.0960 -1.3750
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  0.8540 -0.5350  1.6070  0.4280 -0.6150
  0.3310 -0.3360 -1.1520  0.5330 -0.8330
 -0.1480 -1.1440  0.9130  0.6840  1.0430
  0.5540 -0.0510 -0.9440 -0.4400 -0.2120
 -1.1480 -1.0560  0.6350 -0.3280 -1.2210
  0.1180 -2.0450 -1.9770 -1.1330  0.3380
  0.3480  0.9700 -0.0170  1.2170 -0.9740
 -1.2910 -0.3990 -1.2090 -0.2480  0.4800
  0.2840  0.4580  1.3070 -1.6250 -0.6290
 -0.5040 -0.0560 -0.1310  0.0480  1.8790
 -1.0160  0.3600 -0.1190  2.3310  1.6720
 -1.0530  0.8400 -0.2460  0.2370 -1.3120
  1.6030 -0.9520 -0.5660  1.6000  0.4650
  1.9510  0.1100  0.2510  0.1160 -0.9570
 -0.1900  1.4790 -0.9860  1.2490  1.9340
  0.0700 -1.3580 -1.2460 -0.9590 -1.2970
 -0.7220  0.9250  0.7830 -0.4020  0.6190
  1.8260  1.2720 -0.9450  0.4940  0.0500
 -1.6960  1.8790  0.0630  0.1320  0.6820
  0.5440 -0.4170 -0.6660 -0.1040 -0.2530
 -2.5430 -1.3330  1.9870  0.6680  0.3600
  1.9270  1.1830  1.2110  1.7650  0.3500
 -0.3590  0.1930 -1.0230 -0.2220 -0.6160
 -0.0600 -1.3190  0.7850 -0.4300 -0.2980
  0.2480 -0.0880 -1.3790  0.2950 -0.1150
 -0.6210 -0.6180  0.2090  0.9790  0.9060
 -0.0990 -1.3760  1.0470 -0.8720 -2.2000
 -1.3840  1.4250 -0.8120  0.7480 -1.0930
 -0.4630 -1.2810 -2.5140  0.6750  1.1450
  1.0830 -0.6670 -0.2230 -1.5920 -1.2780
  0.5030  1.4340  0.2900  0.3970 -0.8370
 -0.9730 -0.1200 -1.5940 -0.9960 -1.2440
 -0.8570 -0.3710 -0.2160  0.1480 -2.1060
 -1.4530  0.6860 -0.0750 -0.2430 -0.1700
 -0.1220  1.1070 -1.0390 -0.6360 -0.8600
 -0.8950 -1.4580 -0.5390 -0.1590 -0.4200
  1.6320  0.5860 -0.4680 -0.3860 -0.3540
  0.2030 -1.2340  2.3810 -0.3880 -0.0630
  2.0720 -1.4450 -0.6800  0.2240 -0.1200
  1.7530 -0.5710  1.2230 -0.1260  0.0340
 -0.4350 -0.3750 -0.9850 -0.5850 -0.2030
 -0.5560  0.0240  0.1260  1.2500 -0.6150
  0.8760 -1.2270 -2.6470 -0.7450  1.7970
 -1.2310  0.5470 -0.6340 -0.8360 -0.7190
  0.8330  1.2890 -0.0220 -0.4310  0.5820
  0.7660 -0.5740 -1.1530  0.5200 -1.0180
 -0.8910  0.3320 -0.4530 -1.1270  2.0850
 -0.7220 -1.5080  0.4890 -0.4960 -0.0250
  0.6440 -0.2330 -0.1530  1.0980  0.7570
 -0.0390 -0.4600  0.3930  2.0120  1.3560
  0.1050 -0.1710 -0.1100 -1.1450  0.8780
 -0.9090 -0.3280  1.0210 -1.6130  1.5600
 -1.1920  1.7700 -0.0030  0.3690  0.0520
  0.6470  1.0290  1.5260  0.2370 -1.3280
 -0.0420  0.5530  0.7700  0.3240 -0.4890
 -0.3670  0.3780  0.6010 -1.9960 -0.7380
  0.4980  1.0720  1.5670  0.3020  1.1570
 -0.7200  1.4030  0.6980 -0.3700 -0.5510
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1.4.2.1.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid. These
assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of
Data
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates that the
data do not have any significant shifts in location or
scale over time. The run sequence plot does not show
any obvious outliers.

2. The lag plot (upper right) does not indicate any non-
random pattern in the data.

3. The histogram (lower left) shows that the data are
reasonably symmetric, there do not appear to be
significant outliers in the tails, and that it is
reasonable to assume that the data are from
approximately a normal distribution.

4. The normal probability plot (lower right) verifies that
an assumption of normality is in fact reasonable.

From the above plots, we conclude that the underlying
assumptions are valid and the data follow approximately a
normal distribution. Therefore, the confidence interval form
given previously is appropriate for quantifying the
uncertainty of the population mean. The numerical values
for this model are given in the Quantitative Output and
Interpretation section.

Individual
Plots

Although it is usually not necessary, the plots can be
generated individually to give more detail.

Run
Sequence
Plot

Lag Plot
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Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot
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1.4.2.1.3. Quantitative Output and
Interpretation

Summary
Statistics

As a first step in the analysis, common summary statistics
are computed from the data.

      Sample size  = 500
      Mean         =  -0.2935997E-02 
      Median       =  -0.9300000E-01
      Minimum      =  -0.2647000E+01 
      Maximum      =   0.3436000E+01  
      Range        =   0.6083000E+01  
      Stan. Dev.   =   0.1021041E+01  

Location One way to quantify a change in location over time is to fit
a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In our
regression, we use the index variable X = 1, 2, ..., N, where
N is the number of observations. If there is no significant
drift in the location over time, the slope parameter should
be zero.

      Coefficient     Estimate      Stan. Error   
t-Value
          B0        0.699127E-02     0.9155E-01    
0.0764
          B1       -0.396298E-04     0.3167E-03   
-0.1251
 
      Residual Standard Deviation = 1.02205
      Residual Degrees of Freedom = 498

The absolute value of the t-value for the slope parameter is
smaller than the critical value of t0.975,498 = 1.96. Thus, we
conclude that the slope is not different from zero at the 0.05
significance level.

Variation One simple way to detect a change in variation is with
Bartlett's test, after dividing the data set into several equal-
sized intervals. The choice of the number of intervals is
somewhat arbitrary, although values of four or eight are
reasonable. We will divide our data into four intervals.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2 
      Ha:  At least one σi

2 is not equal to the 
others.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
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      Test statistic:  T = 2.373660
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Χ21-α,k-1 = 7.814728
      Critical region:  Reject H0 if T > 7.814728

In this case, Bartlett's test indicates that the variances are
not significantly different in the four intervals.

Randomness There are many ways in which data can be non-random.
However, most common forms of non-randomness can be
detected with a few simple tests including the lag plot
shown on the previous page.

Another check is an autocorrelation plot that shows the
autocorrelations for various lags. Confidence bands can be
plotted at the 95 % and 99 % confidence levels. Points
outside this band indicate statistically significant values (lag
0 is always 1).

The lag 1 autocorrelation, which is generally the one of
most interest, is 0.045. The critical values at the 5%
significance level are -0.087 and 0.087. Since 0.045 is
within the critical region, the lag 1 autocorrelation is not
statistically significant, so there is no evidence of non-
randomness.

A common test for randomness is the runs test.

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = -1.0744
      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96 

The runs test fails to reject the null hypothesis that the data
were produced in a random manner.

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
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Distributional
Analysis

Probability plots are a graphical test for assessing if a
particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the
correlation coefficient of the points on the probability plot,
or PPCC. For this data set the PPCC based on a normal
distribution is 0.996. Since the PPCC is greater than the
critical value of 0.987 (this is a tabulated value), the
normality assumption is not rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests
are alternative methods for assessing distributional
adequacy. The Wilk-Shapiro and Anderson-Darling tests
can be used to test for normality. The results of the
Anderson-Darling test follow.

      H0:  the data are normally distributed
      Ha:  the data are not normally distributed

      Adjusted test statistic:  A2 = 1.0612
      Significance level:  α = 0.05
      Critical value:  0.787
      Critical region:  Reject H0 if A

2 > 0.787

The Anderson-Darling test rejects the normality assumption
at the 0.05 significance level.

Outlier
Analysis

A test for outliers is the Grubbs test.

      H0:  there are no outliers in the data
      Ha:  the maximum value is an outlier

      Test statistic:  G = 3.368068
      Significance level:  α = 0.05
      Critical value for an upper one-tailed 
test:  3.863087         
      Critical region:  Reject H0 if G > 3.863087

For this data set, Grubbs' test does not detect any outliers at
the 0.05 significance level.

Model Since the underlying assumptions were validated both
graphically and analytically, we conclude that a reasonable
model for the data is:

Yi = C + Ei

where C is the estimated value of the mean, -0.00294. We
can express the uncertainty for C as a 95 % confidence
interval (-0.09266, 0.08678).

Univariate
Report

It is sometimes useful and convenient to summarize the
above results in a report.

 Analysis of 500 normal random numbers
  
 1: Sample Size                           = 500
  
 2: Location
    Mean                                  = -

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm"
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0.00294
    Standard Deviation of Mean            = 
0.045663
    95% Confidence Interval for Mean      = (-
0.09266,0.086779)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 
1.021042
    95% Confidence Interval for SD        = 
(0.961437,1.088585)
    Drift with respect to variation?
    (based on Bartletts test on quarters
    of the data)                          = NO
  
 4: Data are Normal?
      (as tested by Anderson-Darling)     = YES
  
 5: Randomness
    Autocorrelation                       = 
0.045059
    Data are Random?
      (as measured by autocorrelation)    = YES
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control?   = YES
  
 7: Outliers?
    (as determined by Grubbs' test)       = NO

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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http://www.nist.gov/
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1.4.2.1.4. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-
plot, there are no 
shifts
    in location or 
scale, and the data 
seem to
    follow a normal 
distribution.

3. Generate the individual plots.

http://www.itl.nist.gov/div898/handbook/index.htm
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   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

   4. Generate a normal probability
      plot.

 1. The run sequence 
plot indicates that
    there are no 
shifts of location or
    scale.

 2. The lag plot 
does not indicate any
    significant 
patterns (which would
    show the data 
were not random).

 3. The histogram 
indicates that a 
    normal 
distribution is a 
good
    distribution for 
these data.

 4. The normal 
probability plot 
verifies
    that the normal 
distribution is a
    reasonable 
distribution for 
these data.

4. Generate summary statistics, 
quantitative
   analysis, and print a univariate 
report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the 
standard
      deviation, and detect drift in 
variation
      by dividing the data into quarters 
and
      computing Barltett's test for 
equal
      standard deviations.

   4. Check for randomness by generating 
an
      autocorrelation plot and a runs 
test.

   5. Check for normality by computing 
the
      normal probability plot 
correlation
      coefficient.

   6. Check for outliers using Grubbs' 
test.

   7. Print a univariate report (this 

 1. The summary 
statistics table 
displays
    25+ statistics.

 2. The mean is -
0.00294 and a 95%
    confidence 
interval is (-
0.093,0.087).
    The linear fit 
indicates no drift in
    location since 
the slope parameter 
is
    statistically not 
significant.

 3. The standard 
deviation is 1.02 
with
    a 95% confidence 
interval of 
(0.96,1.09).
    Bartlett's test 
indicates no 
significant
    change in 
variation.

 4. The lag 1 
autocorrelation is 
0.04.
    From the 
autocorrelation plot, 
this is
    within the 95% 
confidence interval
    bands.
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assumes
      steps 2 thru 6 have already been 
run).

 5. The normal 
probability plot 
correlation
    coefficient is 
0.996.  At the 5% 
level,
    we cannot reject 
the normality 
assumption.

 6. Grubbs' test 
detects no outliers 
at the
    5% level.

 7. The results are 
summarized in a
    convenient 
report.
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Uniform
Random
Numbers

This example illustrates the univariate analysis of a set of
uniform random numbers.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself
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1.4.2.2.1. Background and Data

Generation The uniform random numbers used in this case study are from
a Rand Corporation publication.

The motivation for studying a set of uniform random numbers
is to illustrate the effects of a known underlying non-normal
distribution.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following is the set of uniform random numbers used for
this case study.

   .100973   .253376   .520135   .863467   .354876
   .809590   .911739   .292749   .375420   .480564
   .894742   .962480   .524037   .206361   .040200
   .822916   .084226   .895319   .645093   .032320
   .902560   .159533   .476435   .080336   .990190
   .252909   .376707   .153831   .131165   .886767
   .439704   .436276   .128079   .997080   .157361
   .476403   .236653   .989511   .687712   .171768
   .660657   .471734   .072768   .503669   .736170
   .658133   .988511   .199291   .310601   .080545
   .571824   .063530   .342614   .867990   .743923
   .403097   .852697   .760202   .051656   .926866
   .574818   .730538   .524718   .623885   .635733
   .213505   .325470   .489055   .357548   .284682
   .870983   .491256   .737964   .575303   .529647
   .783580   .834282   .609352   .034435   .273884
   .985201   .776714   .905686   .072210   .940558
   .609709   .343350   .500739   .118050   .543139
   .808277   .325072   .568248   .294052   .420152
   .775678   .834529   .963406   .288980   .831374
   .670078   .184754   .061068   .711778   .886854
   .020086   .507584   .013676   .667951   .903647
   .649329   .609110   .995946   .734887   .517649
   .699182   .608928   .937856   .136823   .478341
   .654811   .767417   .468509   .505804   .776974
   .730395   .718640   .218165   .801243   .563517
   .727080   .154531   .822374   .211157   .825314
   .385537   .743509   .981777   .402772   .144323
   .600210   .455216   .423796   .286026   .699162
   .680366   .252291   .483693   .687203   .766211
   .399094   .400564   .098932   .050514   .225685
   .144642   .756788   .962977   .882254   .382145
   .914991   .452368   .479276   .864616   .283554
   .947508   .992337   .089200   .803369   .459826
   .940368   .587029   .734135   .531403   .334042
   .050823   .441048   .194985   .157479   .543297
   .926575   .576004   .088122   .222064   .125507
   .374211   .100020   .401286   .074697   .966448
   .943928   .707258   .636064   .932916   .505344
   .844021   .952563   .436517   .708207   .207317
   .611969   .044626   .457477   .745192   .433729
   .653945   .959342   .582605   .154744   .526695

http://www.itl.nist.gov/div898/handbook/index.htm
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   .270799   .535936   .783848   .823961   .011833
   .211594   .945572   .857367   .897543   .875462
   .244431   .911904   .259292   .927459   .424811
   .621397   .344087   .211686   .848767   .030711
   .205925   .701466   .235237   .831773   .208898
   .376893   .591416   .262522   .966305   .522825
   .044935   .249475   .246338   .244586   .251025
   .619627   .933565   .337124   .005499   .765464
   .051881   .599611   .963896   .546928   .239123
   .287295   .359631   .530726   .898093   .543335
   .135462   .779745   .002490   .103393   .598080
   .839145   .427268   .428360   .949700   .130212
   .489278   .565201   .460588   .523601   .390922
   .867728   .144077   .939108   .364770   .617429
   .321790   .059787   .379252   .410556   .707007
   .867431   .715785   .394118   .692346   .140620
   .117452   .041595   .660000   .187439   .242397
   .118963   .195654   .143001   .758753   .794041
   .921585   .666743   .680684   .962852   .451551
   .493819   .476072   .464366   .794543   .590479
   .003320   .826695   .948643   .199436   .168108
   .513488   .881553   .015403   .545605   .014511
   .980862   .482645   .240284   .044499   .908896
   .390947   .340735   .441318   .331851   .623241
   .941509   .498943   .548581   .886954   .199437
   .548730   .809510   .040696   .382707   .742015
   .123387   .250162   .529894   .624611   .797524
   .914071   .961282   .966986   .102591   .748522
   .053900   .387595   .186333   .253798   .145065
   .713101   .024674   .054556   .142777   .938919
   .740294   .390277   .557322   .709779   .017119
   .525275   .802180   .814517   .541784   .561180
   .993371   .430533   .512969   .561271   .925536
   .040903   .116644   .988352   .079848   .275938
   .171539   .099733   .344088   .461233   .483247
   .792831   .249647   .100229   .536870   .323075
   .754615   .020099   .690749   .413887   .637919
   .763558   .404401   .105182   .161501   .848769
   .091882   .009732   .825395   .270422   .086304
   .833898   .737464   .278580   .900458   .549751
   .981506   .549493   .881997   .918707   .615068
   .476646   .731895   .020747   .677262   .696229
   .064464   .271246   .701841   .361827   .757687
   .649020   .971877   .499042   .912272   .953750
   .587193   .823431   .540164   .405666   .281310
   .030068   .227398   .207145   .329507   .706178
   .083586   .991078   .542427   .851366   .158873
   .046189   .755331   .223084   .283060   .326481
   .333105   .914051   .007893   .326046   .047594
   .119018   .538408   .623381   .594136   .285121
   .590290   .284666   .879577   .762207   .917575
   .374161   .613622   .695026   .390212   .557817
   .651483   .483470   .894159   .269400   .397583
   .911260   .717646   .489497   .230694   .541374
   .775130   .382086   .864299   .016841   .482774
   .519081   .398072   .893555   .195023   .717469
   .979202   .885521   .029773   .742877   .525165
   .344674   .218185   .931393   .278817   .570568
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1.4.2.2.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid. These
assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of
Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates that the
data do not have any significant shifts in location or
scale over time.

2. The lag plot (upper right) does not indicate any non-
random pattern in the data.

3. The histogram shows that the frequencies are
relatively flat across the range of the data. This
suggests that the uniform distribution might provide a
better distributional fit than the normal distribution.

4. The normal probability plot verifies that an
assumption of normality is not reasonable. In this
case, the 4-plot should be followed up by a uniform
probability plot to determine if it provides a better fit
to the data. This is shown below.

From the above plots, we conclude that the underlying
assumptions are valid. Therefore, the model Yi = C + Ei is
valid. However, since the data are not normally distributed,
using the mean as an estimate of C and the confidence
interval cited above for quantifying its uncertainty are not
valid or appropriate.

Individual
Plots

Although it is usually not necessary, the plots can be
generated individually to give more detail.

Run
Sequence
Plot

Lag Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Histogram
(with
overlaid
Normal PDF)

This plot shows that a normal distribution is a poor fit. The
flatness of the histogram suggests that a uniform
distribution might be a better fit.

Histogram
(with
overlaid
Uniform
PDF)
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Since the histogram from the 4-plot suggested that the
uniform distribution might be a good fit, we overlay a
uniform distribution on top of the histogram. This indicates
a much better fit than a normal distribution.

Normal
Probability
Plot

As with the histogram, the normal probability plot shows
that the normal distribution does not fit these data well.

Uniform
Probability
Plot

Since the above plots suggested that a uniform distribution
might be appropriate, we generate a uniform probability
plot. This plot shows that the uniform distribution provides
an excellent fit to the data.

Better Model Since the data follow the underlying assumptions, but with
a uniform distribution rather than a normal distribution, we
would still like to characterize C by a typical value plus or
minus a confidence interval. In this case, we would like to
find a location estimator with the smallest variability.

The bootstrap plot is an ideal tool for this purpose. The
following plots show the bootstrap plot, with the

http://www.itl.nist.gov/div898/handbook/eda/section3/bootplot.htm


1.4.2.2.2. Graphical Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4222.htm[6/27/2012 2:03:13 PM]

corresponding histogram, for the mean, median, mid-range,
and median absolute deviation.

Bootstrap
Plots

Mid-Range is
Best

From the above histograms, it is obvious that for these data,
the mid-range is far superior to the mean or median as an
estimate for location.

Using the mean, the location estimate is 0.507 and a 95%
confidence interval for the mean is (0.482,0.534). Using the
mid-range, the location estimate is 0.499 and the 95%
confidence interval for the mid-range is (0.497,0.503).

Although the values for the location are similar, the
difference in the uncertainty intervals is quite large.

Note that in the case of a uniform distribution it is known
theoretically that the mid-range is the best linear unbiased
estimator for location. However, in many applications, the
most appropriate estimator will not be known or it will be
mathematically intractable to determine a valid condfidence
interval. The bootstrap provides a method for determining
(and comparing) confidence intervals in these cases.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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1.4.2.2.3. Quantitative Output and
Interpretation

Summary
Statistics

As a first step in the analysis, common summary statistics
are computed for the data.

      Sample size  = 500
      Mean         =   0.5078304
      Median       =   0.5183650
      Minimum      =   0.0024900  
      Maximum      =   0.9970800  
      Range        =   0.9945900
      Stan. Dev.   =   0.2943252

Because the graphs of the data indicate the data may not be
normally distributed, we also compute two other statistics
for the data, the normal PPCC and the uniform PPCC.

      Normal PPCC  =   0.9771602 
      Uniform PPCC =   0.9995682 

The uniform probability plot correlation coefficient (PPCC)
value is larger than the normal PPCC value. This is
evidence that the uniform distribution fits these data better
than does a normal distribution.

Location One way to quantify a change in location over time is to fit
a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In our
regression, we use the index variable X = 1, 2, ..., N, where
N is the number of observations. If there is no significant
drift in the location over time, the slope parameter should
be zero.

      Coefficient     Estimate     Stan. Error   
t-Value
          B0        0.522923        0.2638E-01    
19.82
          B1       -0.602478E-04    0.9125E-04    
-0.66
 
      Residual Standard Deviation = 0.2944917
      Residual Degrees of Freedom = 498  

The t-value of the slope parameter, -0.66, is smaller than
the critical value of t0.975,498 = 1.96. Thus, we conclude
that the slope is not different from zero at the 0.05

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
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significance level.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal-
sized intervals. However, the Bartlett test is not robust for
non-normality. Since we know this data set is not
approximated well by the normal distribution, we use the
alternative Levene test. In particular, we use the Levene
test based on the median rather the mean. The choice of the
number of intervals is somewhat arbitrary, although values
of four or eight are reasonable. We will divide our data into
four intervals.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2 
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  W = 0.07983
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Fα,k-1,N-k = 2.623
      Critical region:  Reject H0 if W > 2.623

In this case, the Levene test indicates that the variances are
not significantly different in the four intervals.

Randomness There are many ways in which data can be non-random.
However, most common forms of non-randomness can be
detected with a few simple tests including the lag plot
shown on the previous page.

Another check is an autocorrelation plot that shows the
autocorrelations for various lags. Confidence bands can be
plotted using 95% and 99% confidence levels. Points
outside this band indicate statistically significant values (lag
0 is always 1).

The lag 1 autocorrelation, which is generally the one of
most interest, is 0.03. The critical values at the 5 %
significance level are -0.087 and 0.087. This indicates that

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
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the lag 1 autocorrelation is not statistically significant, so
there is no evidence of non-randomness.

A common test for randomness is the runs test.

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = 0.2686
      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96 

The runs test fails to reject the null hypothesis that the data
were produced in a random manner.

Distributional
Analysis

Probability plots are a graphical test of assessing whether a
particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the
correlation coefficient of the points on the probability plot,
or PPCC. For this data set the PPCC based on a normal
distribution is 0.977. Since the PPCC is less than the critical
value of 0.987 (this is a tabulated value), the normality
assumption is rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests
are alternative methods for assessing distributional
adequacy. The Wilk-Shapiro and Anderson-Darling tests
can be used to test for normality. The results of the
Anderson-Darling test follow.

      H0:  the data are normally distributed
      Ha:  the data are not normally distributed

      Adjusted test statistic:  A2 = 5.765
      Significance level:  α = 0.05
      Critical value:  0.787
      Critical region:  Reject H0 if A

2 > 0.787

The Anderson-Darling test rejects the normality assumption
because the value of the test statistic, 5.765, is larger than
the critical value of 0.787 at the 0.05 significance level.

Model Based on the graphical and quantitative analysis, we use the
model

Yi = C + Ei

where C is estimated by the mid-range and the uncertainty
interval for C is based on a bootstrap analysis. Specifically,

C = 0.499
95% confidence limit for C = (0.497,0.503)

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
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Univariate
Report

It is sometimes useful and convenient to summarize the
above results in a report.

 
 Analysis for 500 uniform random numbers
  
 1: Sample Size                           = 500
  
 2: Location
    Mean                                  = 
0.50783
    Standard Deviation of Mean            = 
0.013163
    95% Confidence Interval for Mean      = 
(0.48197,0.533692)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 
0.294326
    95% Confidence Interval for SD        = 
(0.277144,0.313796)
    Drift with respect to variation?
    (based on Levene's test on quarters
    of the data)                          = NO
  
 4: Distribution
    Normal PPCC                           = 
0.9771602 
    Data are Normal?
      (as measured by Normal PPCC)        = NO
  
    Uniform PPCC                          = 
0.9995682 
    Data are Uniform?
      (as measured by Uniform PPCC)       = YES
  
 5: Randomness
    Autocorrelation                       = -
0.03099
    Data are Random?
      (as measured by autocorrelation)    = YES
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data is random, distribution is 
    fixed, here we are testing only for
    fixed uniform)
    Data Set is in Statistical Control?   = YES
  
  

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.4.2.2.4. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-
plot, there are no 
shifts
    in location or 
scale, and the data 
do not
    seem to follow a 
normal distribution.

3. Generate the individual plots.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/randu4p.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/randu4p.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/randu4p.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/randu4p.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/randu4p.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/4plot.dp
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   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

   4. Generate a histogram with an
      overlaid uniform pdf.

   5. Generate a normal probability
      plot.

   6. Generate a uniform probability
      plot.

 1. The run sequence 
plot indicates that
    there are no 
shifts of location or
    scale.

 2. The lag plot 
does not indicate any
    significant 
patterns (which would
    show the data 
were not random).

 3. The histogram 
indicates that a 
    normal 
distribution is not a 
good
    distribution for 
these data.

 4. The histogram 
indicates that a 
    uniform 
distribution is a 
good
    distribution for 
these data.

 5. The normal 
probability plot 
verifies
    that the normal 
distribution is not a
    reasonable 
distribution for 
these data.

 6. The uniform 
probability plot 
verifies
    that the uniform 
distribution is a
    reasonable 
distribution for 
these data.

4. Generate the bootstrap plot.

   1. Generate a bootstrap plot.  1. The bootstrap 
plot clearly shows
    the superiority 
of the mid-range 
    over the mean 
and median as the
    location 
estimator of choice 
for
    this problem.

5. Generate summary statistics, 
quantitative
   analysis, and print a univariate 
report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the 

 1. The summary 
statistics table 
displays
    25+ statistics.

 2. The mean is 
0.5078 and a 95%
    confidence 
interval is 
(0.482,0.534).
    The linear fit 
indicates no drift in
    location since 
the slope parameter 

http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/runseq.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/lagplot.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/hist.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/hist2.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/normprpl.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/unifprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/unifprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/bootstrap.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/location.dp
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standard
      deviation, and detect drift in 
variation
      by dividing the data into quarters 
and
      computing Barltetts test for equal
      standard deviations.

   4. Check for randomness by generating 
an
      autocorrelation plot and a runs 
test.

   5. Check for normality by computing 
the
      normal probability plot 
correlation
      coefficient.

   6. Print a univariate report (this 
assumes
      steps 2 thru 6 have already been 
run).

is
    statistically not 
significant.

 3. The standard 
deviation is 0.29 
with
    a 95% confidence 
interval of 
(0.277,0.314).
    Levene's test 
indicates no 
significant
    drift in 
variation.

 4. The lag 1 
autocorrelation is -
0.03.
    From the 
autocorrelation plot, 
this is
    within the 95% 
confidence interval
    bands.

 5. The uniform 
probability plot 
correlation
    coefficient is 
0.9995.  This 
indicates that
    the uniform 
distribution is a 
good fit.

 6. The results are 
summarized in a
    convenient 
report.

http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randu4p/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.4.2.3. Random Walk

http://www.itl.nist.gov/div898/handbook/eda/section4/eda423.htm[6/27/2012 2:03:17 PM]

 

1. Exploratory Data Analysis 
1.4. EDA Case Studies 
1.4.2. Case Studies 

1.4.2.3. Random Walk

Random
Walk

This example illustrates the univariate analysis of a set of
numbers derived from a random walk.

1. Background and Data
2. Test Underlying Assumptions
3. Develop Better Model
4. Validate New Model
5. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.4.2.3.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4231.htm[6/27/2012 2:03:18 PM]

 

1. Exploratory Data Analysis 
1.4. EDA Case Studies 
1.4.2. Case Studies 
1.4.2.3. Random Walk 

1.4.2.3.1. Background and Data

Generation A random walk can be generated from a set of uniform
random numbers by the formula:

where U is a set of uniform random numbers.

The motivation for studying a set of random walk data is to
illustrate the effects of a known underlying autocorrelation
structure (i.e., non-randomness) in the data.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following is the set of random walk numbers used for this
case study.

  -0.399027
  -0.645651
  -0.625516
  -0.262049
  -0.407173
  -0.097583
   0.314156
   0.106905
  -0.017675
  -0.037111
   0.357631
   0.820111
   0.844148
   0.550509
   0.090709
   0.413625
  -0.002149
   0.393170
   0.538263
   0.070583
   0.473143
   0.132676
   0.109111
  -0.310553
   0.179637
  -0.067454
  -0.190747
  -0.536916
  -0.905751
  -0.518984
  -0.579280
  -0.643004
  -1.014925
  -0.517845
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  -0.860484
  -0.884081
  -1.147428
  -0.657917
  -0.470205
  -0.798437
  -0.637780
  -0.666046
  -1.093278
  -1.089609
  -0.853439
  -0.695306
  -0.206795
  -0.507504
  -0.696903
  -1.116358
  -1.044534
  -1.481004
  -1.638390
  -1.270400
  -1.026477
  -1.123380
  -0.770683
  -0.510481
  -0.958825
  -0.531959
  -0.457141
  -0.226603
  -0.201885
  -0.078000
   0.057733
  -0.228762
  -0.403292
  -0.414237
  -0.556689
  -0.772007
  -0.401024
  -0.409768
  -0.171804
  -0.096501
  -0.066854
   0.216726
   0.551008
   0.660360
   0.194795
  -0.031321
   0.453880
   0.730594
   1.136280
   0.708490
   1.149048
   1.258757
   1.102107
   1.102846
   0.720896
   0.764035
   1.072312
   0.897384
   0.965632
   0.759684
   0.679836
   0.955514
   1.290043
   1.753449
   1.542429
   1.873803
   2.043881
   1.728635
   1.289703
   1.501481
   1.888335
   1.408421
   1.416005
   0.929681
   1.097632
   1.501279
   1.650608
   1.759718
   2.255664
   2.490551
   2.508200
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   2.707382
   2.816310
   3.254166
   2.890989
   2.869330
   3.024141
   3.291558
   3.260067
   3.265871
   3.542845
   3.773240
   3.991880
   3.710045
   4.011288
   4.074805
   4.301885
   3.956416
   4.278790
   3.989947
   4.315261
   4.200798
   4.444307
   4.926084
   4.828856
   4.473179
   4.573389
   4.528605
   4.452401
   4.238427
   4.437589
   4.617955
   4.370246
   4.353939
   4.541142
   4.807353
   4.706447
   4.607011
   4.205943
   3.756457
   3.482142
   3.126784
   3.383572
   3.846550
   4.228803
   4.110948
   4.525939
   4.478307
   4.457582
   4.822199
   4.605752
   5.053262
   5.545598
   5.134798
   5.438168
   5.397993
   5.838361
   5.925389
   6.159525
   6.190928
   6.024970
   5.575793
   5.516840
   5.211826
   4.869306
   4.912601
   5.339177
   5.415182
   5.003303
   4.725367
   4.350873
   4.225085
   3.825104
   3.726391
   3.301088
   3.767535
   4.211463
   4.418722
   4.554786
   4.987701
   4.993045
   5.337067
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   5.789629
   5.726147
   5.934353
   5.641670
   5.753639
   5.298265
   5.255743
   5.500935
   5.434664
   5.588610
   6.047952
   6.130557
   5.785299
   5.811995
   5.582793
   5.618730
   5.902576
   6.226537
   5.738371
   5.449965
   5.895537
   6.252904
   6.650447
   7.025909
   6.770340
   7.182244
   6.941536
   7.368996
   7.293807
   7.415205
   7.259291
   6.970976
   7.319743
   6.850454
   6.556378
   6.757845
   6.493083
   6.824855
   6.533753
   6.410646
   6.502063
   6.264585
   6.730889
   6.753715
   6.298649
   6.048126
   5.794463
   5.539049
   5.290072
   5.409699
   5.843266
   5.680389
   5.185889
   5.451353
   5.003233
   5.102844
   5.566741
   5.613668
   5.352791
   5.140087
   4.999718
   5.030444
   5.428537
   5.471872
   5.107334
   5.387078
   4.889569
   4.492962
   4.591042
   4.930187
   4.857455
   4.785815
   5.235515
   4.865727
   4.855005
   4.920206
   4.880794
   4.904395
   4.795317
   5.163044
   4.807122



1.4.2.3.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4231.htm[6/27/2012 2:03:18 PM]

   5.246230
   5.111000
   5.228429
   5.050220
   4.610006
   4.489258
   4.399814
   4.606821
   4.974252
   5.190037
   5.084155
   5.276501
   4.917121
   4.534573
   4.076168
   4.236168
   3.923607
   3.666004
   3.284967
   2.980621
   2.623622
   2.882375
   3.176416
   3.598001
   3.764744
   3.945428
   4.408280
   4.359831
   4.353650
   4.329722
   4.294088
   4.588631
   4.679111
   4.182430
   4.509125
   4.957768
   4.657204
   4.325313
   4.338800
   4.720353
   4.235756
   4.281361
   3.795872
   4.276734
   4.259379
   3.999663
   3.544163
   3.953058
   3.844006
   3.684740
   3.626058
   3.457909
   3.581150
   4.022659
   4.021602
   4.070183
   4.457137
   4.156574
   4.205304
   4.514814
   4.055510
   3.938217
   4.180232
   3.803619
   3.553781
   3.583675
   3.708286
   4.005810
   4.419880
   4.881163
   5.348149
   4.950740
   5.199262
   4.753162
   4.640757
   4.327090
   4.080888
   3.725953
   3.939054
   3.463728
   3.018284
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   2.661061
   3.099980
   3.340274
   3.230551
   3.287873
   3.497652
   3.014771
   3.040046
   3.342226
   3.656743
   3.698527
   3.759707
   4.253078
   4.183611
   4.196580
   4.257851
   4.683387
   4.224290
   3.840934
   4.329286
   3.909134
   3.685072
   3.356611
   2.956344
   2.800432
   2.761665
   2.744913
   3.037743
   2.787390
   2.387619
   2.424489
   2.247564
   2.502179
   2.022278
   2.213027
   2.126914
   2.264833
   2.528391
   2.432792
   2.037974
   1.699475
   2.048244
   1.640126
   1.149858
   1.475253
   1.245675
   0.831979
   1.165877
   1.403341
   1.181921
   1.582379
   1.632130
   2.113636
   2.163129
   2.545126
   2.963833
   3.078901
   3.055547
   3.287442
   2.808189
   2.985451
   3.181679
   2.746144
   2.517390
   2.719231
   2.581058
   2.838745
   2.987765
   3.459642
   3.458684
   3.870956
   4.324706
   4.411899
   4.735330
   4.775494
   4.681160
   4.462470
   3.992538
   3.719936
   3.427081
   3.256588
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   3.462766
   3.046353
   3.537430
   3.579857
   3.931223
   3.590096
   3.136285
   3.391616
   3.114700
   2.897760
   2.724241
   2.557346
   2.971397
   2.479290
   2.305336
   1.852930
   1.471948
   1.510356
   1.633737
   1.727873
   1.512994
   1.603284
   1.387950
   1.767527
   2.029734
   2.447309
   2.321470
   2.435092
   2.630118
   2.520330
   2.578147
   2.729630
   2.713100
   3.107260
   2.876659
   2.774242
   3.185503
   3.403148
   3.392646
   3.123339
   3.164713
   3.439843
   3.321929
   3.686229
   3.203069
   3.185843
   3.204924
   3.102996
   3.496552
   3.191575
   3.409044
   3.888246
   4.273767
   3.803540
   4.046417
   4.071581
   3.916256
   3.634441
   4.065834
   3.844651
   3.915219
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1.4.2.3.2. Test Underlying Assumptions

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid.
These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid, with s denoting the
standard deviation of the original data.

4-Plot of Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates
significant shifts in location over time.

2. The lag plot (upper right) indicates significant non-
randomness in the data.

3. When the assumptions of randomness and constant
location and scale are not satisfied, the
distributional assumptions are not meaningful.
Therefore we do not attempt to make any
interpretation of the histogram (lower left) or the
normal probability plot (lower right).

From the above plots, we conclude that the underlying
assumptions are seriously violated. Therefore the Yi = C +
Ei model is not valid.

When the randomness assumption is seriously violated, a
time series model may be appropriate. The lag plot often
suggests a reasonable model. For example, in this case the
strongly linear appearance of the lag plot suggests a model
fitting Yi versus Yi-1 might be appropriate. When the data
are non-random, it is helpful to supplement the lag plot
with an autocorrelation plot and a spectral plot. Although
in this case the lag plot is enough to suggest an
appropriate model, we provide the autocorrelation and
spectral plots for comparison.

Autocorrelation
Plot

When the lag plot indicates significant non-randomness, it
can be helpful to follow up with a an autocorrelation plot.

This autocorrelation plot shows significant autocorrelation
at lags 1 through 100 in a linearly decreasing fashion.
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Spectral Plot Another useful plot for non-random data is the spectral
plot.

This spectral plot shows a single dominant low frequency
peak.

Quantitative
Output

Although the 4-plot above clearly shows the violation of
the assumptions, we supplement the graphical output with
some quantitative measures.

Summary
Statistics

As a first step in the analysis, common summary statistics
are computed from the data.

      Sample size  = 500
      Mean         =   3.216681
      Median       =   3.612030
      Minimum      =  -1.638390
      Maximum      =   7.415205
      Range        =   9.053595
      Stan. Dev.   =   2.078675

We also computed the autocorrelation to be 0.987, which
is evidence of a very strong autocorrelation.

Location One way to quantify a change in location over time is to
fit a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In
our regression, we use the index variable X = 1, 2, ..., N,
where N is the number of observations. If there is no
significant drift in the location over time, the slope
parameter should be zero.

      Coefficient      Estimate     Stan. Error   
t-Value
          B0         1.83351         0.1721        
10.650
          B1         0.552164E-02    0.5953E-03     
9.275
 
      Residual Standard Deviation = 1.9214
      Residual Degrees of Freedom = 498 

http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
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The t-value of the slope parameter, 9.275, is larger than
the critical value of t0.975,498 = 1.96. Thus, we conclude
that the slope is different from zero at the 0.05
significance level.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal-
sized intervals. However, the Bartlett test is not robust for
non-normality. Since we know this data set is not
approximated well by the normal distribution, we use the
alternative Levene test. In particular, we use the Levene
test based on the median rather the mean. The choice of
the number of intervals is somewhat arbitrary, although
values of four or eight are reasonable. We will divide our
data into four intervals.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2 
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  W = 10.459
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Fα,k-1,N-k = 2.623
      Critical region:  Reject H0 if W > 2.623

In this case, the Levene test indicates that the variances
are significantly different in the four intervals since the
test statistic of 10.459 is greater than the 95 % critical
value of 2.623. Therefore we conclude that the scale is not
constant.

Randomness Although the lag 1 autocorrelation coefficient above
clearly shows the non-randomness, we show the output
from a runs test as well.

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = -20.3239
      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96 

The runs test rejects the null hypothesis that the data were
produced in a random manner at the 0.05 significance
level.

Distributional
Assumptions

Since the quantitative tests show that the assumptions of
randomness and constant location and scale are not met,
the distributional measures will not be meaningful.
Therefore these quantitative tests are omitted.
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1.4.2.3.3. Develop A Better Model

Lag Plot
Suggests
Better
Model

Since the underlying assumptions did not hold, we need to
develop a better model.

The lag plot showed a distinct linear pattern. Given the
definition of the lag plot, Yi versus Yi-1, a good candidate
model is a model of the form

Fit Output The results of a linear fit of this model generated the
following results.

      Coefficient    Estimate     Stan. Error   t-
Value
          A0         0.050165      0.024171       
2.075
          A1         0.987087      0.006313     
156.350 
 
      Residual Standard Deviation = 0.2931
      Residual Degrees of Freedom = 497 

The slope parameter, A1, has a t value of 156.350 which is
statistically significant. Also, the residual standard deviation is
0.2931. This can be compared to the standard deviation shown
in the summary table, which is 2.078675. That is, the fit to the
autoregressive model has reduced the variability by a factor of
7.

Time
Series
Model

This model is an example of a time series model. More
extensive discussion of time series is given in the Process
Monitoring chapter.
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1.4.2.3.4. Validate New Model

Plot
Predicted
with Original
Data

The first step in verifying the model is to plot the predicted
values from the fit with the original data.

This plot indicates a reasonably good fit.

Test
Underlying
Assumptions
on the
Residuals

In addition to the plot of the predicted values, the residual
standard deviation from the fit also indicates a significant
improvement for the model. The next step is to validate the
underlying assumptions for the error component, or
residuals, from this model.

4-Plot of
Residuals
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates no
significant shifts in location or scale over time.

2. The lag plot (upper right) exhibits a random
appearance.

3. The histogram shows a relatively flat appearance.
This indicates that a uniform probability distribution
may be an appropriate model for the error component
(or residuals).

4. The normal probability plot clearly shows that the
normal distribution is not an appropriate model for
the error component.

A uniform probability plot can be used to further test the
suggestion that a uniform distribution might be a good
model for the error component.

Uniform
Probability
Plot of
Residuals

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
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http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Since the uniform probability plot is nearly linear, this
verifies that a uniform distribution is a good model for the
error component.

Conclusions Since the residuals from our model satisfy the underlying
assumptions, we conlude that

where the Ei follow a uniform distribution is a good model
for this data set. We could simplify this model to

This has the advantage of simplicity (the current point is
simply the previous point plus a uniformly distributed error
term).

Using
Scientific and
Engineering
Knowledge

In this case, the above model makes sense based on our
definition of the random walk. That is, a random walk is
the cumulative sum of uniformly distributed data points. It
makes sense that modeling the current point as the previous
point plus a uniformly distributed error term is about as
good as we can do. Although this case is a bit artificial in
that we knew how the data were constructed, it is common
and desirable to use scientific and engineering knowledge
of the process that generated the data in formulating and
testing models for the data. Quite often, several competing
models will produce nearly equivalent mathematical results.
In this case, selecting the model that best approximates the
scientific understanding of the process is a reasonable
choice.

Time Series
Model

This model is an example of a time series model. More
extensive discussion of time series is given in the Process
Monitoring chapter.

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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http://www.sematech.org/
http://www.nist.gov/
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1.4.2.3.5. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. Validate assumptions.

   1. 4-plot of Y.

   2. Generate a table of summary
      statistics.

   3. Generate a linear fit to detect
      drift in location.

   4. Detect drift in variation by

 1. Based on the 4-
plot, there are 
shifts
    in location and 
scale and the data 
are not
    random.

 2. The summary 
statistics table 
displays
    25+ statistics.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/randwalk.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/4plot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/variatio.dp
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      dividing the data into quarters 
and
      computing Levene's test for equal
      standard deviations.

   5. Check for randomness by generating
      a runs test.

 3. The linear fit 
indicates drift in
    location since 
the slope parameter
    is statistically 
significant.

 4. Levene's test 
indicates significant
    drift in 
variation.

 5. The runs test 
indicates significant
    non-randomness.

3. Generate the randomness plots.

   1. Generate an autocorrelation plot.

   2. Generate a spectral plot.

 1. The 
autocorrelation plot 
shows
    significant 
autocorrelation at 
lag 1.

 2. The spectral plot 
shows a single 
dominant
    low frequency 
peak.

4. Fit Yi = A0 + A1*Yi-1 + Ei
   and validate.

   1. Generate the fit.

   2. Plot fitted line with original 
data.

   3. Generate a 4-plot of the residuals
      from the fit.

   4. Generate a uniform probability 
plot
      of the residuals.

 1. The residual 
standard deviation 
from the
    fit is 0.29 
(compared to the 
standard
    deviation of 2.08 
from the original
    data).

 2. The plot of the 
predicted values with
    the original data 
indicates a good fit.

 3. The 4-plot 
indicates that the 
assumptions
    of constant 
location and scale 
are valid.
    The lag plot 
indicates that the 
data are
    random.  However, 
the histogram and 
normal
    probability plot 
indicate that the 
uniform
    disribution might 
be a better model for
    the residuals 
than the normal
    distribution.

 4. The uniform 

http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/variatio.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/spectrum.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/plotpred.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/plotpred.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/4plotres.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/4plotres.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/randwalk/dpmacros/unifprpl.dp
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probability plot 
verifies
    that the 
residuals can be fit 
by a
    uniform 
distribution.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.4.2.4. Josephson Junction Cryothermometry

http://www.itl.nist.gov/div898/handbook/eda/section4/eda424.htm[6/27/2012 2:03:25 PM]

 

1. Exploratory Data Analysis 
1.4. EDA Case Studies 
1.4.2. Case Studies 

1.4.2.4. Josephson Junction Cryothermometry

Josephson
Junction
Cryothermometry

This example illustrates the univariate analysis of
Josephson junction cyrothermometry.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.4.2.4.1. Background and Data

Generation This data set was collected by Bob Soulen of NIST in
October, 1971 as a sequence of observations collected equi-
spaced in time from a volt meter to ascertain the process
temperature in a Josephson junction cryothermometry (low
temperature) experiment. The response variable is voltage
counts.

Motivation The motivation for studying this data set is to illustrate the
case where there is discreteness in the measurements, but the
underlying assumptions hold. In this case, the discreteness is
due to the data being integers.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following are the data used for this case study.

 2899 2898 2898 2900 2898
 2901 2899 2901 2900 2898
 2898 2898 2898 2900 2898
 2897 2899 2897 2899 2899
 2900 2897 2900 2900 2899
 2898 2898 2899 2899 2899
 2899 2899 2898 2899 2899
 2899 2902 2899 2900 2898
 2899 2899 2899 2899 2899
 2899 2900 2899 2900 2898
 2901 2900 2899 2899 2899
 2899 2899 2900 2899 2898
 2898 2898 2900 2896 2897
 2899 2899 2900 2898 2900
 2901 2898 2899 2901 2900
 2898 2900 2899 2899 2897
 2899 2898 2899 2899 2898
 2899 2897 2899 2899 2897
 2899 2897 2899 2897 2897
 2899 2897 2898 2898 2899
 2897 2898 2897 2899 2899
 2898 2898 2897 2898 2895
 2897 2898 2898 2896 2898
 2898 2897 2896 2898 2898
 2897 2897 2898 2898 2896
 2898 2898 2896 2899 2898
 2898 2898 2899 2899 2898
 2898 2899 2899 2899 2900
 2900 2901 2899 2898 2898
 2900 2899 2898 2901 2897
 2898 2898 2900 2899 2899
 2898 2898 2899 2898 2901
 2900 2897 2897 2898 2898
 2900 2898 2899 2898 2898
 2898 2896 2895 2898 2898
 2898 2898 2897 2897 2895

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4243.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4243.r
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 2897 2897 2900 2898 2896
 2897 2898 2898 2899 2898
 2897 2898 2898 2896 2900
 2899 2898 2896 2898 2896
 2896 2896 2897 2897 2896
 2897 2897 2896 2898 2896
 2898 2896 2897 2896 2897
 2897 2898 2897 2896 2895
 2898 2896 2896 2898 2896
 2898 2898 2897 2897 2898
 2897 2899 2896 2897 2899
 2900 2898 2898 2897 2898
 2899 2899 2900 2900 2900
 2900 2899 2899 2899 2898
 2900 2901 2899 2898 2900
 2901 2901 2900 2899 2898
 2901 2899 2901 2900 2901
 2898 2900 2900 2898 2900
 2900 2898 2899 2901 2900
 2899 2899 2900 2900 2899
 2900 2901 2899 2898 2898
 2899 2896 2898 2897 2898
 2898 2897 2897 2897 2898
 2897 2899 2900 2899 2897
 2898 2900 2900 2898 2898
 2899 2900 2898 2900 2900
 2898 2900 2898 2898 2898
 2898 2898 2899 2898 2900
 2897 2899 2898 2899 2898
 2897 2900 2901 2899 2898
 2898 2901 2898 2899 2897
 2899 2897 2896 2898 2898
 2899 2900 2896 2897 2897
 2898 2899 2899 2898 2898
 2897 2897 2898 2897 2897
 2898 2898 2898 2896 2895
 2898 2898 2898 2896 2898
 2898 2898 2897 2897 2899
 2896 2900 2897 2897 2898
 2896 2897 2898 2898 2898
 2897 2897 2898 2899 2897
 2898 2899 2897 2900 2896
 2899 2897 2898 2897 2900
 2899 2900 2897 2897 2898
 2897 2899 2899 2898 2897
 2901 2900 2898 2901 2899
 2900 2899 2898 2900 2900
 2899 2898 2897 2900 2898
 2898 2897 2899 2898 2900
 2899 2898 2899 2897 2900
 2898 2902 2897 2898 2899
 2899 2899 2898 2897 2898
 2897 2898 2899 2900 2900
 2899 2898 2899 2900 2899
 2900 2899 2899 2899 2899
 2899 2898 2899 2899 2900
 2902 2899 2900 2900 2901
 2899 2901 2899 2899 2902
 2898 2898 2898 2898 2899
 2899 2900 2900 2900 2898
 2899 2899 2900 2899 2900
 2899 2900 2898 2898 2898
 2900 2898 2899 2900 2899
 2899 2900 2898 2898 2899
 2899 2899 2899 2898 2898
 2897 2898 2899 2897 2897
 2901 2898 2897 2898 2899
 2898 2897 2899 2898 2897
 2898 2898 2897 2898 2899
 2899 2899 2899 2900 2899
 2899 2897 2898 2899 2900
 2898 2897 2901 2899 2901
 2898 2899 2901 2900 2900
 2899 2900 2900 2900 2900
 2901 2900 2901 2899 2897
 2900 2900 2901 2899 2898
 2900 2899 2899 2900 2899
 2900 2899 2900 2899 2901
 2900 2900 2899 2899 2898
 2899 2900 2898 2899 2899
 2901 2898 2898 2900 2899
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 2899 2898 2897 2898 2897
 2899 2899 2899 2898 2898
 2897 2898 2899 2897 2897
 2899 2898 2898 2899 2899
 2901 2899 2899 2899 2897
 2900 2896 2898 2898 2900
 2897 2899 2897 2896 2898
 2897 2898 2899 2896 2899
 2901 2898 2898 2896 2897
 2899 2897 2898 2899 2898
 2898 2898 2898 2898 2898
 2899 2900 2899 2901 2898
 2899 2899 2898 2900 2898
 2899 2899 2901 2900 2901
 2899 2901 2899 2901 2899
 2900 2902 2899 2898 2899
 2900 2899 2900 2900 2901
 2900 2899 2901 2901 2899
 2898 2901 2897 2898 2901
 2900 2902 2899 2900 2898
 2900 2899 2900 2899 2899
 2899 2898 2900 2898 2899
 2899 2899 2899 2898 2900

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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1.4.2.4.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid. These
assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of
Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates that the
data do not have any significant shifts in location or
scale over time.

2. The lag plot (upper right) does not indicate any non-
random pattern in the data.

3. The histogram (lower left) shows that the data are
reasonably symmetric, there does not appear to be
significant outliers in the tails, and that it is
reasonable to assume that the data can be fit with a
normal distribution.

4. The normal probability plot (lower right) is difficult
to interpret due to the fact that there are only a few
distinct values with many repeats.

The integer data with only a few distinct values and many
repeats accounts for the discrete appearance of several of
the plots (e.g., the lag plot and the normal probability plot).
In this case, the nature of the data makes the normal
probability plot difficult to interpret, especially since each
number is repeated many times. However, the histogram
indicates that a normal distribution should provide an
adequate model for the data.

From the above plots, we conclude that the underlying
assumptions are valid and the data can be reasonably
approximated with a normal distribution. Therefore, the
commonly used uncertainty standard is valid and
appropriate. The numerical values for this model are given
in the Quantitative Output and Interpretation section.

Individual
Plots

Although it is normally not necessary, the plots can be
generated individually to give more detail.

Run
Sequence
Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Lag Plot

Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot
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1.4.2.4.3. Quantitative Output and
Interpretation

Summary
Statistics

As a first step in the analysis, common summary statistics
were computed from the data.

      Sample size  = 700
      Mean         =   2898.562
      Median       =   2899.000  
      Minimum      =   2895.000  
      Maximum      =   2902.000  
      Range        =      7.000  
      Stan. Dev.   =      1.305

Because of the discrete nature of the data, we also compute
the normal PPCC.

      Normal PPCC = 0.97484

Location One way to quantify a change in location over time is to fit
a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In our
regression, we use the index variable X = 1, 2, ..., N, where
N is the number of observations. If there is no significant
drift in the location over time, the slope parameter should
be zero.

      Coefficient     Estimate     Stan. Error      
t-Value
          B0         2.898E+03       9.745E-02    
29739.288  
          B1         1.071E-03       2.409e-04        
4.445
 
      Residual Standard Deviation = 1.288
      Residual Degrees of Freedom = 698 

The slope parameter, B1, has a t value of 4.445 which is
statistically significant (the critical value is 1.96). However,
the value of the slope is 1.071E-03. Given that the slope is
nearly zero, the assumption of constant location is not
seriously violated even though it is statistically significant.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal-
sized intervals. However, the Bartlett test is not robust for
non-normality. Since the nature of the data (a few distinct

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
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points repeated many times) makes the normality
assumption questionable, we use the alternative Levene
test. In particular, we use the Levene test based on the
median rather the mean. The choice of the number of
intervals is somewhat arbitrary, although values of four or
eight are reasonable. We will divide our data into four
intervals.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2 
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  W = 1.43
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Fα,k-1,N-k = 2.618
      Critical region:  Reject H0 if W > 2.618

Since the Levene test statistic value of 1.43 is less than the
95 % critical value of 2.618, we conclude that the variances
are not significantly different in the four intervals.

Randomness There are many ways in which data can be non-random.
However, most common forms of non-randomness can be
detected with a few simple tests. The lag plot in the
previous section is a simple graphical technique.

Another check is an autocorrelation plot that shows the
autocorrelations for various lags. Confidence bands can be
plotted at the 95 % and 99 % confidence levels. Points
outside this band indicate statistically significant values (lag
0 is always 1).

The lag 1 autocorrelation, which is generally the one of
most interest, is 0.31. The critical values at the 5 % level of
significance are -0.087 and 0.087. This indicates that the
lag 1 autocorrelation is statistically significant, so there is
some evidence for non-randomness.

A common test for randomness is the runs test.
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      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = -13.4162
      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96 

The runs test indicates non-randomness.

Although the runs test and lag 1 autocorrelation indicate
some mild non-randomness, it is not sufficient to reject the
Yi = C + Ei model. At least part of the non-randomness can
be explained by the discrete nature of the data.

Distributional
Analysis

Probability plots are a graphical test for assessing if a
particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the
correlation coefficient of the points on the probability plot,
or PPCC. For this data set the PPCC based on a normal
distribution is 0.975. Since the PPCC is less than the critical
value of 0.987 (this is a tabulated value), the normality
assumption is rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests
are alternative methods for assessing distributional
adequacy. The Wilk-Shapiro and Anderson-Darling tests
can be used to test for normality. The results of the
Anderson-Darling test follow.

      H0:  the data are normally distributed
      Ha:  the data are not normally distributed

      Adjusted test statistic:  A2 = 16.858
      Significance level:  α = 0.05
      Critical value:  0.787
      Critical region:  Reject H0 if A

2 > 0.787

The Anderson-Darling test rejects the normality assumption
because the test statistic, 16.858, is greater than the 95 %
critical value 0.787.

Although the data are not strictly normal, the violation of
the normality assumption is not severe enough to conclude
that the Yi = C + Ei model is unreasonable. At least part of
the non-normality can be explained by the discrete nature
of the data.

Outlier
Analysis

A test for outliers is the Grubbs test.

      H0:  there are no outliers in the data
      Ha:  the maximum value is an outlier

      Test statistic:  G = 2.729201
      Significance level:  α = 0.05
      Critical value for a one-tailed test:  

http://www.itl.nist.gov/div898/handbook/prc/section2/prc213.htm


1.4.2.4.3. Quantitative Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4243.htm[6/27/2012 2:03:28 PM]

3.950619
      Critical region:  Reject H0 if G > 3.950619

For this data set, Grubbs' test does not detect any outliers at
the 0.05 significance level.

Model Although the randomness and normality assumptions were
mildly violated, we conclude that a reasonable model for
the data is:

In addition, a 95 % confidence interval for the mean value
is (2898.515, 2898.928).

Univariate
Report

It is sometimes useful and convenient to summarize the
above results in a report.

 Analysis for Josephson Junction Cryothermometry 
Data
  
 1: Sample Size                           = 700
  
 2: Location
    Mean                                  = 
2898.562
    Standard Deviation of Mean            = 
0.049323
    95% Confidence Interval for Mean      = 
(2898.465,2898.658)
    Drift with respect to location?       = YES
    (Further analysis indicates that
    the drift, while statistically
    significant, is not practically
    significant)
  
 3: Variation
    Standard Deviation                    = 
1.30497
    95% Confidence Interval for SD        = 
(1.240007,1.377169)
    Drift with respect to variation?
    (based on Levene's test on quarters
    of the data)                          = NO
  
 4: Distribution
    Normal PPCC                           = 
0.97484
    Data are Normal?
      (as measured by Normal PPCC)        = NO
  
 5: Randomness
    Autocorrelation                       = 
0.314802
    Data are Random?
      (as measured by autocorrelation)    = NO
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control?   = NO
  
    Note: Although we have violations of
    the assumptions, they are mild enough,
    and at least partially explained by the
    discrete nature of the data, so we may model
    the data as if it were in statistical
    control
  
 7: Outliers?
    (as determined by Grubbs test)        = NO
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1. Exploratory Data Analysis 
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1.4.2.4. Josephson Junction Cryothermometry 

1.4.2.4.4. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-
plot, there are no 
shifts
    in location or 
scale.  Due to the 
nature
    of the data (a 
few distinct points 
with
    many repeats), 
the normality 
assumption is
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    questionable.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

   4. Generate a normal probability
      plot.

 1. The run sequence 
plot indicates that
    there are no 
shifts of location or
    scale.

 2. The lag plot 
does not indicate any
    significant 
patterns (which would
    show the data 
were not random).

 3. The histogram 
indicates that a 
    normal 
distribution is a 
good
    distribution for 
these data.

 4. The discrete 
nature of the data 
masks
    the normality or 
non-normality of the
    data somewhat.  
The plot indicates 
that
    a normal 
distribution provides 
a rough
    approximation for 
the data.

4. Generate summary statistics, 
quantitative
   analysis, and print a univariate 
report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the 
standard
      deviation, and detect drift in 
variation
      by dividing the data into quarters 
and
      computing Levene's test for equal
      standard deviations.

   4. Check for randomness by generating 
an
      autocorrelation plot and a runs 
test.

   5. Check for normality by computing 
the
      normal probability plot 
correlation
      coefficient.

 1. The summary 
statistics table 
displays
    25+ statistics.

 2. The mean is 
2898.56 and a 95%
    confidence 
interval is 
(2898.46,2898.66).
    The linear fit 
indicates no 
meaningful drift
    in location since 
the value of the 
slope
    parameter is near 
zero.

 3. The standard 
devaition is 1.30 
with
    a 95% confidence 
interval of 
(1.24,1.38).
    Levene's test 
indicates no 
significant
    drift in 
variation.
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   6. Check for outliers using Grubbs' 
test.

   7. Print a univariate report (this 
assumes
      steps 2 thru 6 have already been 
run).

 4. The lag 1 
autocorrelation is 
0.31.
    This indicates 
some mild non-
randomness.

 5. The normal 
probability plot 
correlation
    coefficient is 
0.975.  At the 5% 
level,
    we reject the 
normality assumption.

 6. Grubbs' test 
detects no outliers 
at the
    5% level.

 7. The results are 
summarized in a
    convenient 
report.
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1.4. EDA Case Studies 
1.4.2. Case Studies 

1.4.2.5. Beam Deflections

Beam
Deflection

This example illustrates the univariate analysis of beam
deflection data.

1. Background and Data
2. Test Underlying Assumptions
3. Develop a Better Model
4. Validate New Model
5. Work This Example Yourself
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1.4.2.5.1. Background and Data

Generation This data set was collected by H. S. Lew of NIST in 1969 to
measure steel-concrete beam deflections. The response
variable is the deflection of a beam from the center point.

The motivation for studying this data set is to show how the
underlying assumptions are affected by periodic data.

Data The following are the data used for this case study.

  -213
  -564
   -35
   -15
   141
   115
  -420
  -360
   203
  -338
  -431
   194
  -220
  -513
   154
  -125
  -559
    92
   -21
  -579
   -52
    99
  -543
  -175
   162
  -457
  -346
   204
  -300
  -474
   164
  -107
  -572
    -8
    83
  -541
  -224
   180
  -420
  -374
   201
  -236
  -531
    83
    27
  -564
  -112
   131
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  -507
  -254
   199
  -311
  -495
   143
   -46
  -579
   -90
   136
  -472
  -338
   202
  -287
  -477
   169
  -124
  -568
    17
    48
  -568
  -135
   162
  -430
  -422
   172
   -74
  -577
   -13
    92
  -534
  -243
   194
  -355
  -465
   156
   -81
  -578
   -64
   139
  -449
  -384
   193
  -198
  -538
   110
   -44
  -577
    -6
    66
  -552
  -164
   161
  -460
  -344
   205
  -281
  -504
   134
   -28
  -576
  -118
   156
  -437
  -381
   200
  -220
  -540
    83
    11
  -568
  -160
   172
  -414
  -408
   188
  -125
  -572
   -32
   139
  -492
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  -321
   205
  -262
  -504
   142
   -83
  -574
     0
    48
  -571
  -106
   137
  -501
  -266
   190
  -391
  -406
   194
  -186
  -553
    83
   -13
  -577
   -49
   103
  -515
  -280
   201
   300
  -506
   131
   -45
  -578
   -80
   138
  -462
  -361
   201
  -211
  -554
    32
    74
  -533
  -235
   187
  -372
  -442
   182
  -147
  -566
    25
    68
  -535
  -244
   194
  -351
  -463
   174
  -125
  -570
    15
    72
  -550
  -190
   172
  -424
  -385
   198
  -218
  -536
    96
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1.4.2.5.2. Test Underlying Assumptions

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid.
These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates that the
data do not have any significant shifts in location or
scale over time.

2. The lag plot (upper right) shows that the data are
not random. The lag plot further indicates the
presence of a few outliers.

3. When the randomness assumption is thus seriously
violated, the histogram (lower left) and normal
probability plot (lower right) are ignored since
determining the distribution of the data is only
meaningful when the data are random.

From the above plots we conclude that the underlying
randomness assumption is not valid. Therefore, the model

is not appropriate.

We need to develop a better model. Non-random data can
frequently be modeled using time series mehtodology.
Specifically, the circular pattern in the lag plot indicates
that a sinusoidal model might be appropriate. The
sinusoidal model will be developed in the next section.

Individual Plots The plots can be generated individually for more detail. In
this case, only the run sequence plot and the lag plot are
drawn since the distributional plots are not meaningful.

Run Sequence
Plot

Lag Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
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We have drawn some lines and boxes on the plot to better
isolate the outliers. The following data points appear to be
outliers based on the lag plot.

INDEX         Y(i-1)           Y(i)   

  158        -506.00         300.00
  157         300.00         201.00
    3         -15.00         -35.00
    5         115.00         141.00
  

That is, the third, fifth, 157th, and 158th points appear to
be outliers.

Autocorrelation
Plot

When the lag plot indicates significant non-randomness, it
can be helpful to follow up with a an autocorrelation plot.

This autocorrelation plot shows a distinct cyclic pattern.
As with the lag plot, this suggests a sinusoidal model.

Spectral Plot Another useful plot for non-random data is the spectral
plot.

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm


1.4.2.5.2. Test Underlying Assumptions

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4252.htm[6/27/2012 2:03:32 PM]

This spectral plot shows a single dominant peak at a
frequency of 0.3. This frequency of 0.3 will be used in
fitting the sinusoidal model in the next section.

Quantitative
Results

Although the lag plot, autocorrelation plot, and spectral
plot clearly show the violation of the randomness
assumption, we supplement the graphical output with
some quantitative measures.

Summary
Statistics

As a first step in the analysis, summary statistics are
computed from the data.

      Sample size  =  200
      Mean         = -177.4350
      Median       = -162.0000  
      Minimum      = -579.0000  
      Maximum      =  300.0000 
      Range        =  879.0000
      Stan. Dev.   =  277.3322

Location One way to quantify a change in location over time is to
fit a straight line to the data set using the index variable X
= 1, 2, ..., N, with N denoting the number of observations.
If there is no significant drift in the location, the slope
parameter should be zero.

      Coefficient     Estimate     Stan. Error   
t-Value
          A0          -178.175         39.47      
-4.514
          A1         0.7366E-02         0.34       
0.022
 
      Residual Standard Deviation = 278.0313
      Residual Degrees of Freedom = 198  

The slope parameter, A1, has a t value of 0.022 which is
statistically not significant. This indicates that the slope
can in fact be considered zero.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal-

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
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sized intervals. However, the Bartlett the non-randomness
of this data does not allows us to assume normality, we
use the alternative Levene test. In partiuclar, we use the
Levene test based on the median rather the mean. The
choice of the number of intervals is somewhat arbitrary,
although values of 4 or 8 are reasonable.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2 
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  W = 0.09378
      Degrees of freedom:  k - 1 = 3
      Sample size:  N = 200
      Significance level:  α = 0.05
      Critical value:  Fα,k-1,N-k = 2.651
      Critical region:  Reject H0 if W > 2.651

In this case, the Levene test indicates that the variances
are not significantly different in the four intervals since
the test statistic value, 0.9378, is less than the critical
value of 2.651.

Randomness A runs test is used to check for randomness

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = 2.6938
      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96 

The absolute value of the test statistic is larger than the
critical value at the 5 % significance level, so we conclude
that the data are not random.

Distributional
Assumptions

Since the quantitative tests show that the assumptions of
constant scale and non-randomness are not met, the
distributional measures will not be meaningful. Therefore
these quantitative tests are omitted.
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Sinusoidal
Model

The lag plot and autocorrelation plot in the previous section strongly
suggested a sinusoidal model might be appropriate. The basic sinusoidal
model is:

where C is constant defining a mean level,  is an amplitude for the sine
function,  is the frequency, Ti is a time variable, and  is the phase.
This sinusoidal model can be fit using non-linear least squares.

To obtain a good fit, sinusoidal models require good starting values for
C, the amplitude, and the frequency.

Good Starting
Value for C

A good starting value for C can be obtained by calculating the mean of
the data. If the data show a trend, i.e., the assumption of constant
location is violated, we can replace C with a linear or quadratic least
squares fit. That is, the model becomes

or

Since our data did not have any meaningful change of location, we can
fit the simpler model with C equal to the mean. From the summary
output in the previous page, the mean is -177.44.

Good Starting
Value for
Frequency

The starting value for the frequency can be obtained from the spectral
plot, which shows the dominant frequency is about 0.3.

Complex
Demodulation
Phase Plot

The complex demodulation phase plot can be used to refine this initial
estimate for the frequency.

For the complex demodulation plot, if the lines slope from left to right,
the frequency should be increased. If the lines slope from right to left, it
should be decreased. A relatively flat (i.e., horizontal) slope indicates a
good frequency. We could generate the demodulation phase plot for 0.3
and then use trial and error to obtain a better estimate for the frequency.
To simplify this, we generate 16 of these plots on a single page starting
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with a frequency of 0.28, increasing in increments of 0.0025, and
stopping at 0.3175.

Interpretation The plots start with lines sloping from left to right but gradually change
to a right to left slope. The relatively flat slope occurs for frequency
0.3025 (third row, second column). The complex demodulation phase
plot restricts the range from  to . This is why the plot appears
to show some breaks.

Good Starting
Values for
Amplitude

The complex demodulation amplitude plot is used to find a good starting
value for the amplitude. In addition, this plot indicates whether or not the
amplitude is constant over the entire range of the data or if it varies. If
the plot is essentially flat, i.e., zero slope, then it is reasonable to assume
a constant amplitude in the non-linear model. However, if the slope
varies over the range of the plot, we may need to adjust the model to be:

That is, we replace  with a function of time. A linear fit is specified in
the model above, but this can be replaced with a more elaborate function
if needed.

Complex
Demodulation
Amplitude
Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/compdeam.htm
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The complex demodulation amplitude plot for this data shows that:

1. The amplitude is fixed at approximately 390.
2. There is a short start-up effect.
3. There is a change in amplitude at around x=160 that should be

investigated for an outlier.

In terms of a non-linear model, the plot indicates that fitting a single
constant for  should be adequate for this data set.

Fit Results Using starting estimates of 0.3025 for the frequency, 390 for the
amplitude, and -177.44 for C, the following parameters were estimated.

      Coefficient     Estimate     Stan. Error     t-Value
         C            -178.786        11.02         -16.22
         AMP          -361.766        26.19         -13.81
         FREQ         0.302596      0.1510E-03     2005.00
         PHASE         1.46536      0.4909E-01       29.85
 
      Residual Standard Deviation = 155.8484
      Residual Degrees of Freedom = 196  

Model From the fit results, our proposed model is:

We will evaluate the adequacy of this model in the next section.
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1.4.2.5.4. Validate New Model

4-Plot of
Residuals

The first step in evaluating the fit is to generate a 4-plot of the residuals.

Interpretation The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not
have any significant shifts in location. There does seem to be
some shifts in scale. A start-up effect was detected previously by
the complex demodulation amplitude plot. There does appear to be
a few outliers.

2. The lag plot (upper right) shows that the data are random. The
outliers also appear in the lag plot.

3. The histogram (lower left) and the normal probability plot (lower
right) do not show any serious non-normality in the residuals.
However, the bend in the left portion of the normal probability
plot shows some cause for concern.

The 4-plot indicates that this fit is reasonably good. However, we will
attempt to improve the fit by removing the outliers.

Fit Results
with Outliers
Removed

The following parameter estimates were obtained after removing three
outliers.

      Coefficient     Estimate     Stan. Error     t-Value
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         C            -178.788        10.57         -16.91
         AMP          -361.759        25.45         -14.22
         FREQ         0.302597      0.1457E-03     2077.00
         PHASE         1.46533      0.4715E-01       31.08
 
      Residual Standard Deviation = 148.3398
      Residual Degrees of Freedom = 193  

New Fit to
Edited Data

The original fit, with a residual standard deviation of 155.84, was:

The new fit, with a residual standard deviation of 148.34, is:

There is minimal change in the parameter estimates and about a 5 %
reduction in the residual standard deviation. In this case, removing the
residuals has a modest benefit in terms of reducing the variability of the
model.

4-Plot for
New Fit

This plot shows that the underlying assumptions are satisfied and
therefore the new fit is a good descriptor of the data.

In this case, it is a judgment call whether to use the fit with or without
the outliers removed.
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1.4.2.5.5. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. Validate assumptions.

   1. 4-plot of Y.

   2. Generate a run sequence plot.

   3. Generate a lag plot.

 1. Based on the 4-
plot, there are no
    obvious shifts in 
location and scale,
    but the data are 
not random.

 2. Based on the run 
sequence plot, there
    are no obvious 
shifts in location 
and
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   4. Generate an autocorrelation plot.

   5. Generate a spectral plot.

   6. Generate a table of summary
      statistics.

   7. Generate a linear fit to detect
      drift in location.

   8. Detect drift in variation by
      dividing the data into quarters 
and
      computing Levene's test statistic 
for
      equal standard deviations.

   9. Check for randomness by generating
      a runs test.

    scale.

 3. Based on the lag 
plot, the data
    are not random.

 4. The 
autocorrelation plot 
shows
    significant 
autocorrelation at 
lag 1.

 5. The spectral plot 
shows a single 
dominant
    low frequency 
peak.

 6. The summary 
statistics table 
displays
    25+ statistics.

 7. The linear fit 
indicates no drift in
    location since 
the slope parameter
    is not 
statistically 
significant.

 8. Levene's test 
indicates no
    significant drift 
in variation.

 9. The runs test 
indicates significant
    non-randomness.

3. Fit
Yi = C + A*SIN(2*PI*omega*ti+phi).

   1. Generate a complex demodulation
      phase plot.

   2. Generate a complex demodulation
      amplitude plot.

   3. Fit the non-linear model.

 1. Complex 
demodulation phase 
plot
    indicates a 
starting frequency
    of 0.3025.

 2. Complex 
demodulation 
amplitude
    plot indicates an 
amplitude of 
    390 (but there 
is a short start-up
    effect).

 3. Non-linear fit 
generates final
    parameter 
estimates.  The
    residual standard 
deviation from
    the fit is 155.85 
(compared to the
    standard 
deviation of 277.73 
from
    the original 
data).
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4. Validate fit.

   1. Generate a 4-plot of the residuals
      from the fit.

   2. Generate a nonlinear fit with
      outliers removed.

   3. Generate a 4-plot of the residuals
      from the fit with the outliers
      removed.

 1. The 4-plot 
indicates that the 
assumptions
    of constant 
location and scale 
are valid.
    The lag plot 
indicates that the 
data are
    random.  The 
histogram and normal
    probability plot 
indicate that the 
residuals
    that the 
normality assumption 
for the
    residuals are not 
seriously violated,
    although there is 
a bend on the 
probablity
    plot that 
warrants attention.

 2. The fit after 
removing 3 outliers 
shows
    some marginal 
improvement in the 
model
    (a 5% reduction 
in the residual 
standard
    deviation).

 3. The 4-plot of 
the model fit after
    3 outliers 
removed shows 
marginal
    improvement in 
satisfying model 
    assumptions.
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Filter
Transmittance

This example illustrates the univariate analysis of filter
transmittance data.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself
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1.4.2.6.1. Background and Data

Generation This data set was collected by NIST chemist Radu
Mavrodineaunu in the 1970's from an automatic data
acquisition system for a filter transmittance experiment. The
response variable is transmittance.

The motivation for studying this data set is to show how the
underlying autocorrelation structure in a relatively small data
set helped the scientist detect problems with his automatic
data acquisition system.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following are the data used for this case study.

   2.00180
   2.00170
   2.00180
   2.00190
   2.00180
   2.00170
   2.00150
   2.00140
   2.00150
   2.00150
   2.00170
   2.00180
   2.00180
   2.00190
   2.00190
   2.00210
   2.00200
   2.00160
   2.00140
   2.00130
   2.00130
   2.00150
   2.00150
   2.00160
   2.00150
   2.00140
   2.00130
   2.00140
   2.00150
   2.00140
   2.00150
   2.00160
   2.00150
   2.00160
   2.00190
   2.00200
   2.00200
   2.00210
   2.00220
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   2.00230
   2.00240
   2.00250
   2.00270
   2.00260
   2.00260
   2.00260
   2.00270
   2.00260
   2.00250
   2.00240
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1.4.2.6.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid. These
assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of
Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates a
significant shift in location around x=35.

2. The linear appearance in the lag plot (upper right)
indicates a non-random pattern in the data.

3. Since the lag plot indicates significant non-
randomness, we do not make any interpretation of
either the histogram (lower left) or the normal
probability plot (lower right).

The serious violation of the non-randomness assumption
means that the univariate model

is not valid. Given the linear appearance of the lag plot, the
first step might be to consider a model of the type

However, in this case discussions with the scientist revealed
that non-randomness was entirely unexpected. An
examination of the experimental process revealed that the
sampling rate for the automatic data acquisition system was
too fast. That is, the equipment did not have sufficient time
to reset before the next sample started, resulting in the
current measurement being contaminated by the previous
measurement. The solution was to rerun the experiment
allowing more time between samples.

Simple graphical techniques can be quite effective in
revealing unexpected results in the data. When this occurs,
it is important to investigate whether the unexpected result
is due to problems in the experiment and data collection or
is indicative of unexpected underlying structure in the data.
This determination cannot be made on the basis of statistics
alone. The role of the graphical and statistical analysis is to
detect problems or unexpected results in the data. Resolving
the issues requires the knowledge of the scientist or
engineer.

Individual
Plots

Although it is generally unnecessary, the plots can be
generated individually to give more detail. Since the lag
plot indicates significant non-randomness, we omit the
distributional plots.

Run
Sequence
Plot
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Lag Plot
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1.4.2.6.3. Quantitative Output and
Interpretation

Summary
Statistics

As a first step in the analysis, common summary statistics
are computed from the data.

      Sample size  = 50
      Mean         =  2.0019
      Median       =  2.0018
      Minimum      =  2.0013  
      Maximum      =  2.0027  
      Range        =  0.0014  
      Stan. Dev.   =  0.0004  

Location One way to quantify a change in location over time is to fit
a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In our
regression, we use the index variable X = 1, 2, ..., N, where
N is the number of observations. If there is no significant
drift in the location over time, the slope parameter should
be zero.

      Coefficient     Estimate     Stan. Error      
t-Value
          B0           2.00138      0.9695E-04   
0.2064E+05
          B1         0.185E-04      0.3309E-05        
5.582
 
      Residual Standard Deviation = 0.3376404E-03
      Residual Degrees of Freedom = 48

The slope parameter, B1, has a t value of 5.582, which is
statistically significant. Although the estimated slope,
0.185E-04, is nearly zero, the range of data (2.0013 to
2.0027) is also very small. In this case, we conclude that
there is drift in location, although it is relatively small.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal
sized intervals. However, the Bartlett test is not robust for
non-normality. Since the normality assumption is
questionable for these data, we use the alternative Levene
test. In particular, we use the Levene test based on the
median rather the mean. The choice of the number of
intervals is somewhat arbitrary, although values of four or

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
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eight are reasonable. We will divide our data into four
intervals.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2 
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  W = 0.971
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Fα,k-1,N-k = 2.806
      Critical region:  Reject H0 if W > 2.806

In this case, since the Levene test statistic value of 0.971 is
less than the critical value of 2.806 at the 5 % level, we
conclude that there is no evidence of a change in variation.

Randomness There are many ways in which data can be non-random.
However, most common forms of non-randomness can be
detected with a few simple tests. The lag plot in the 4-plot
in the previous seciton is a simple graphical technique.

One check is an autocorrelation plot that shows the
autocorrelations for various lags. Confidence bands can be
plotted at the 95 % and 99 % confidence levels. Points
outside this band indicate statistically significant values (lag
0 is always 1).

The lag 1 autocorrelation, which is generally the one of
most interest, is 0.93. The critical values at the 5 % level
are -0.277 and 0.277. This indicates that the lag 1
autocorrelation is statistically significant, so there is strong
evidence of non-randomness.

A common test for randomness is the runs test.

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = -5.3246
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      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96 

Because the test statistic is outside of the critical region, we
reject the null hypothesis and conclude that the data are not
random.

Distributional
Analysis

Since we rejected the randomness assumption, the
distributional tests are not meaningful. Therefore, these
quantitative tests are omitted. We also omit Grubbs' outlier
test since it also assumes the data are approximately
normally distributed.

Univariate
Report

It is sometimes useful and convenient to summarize the
above results in a report.

  
 Analysis for filter transmittance data
  
 1: Sample Size                           = 50
  
 2: Location
    Mean                                  = 
2.001857
    Standard Deviation of Mean            = 
0.00006
    95% Confidence Interval for Mean      = 
(2.001735,2.001979)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 
0.00043
    95% Confidence Interval for SD        = 
(0.000359,0.000535)
    Change in variation?
    (based on Levene's test on quarters
    of the data)                          = NO
  
 4: Distribution
    Distributional tests omitted due to
    non-randomness of the data
  
 5: Randomness
    Lag One Autocorrelation               = 
0.937998
    Data are Random?
      (as measured by autocorrelation)    = NO
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed, here we are testing only for
    normal)
    Data Set is in Statistical Control?   = NO
  
 7: Outliers?
    (Grubbs' test omitted)                = NO

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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1. Exploratory Data Analysis 
1.4. EDA Case Studies 
1.4.2. Case Studies 
1.4.2.6. Filter Transmittance 

1.4.2.6.4. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-
plot, there is a 
shift
    in location and 
the data are not 
random.

3. Generate the individual plots.

   1. Generate a run sequence plot.  1. The run sequence 

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/mavro.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/mavro.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/mavro.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/mavro.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/mavro.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/4plot.dp
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   2. Generate a lag plot.

plot indicates that
    there is a shift 
in location.

 2. The strong linear 
pattern of the lag
    plot indicates 
significant
    non-randomness.

4. Generate summary statistics, 
quantitative
   analysis, and print a univariate 
report.

   1. Generate a table of summary
      statistics.

   2. Compute a linear fit based on
      quarters of the data to detect
      drift in location.

   3. Compute Levene's test based on
      quarters of the data to detect
      changes in variation.

   4. Check for randomness by generating 
an
      autocorrelation plot and a runs 
test.

   5. Print a univariate report (this 
assumes
      steps 2 thru 4 have already been 
run).

 1. The summary 
statistics table 
displays
    25+ statistics.

 2. The linear fit 
indicates a slight 
drift in
    location since 
the slope parameter 
is
    statistically 
significant, but 
small.

 3. Levene's test 
indicates no 
significant
    drift in 
variation.

 4. The lag 1 
autocorrelation is 
0.94.
    This is outside 
the 95% confidence
    interval bands 
which indicates 
significant
    non-randomness.

 5. The results are 
summarized in a
    convenient 
report.

http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/lagplot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/summary.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/mavro/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1. Exploratory Data Analysis 
1.4. EDA Case Studies 
1.4.2. Case Studies 

1.4.2.7. Standard Resistor

Standard
Resistor

This example illustrates the univariate analysis of standard
resistor data.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.4. EDA Case Studies 
1.4.2. Case Studies 
1.4.2.7. Standard Resistor 

1.4.2.7.1. Background and Data

Generation This data set was collected by Ron Dziuba of NIST over a 5-
year period from 1980 to 1985. The response variable is
resistor values.

The motivation for studying this data set is to illustrate data
that violate the assumptions of constant location and scale.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following are the data used for this case study.

27.8680
27.8929
27.8773
27.8530
27.8876
27.8725
27.8743
27.8879
27.8728
27.8746
27.8863
27.8716
27.8818
27.8872
27.8885
27.8945
27.8797
27.8627
27.8870
27.8895
27.9138
27.8931
27.8852
27.8788
27.8827
27.8939
27.8558
27.8814
27.8479
27.8479
27.8848
27.8809
27.8479
27.8611
27.8630
27.8679
27.8637
27.8985
27.8900
27.8577
27.8848
27.8869
27.8976

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4273.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4273.r
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27.8610
27.8567
27.8417
27.8280
27.8555
27.8639
27.8702
27.8582
27.8605
27.8900
27.8758
27.8774
27.9008
27.8988
27.8897
27.8990
27.8958
27.8830
27.8967
27.9105
27.9028
27.8977
27.8953
27.8970
27.9190
27.9180
27.8997
27.9204
27.9234
27.9072
27.9152
27.9091
27.8882
27.9035
27.9267
27.9138
27.8955
27.9203
27.9239
27.9199
27.9646
27.9411
27.9345
27.8712
27.9145
27.9259
27.9317
27.9239
27.9247
27.9150
27.9444
27.9457
27.9166
27.9066
27.9088
27.9255
27.9312
27.9439
27.9210
27.9102
27.9083
27.9121
27.9113
27.9091
27.9235
27.9291
27.9253
27.9092
27.9117
27.9194
27.9039
27.9515
27.9143
27.9124
27.9128
27.9260
27.9339
27.9500
27.9530
27.9430
27.9400
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27.8850
27.9350
27.9120
27.9260
27.9660
27.9280
27.9450
27.9390
27.9429
27.9207
27.9205
27.9204
27.9198
27.9246
27.9366
27.9234
27.9125
27.9032
27.9285
27.9561
27.9616
27.9530
27.9280
27.9060
27.9380
27.9310
27.9347
27.9339
27.9410
27.9397
27.9472
27.9235
27.9315
27.9368
27.9403
27.9529
27.9263
27.9347
27.9371
27.9129
27.9549
27.9422
27.9423
27.9750
27.9339
27.9629
27.9587
27.9503
27.9573
27.9518
27.9527
27.9589
27.9300
27.9629
27.9630
27.9660
27.9730
27.9660
27.9630
27.9570
27.9650
27.9520
27.9820
27.9560
27.9670
27.9520
27.9470
27.9720
27.9610
27.9437
27.9660
27.9580
27.9660
27.9700
27.9600
27.9660
27.9770
27.9110
27.9690
27.9698
27.9616
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27.9371
27.9700
27.9265
27.9964
27.9842
27.9667
27.9610
27.9943
27.9616
27.9397
27.9799
28.0086
27.9709
27.9741
27.9675
27.9826
27.9676
27.9703
27.9789
27.9786
27.9722
27.9831
28.0043
27.9548
27.9875
27.9495
27.9549
27.9469
27.9744
27.9744
27.9449
27.9837
27.9585
28.0096
27.9762
27.9641
27.9854
27.9877
27.9839
27.9817
27.9845
27.9877
27.9880
27.9822
27.9836
28.0030
27.9678
28.0146
27.9945
27.9805
27.9785
27.9791
27.9817
27.9805
27.9782
27.9753
27.9792
27.9704
27.9794
27.9814
27.9794
27.9795
27.9881
27.9772
27.9796
27.9736
27.9772
27.9960
27.9795
27.9779
27.9829
27.9829
27.9815
27.9811
27.9773
27.9778
27.9724
27.9756
27.9699
27.9724
27.9666
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27.9666
27.9739
27.9684
27.9861
27.9901
27.9879
27.9865
27.9876
27.9814
27.9842
27.9868
27.9834
27.9892
27.9864
27.9843
27.9838
27.9847
27.9860
27.9872
27.9869
27.9602
27.9852
27.9860
27.9836
27.9813
27.9623
27.9843
27.9802
27.9863
27.9813
27.9881
27.9850
27.9850
27.9830
27.9866
27.9888
27.9841
27.9863
27.9903
27.9961
27.9905
27.9945
27.9878
27.9929
27.9914
27.9914
27.9997
28.0006
27.9999
28.0004
28.0020
28.0029
28.0008
28.0040
28.0078
28.0065
27.9959
28.0073
28.0017
28.0042
28.0036
28.0055
28.0007
28.0066
28.0011
27.9960
28.0083
27.9978
28.0108
28.0088
28.0088
28.0139
28.0092
28.0092
28.0049
28.0111
28.0120
28.0093
28.0116
28.0102
28.0139
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28.0113
28.0158
28.0156
28.0137
28.0236
28.0171
28.0224
28.0184
28.0199
28.0190
28.0204
28.0170
28.0183
28.0201
28.0182
28.0183
28.0175
28.0127
28.0211
28.0057
28.0180
28.0183
28.0149
28.0185
28.0182
28.0192
28.0213
28.0216
28.0169
28.0162
28.0167
28.0167
28.0169
28.0169
28.0161
28.0152
28.0179
28.0215
28.0194
28.0115
28.0174
28.0178
28.0202
28.0240
28.0198
28.0194
28.0171
28.0134
28.0121
28.0121
28.0141
28.0101
28.0114
28.0122
28.0124
28.0171
28.0165
28.0166
28.0159
28.0181
28.0200
28.0116
28.0144
28.0141
28.0116
28.0107
28.0169
28.0105
28.0136
28.0138
28.0114
28.0122
28.0122
28.0116
28.0025
28.0097
28.0066
28.0072
28.0066
28.0068
28.0067
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28.0130
28.0091
28.0088
28.0091
28.0091
28.0115
28.0087
28.0128
28.0139
28.0095
28.0115
28.0101
28.0121
28.0114
28.0121
28.0122
28.0121
28.0168
28.0212
28.0219
28.0221
28.0204
28.0169
28.0141
28.0142
28.0147
28.0159
28.0165
28.0144
28.0182
28.0155
28.0155
28.0192
28.0204
28.0185
28.0248
28.0185
28.0226
28.0271
28.0290
28.0240
28.0302
28.0243
28.0288
28.0287
28.0301
28.0273
28.0313
28.0293
28.0300
28.0344
28.0308
28.0291
28.0287
28.0358
28.0309
28.0286
28.0308
28.0291
28.0380
28.0411
28.0420
28.0359
28.0368
28.0327
28.0361
28.0334
28.0300
28.0347
28.0359
28.0344
28.0370
28.0355
28.0371
28.0318
28.0390
28.0390
28.0390
28.0376
28.0376
28.0377
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28.0345
28.0333
28.0429
28.0379
28.0401
28.0401
28.0423
28.0393
28.0382
28.0424
28.0386
28.0386
28.0373
28.0397
28.0412
28.0565
28.0419
28.0456
28.0426
28.0423
28.0391
28.0403
28.0388
28.0408
28.0457
28.0455
28.0460
28.0456
28.0464
28.0442
28.0416
28.0451
28.0432
28.0434
28.0448
28.0448
28.0373
28.0429
28.0392
28.0469
28.0443
28.0356
28.0474
28.0446
28.0348
28.0368
28.0418
28.0445
28.0533
28.0439
28.0474
28.0435
28.0419
28.0538
28.0538
28.0463
28.0491
28.0441
28.0411
28.0507
28.0459
28.0519
28.0554
28.0512
28.0507
28.0582
28.0471
28.0539
28.0530
28.0502
28.0422
28.0431
28.0395
28.0177
28.0425
28.0484
28.0693
28.0490
28.0453
28.0494
28.0522
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28.0393
28.0443
28.0465
28.0450
28.0539
28.0566
28.0585
28.0486
28.0427
28.0548
28.0616
28.0298
28.0726
28.0695
28.0629
28.0503
28.0493
28.0537
28.0613
28.0643
28.0678
28.0564
28.0703
28.0647
28.0579
28.0630
28.0716
28.0586
28.0607
28.0601
28.0611
28.0606
28.0611
28.0066
28.0412
28.0558
28.0590
28.0750
28.0483
28.0599
28.0490
28.0499
28.0565
28.0612
28.0634
28.0627
28.0519
28.0551
28.0696
28.0581
28.0568
28.0572
28.0529
28.0421
28.0432
28.0211
28.0363
28.0436
28.0619
28.0573
28.0499
28.0340
28.0474
28.0534
28.0589
28.0466
28.0448
28.0576
28.0558
28.0522
28.0480
28.0444
28.0429
28.0624
28.0610
28.0461
28.0564
28.0734
28.0565
28.0503
28.0581
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28.0519
28.0625
28.0583
28.0645
28.0642
28.0535
28.0510
28.0542
28.0677
28.0416
28.0676
28.0596
28.0635
28.0558
28.0623
28.0718
28.0585
28.0552
28.0684
28.0646
28.0590
28.0465
28.0594
28.0303
28.0533
28.0561
28.0585
28.0497
28.0582
28.0507
28.0562
28.0715
28.0468
28.0411
28.0587
28.0456
28.0705
28.0534
28.0558
28.0536
28.0552
28.0461
28.0598
28.0598
28.0650
28.0423
28.0442
28.0449
28.0660
28.0506
28.0655
28.0512
28.0407
28.0475
28.0411
28.0512
28.1036
28.0641
28.0572
28.0700
28.0577
28.0637
28.0534
28.0461
28.0701
28.0631
28.0575
28.0444
28.0592
28.0684
28.0593
28.0677
28.0512
28.0644
28.0660
28.0542
28.0768
28.0515
28.0579
28.0538
28.0526
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28.0833
28.0637
28.0529
28.0535
28.0561
28.0736
28.0635
28.0600
28.0520
28.0695
28.0608
28.0608
28.0590
28.0290
28.0939
28.0618
28.0551
28.0757
28.0698
28.0717
28.0529
28.0644
28.0613
28.0759
28.0745
28.0736
28.0611
28.0732
28.0782
28.0682
28.0756
28.0857
28.0739
28.0840
28.0862
28.0724
28.0727
28.0752
28.0732
28.0703
28.0849
28.0795
28.0902
28.0874
28.0971
28.0638
28.0877
28.0751
28.0904
28.0971
28.0661
28.0711
28.0754
28.0516
28.0961
28.0689
28.1110
28.1062
28.0726
28.1141
28.0913
28.0982
28.0703
28.0654
28.0760
28.0727
28.0850
28.0877
28.0967
28.1185
28.0945
28.0834
28.0764
28.1129
28.0797
28.0707
28.1008
28.0971
28.0826
28.0857
28.0984



1.4.2.7.1. Background and Data

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4271.htm[6/27/2012 2:03:42 PM]

28.0869
28.0795
28.0875
28.1184
28.0746
28.0816
28.0879
28.0888
28.0924
28.0979
28.0702
28.0847
28.0917
28.0834
28.0823
28.0917
28.0779
28.0852
28.0863
28.0942
28.0801
28.0817
28.0922
28.0914
28.0868
28.0832
28.0881
28.0910
28.0886
28.0961
28.0857
28.0859
28.1086
28.0838
28.0921
28.0945
28.0839
28.0877
28.0803
28.0928
28.0885
28.0940
28.0856
28.0849
28.0955
28.0955
28.0846
28.0871
28.0872
28.0917
28.0931
28.0865
28.0900
28.0915
28.0963
28.0917
28.0950
28.0898
28.0902
28.0867
28.0843
28.0939
28.0902
28.0911
28.0909
28.0949
28.0867
28.0932
28.0891
28.0932
28.0887
28.0925
28.0928
28.0883
28.0946
28.0977
28.0914
28.0959
28.0926
28.0923
28.0950
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28.1006
28.0924
28.0963
28.0893
28.0956
28.0980
28.0928
28.0951
28.0958
28.0912
28.0990
28.0915
28.0957
28.0976
28.0888
28.0928
28.0910
28.0902
28.0950
28.0995
28.0965
28.0972
28.0963
28.0946
28.0942
28.0998
28.0911
28.1043
28.1002
28.0991
28.0959
28.0996
28.0926
28.1002
28.0961
28.0983
28.0997
28.0959
28.0988
28.1029
28.0989
28.1000
28.0944
28.0979
28.1005
28.1012
28.1013
28.0999
28.0991
28.1059
28.0961
28.0981
28.1045
28.1047
28.1042
28.1146
28.1113
28.1051
28.1065
28.1065
28.0985
28.1000
28.1066
28.1041
28.0954
28.1090

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.4.2.7.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid. These
assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of
Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates
significant shifts in both location and variation.
Specifically, the location is increasing with time. The
variability seems greater in the first and last third of
the data than it does in the middle third.

2. The lag plot (upper right) shows a significant non-
random pattern in the data. Specifically, the strong
linear appearance of this plot is indicative of a model
that relates Yt to Yt-1.

3. The distributional plots, the histogram (lower left)
and the normal probability plot (lower right), are not
interpreted since the randomness assumption is so
clearly violated.

The serious violation of the non-randomness assumption
means that the univariate model

is not valid. Given the linear appearance of the lag plot, the
first step might be to consider a model of the type

However, discussions with the scientist revealed the
following:

1. the drift with respect to location was expected.

2. the non-constant variability was not expected.

The scientist examined the data collection device and
determined that the non-constant variation was a seasonal
effect. The high variability data in the first and last thirds
was collected in winter while the more stable middle third
was collected in the summer. The seasonal effect was
determined to be caused by the amount of humidity
affecting the measurement equipment. In this case, the
solution was to modify the test equipment to be less
sensitive to enviromental factors.

Simple graphical techniques can be quite effective in
revealing unexpected results in the data. When this occurs,
it is important to investigate whether the unexpected result
is due to problems in the experiment and data collection, or
is it in fact indicative of an unexpected underlying structure
in the data. This determination cannot be made on the basis
of statistics alone. The role of the graphical and statistical
analysis is to detect problems or unexpected results in the
data. Resolving the issues requires the knowledge of the

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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scientist or engineer.

Individual
Plots

Although it is generally unnecessary, the plots can be
generated individually to give more detail. Since the lag
plot indicates significant non-randomness, we omit the
distributional plots.

Run
Sequence
Plot

Lag Plot

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.4.2.7.3. Quantitative Output and
Interpretation

Summary
Statistics

As a first step in the analysis, common summary statistics
are computed from the data.

      Sample size  = 1000
      Mean         =   28.01634  
      Median       =   28.02910
      Minimum      =   27.82800
      Maximum      =   28.11850    
      Range        =    0.29050
      Stan. Dev.   =    0.06349

Location One way to quantify a change in location over time is to fit
a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In our
regression, we use the index variable X = 1, 2, ..., N, where
N is the number of observations. If there is no significant
drift in the location over time, the slope parameter should
be zero.

      Coefficient     Estimate     Stan. Error      
t-Value
          B0           27.9114      0.1209E-02     
0.2309E+05
          B1        0.20967E-03     0.2092E-05        
100.2
 
      Residual Standard Deviation = 0.1909796E-01
      Residual Degrees of Freedom = 998

The slope parameter, B1, has a t value of 100.2 which is
statistically significant. The value of the slope parameter
estimate is 0.00021. Although this number is nearly zero,
we need to take into account that the original scale of the
data is from about 27.8 to 28.2. In this case, we conclude
that there is a drift in location.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal-
sized intervals. However, the Bartlett test is not robust for
non-normality. Since the normality assumption is
questionable for these data, we use the alternative Levene
test. In particular, we use the Levene test based on the
median rather the mean. The choice of the number of

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
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intervals is somewhat arbitrary, although values of four or
eight are reasonable. We will divide our data into four
intervals.

      H0:  σ1
2 = σ2

2 = σ3
2 = σ4

2  
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  W = 140.85
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Fα,k-1,N-k = 2.614
      Critical region:  Reject H0 if W > 2.614

In this case, since the Levene test statistic value of 140.85
is greater than the 5 % significance level critical value of
2.614, we conclude that there is significant evidence of
nonconstant variation.

Randomness There are many ways in which data can be non-random.
However, most common forms of non-randomness can be
detected with a few simple tests. The lag plot in the 4-plot
in the previous section is a simple graphical technique.

One check is an autocorrelation plot that shows the
autocorrelations for various lags. Confidence bands can be
plotted at the 95 % and 99 % confidence levels. Points
outside this band indicate statistically significant values (lag
0 is always 1).

The lag 1 autocorrelation, which is generally the one of
greatest interest, is 0.97. The critical values at the 5 %
significance level are -0.062 and 0.062. This indicates that
the lag 1 autocorrelation is statistically significant, so there
is strong evidence of non-randomness.

A common test for randomness is the runs test.

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
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random manner  

      Test statistic:  Z = -30.5629
      Significance level:  α = 0.05
      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96   


Because the test statistic is outside of the critical region, we
reject the null hypothesis and conclude that the data are not
random.

Distributional
Analysis

Since we rejected the randomness assumption, the
distributional tests are not meaningful. Therefore, these
quantitative tests are omitted. Since the Grubbs' test for
outliers also assumes the approximate normality of the data,
we omit Grubbs' test as well.

Univariate
Report

It is sometimes useful and convenient to summarize the
above results in a report.

 Analysis for resistor case study
  
 1: Sample Size                           = 1000
  
 2: Location
    Mean                                  = 
28.01635
    Standard Deviation of Mean            = 
0.002008
    95% Confidence Interval for Mean      = 
(28.0124,28.02029)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 
0.063495
    95% Confidence Interval for SD        = 
(0.060829,0.066407)
    Change in variation?
    (based on Levene's test on quarters
    of the data)                          = YES
  
 4: Randomness
    Autocorrelation                       = 
0.972158
    Data Are Random?
      (as measured by autocorrelation)    = NO
  
 5: Distribution
    Distributional test omitted due to
    non-randomness of the data
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed)
    Data Set is in Statistical Control?   = NO
  
 7: Outliers?
    (Grubbs' test omitted due to
    non-randomness of the data)

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.4.2.7.4. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and run
this case study yourself. Each step may use results
from previous steps, so please be patient. Wait
until the software verifies that the current step is
complete before clicking on the next step.

NOTE: This case study has 1,000 points. For
better performance, it is highly recommended that
you check the "No Update" box on the
Spreadsheet window for this case study. This will
suppress subsequent updating of the Spreadsheet
window as the data are created or modified. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-
plot, there are 
shifts

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/resistor.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/4plot.dp
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    in location and 
variation and the 
data
    are not random.

3. Generate the individual plots.

   1. Generate a run sequence plot.

   2. Generate a lag plot.

 1. The run 
sequence plot 
indicates that
    there are 
shifts of location 
and
    variation.

 2. The lag plot 
shows a strong 
linear
    pattern, which 
indicates 
significant
    non-randomness.

4. Generate summary statistics, 
quantitative
   analysis, and print a univariate 
report.

   1. Generate a table of summary
      statistics.

   2. Generate the sample mean, a 
confidence
      interval for the population mean, 
and
      compute a linear fit to detect 
drift in
      location.

   3. Generate the sample standard 
deviation,
      a confidence interval for the 
population
      standard deviation, and detect 
drift in
      variation by dividing the data into
      quarters and computing Levene's 
test for
      equal standard deviations.

   4. Check for randomness by generating 
an
      autocorrelation plot and a runs 
test.

   5. Print a univariate report (this 
assumes
      steps 2 thru 5 have already been 
run).

 1. The summary 
statistics table 
displays
    25+ statistics.

 2. The mean is 
28.0163 and a 95%
    confidence 
interval is 
(28.0124,28.02029).
    The linear fit 
indicates drift in
    location since 
the slope parameter
    estimate is 
statistically 
significant.

 3. The standard 
deviation is 0.0635 
with
    a 95% 
confidence interval 
of 
(0.060829,0.066407).
    Levene's test 
indicates 
significant
    change in 
variation.

 4. The lag 1 
autocorrelation is 
0.97.
    From the 
autocorrelation 
plot, this is
    outside the 95% 
confidence interval
    bands, 
indicating 
significant non-
randomness.

 5. The results are 

http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/runseq.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/lagplot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/resistor/dpmacros/report.dp
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summarized in a
    convenient 
report.
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1.4.2.8. Heat Flow Meter 1

Heat Flow
Meter
Calibration
and
Stability

This example illustrates the univariate analysis of standard
resistor data.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.4.2.8.1. Background and Data

Generation This data set was collected by Bob Zarr of NIST in January,
1990 from a heat flow meter calibration and stability analysis.
The response variable is a calibration factor.

The motivation for studying this data set is to illustrate a well-
behaved process where the underlying assumptions hold and
the process is in statistical control.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following are the data used for this case study.

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973
9.303111
9.275674
9.272561
9.288454
9.255672
9.252141
9.297670
9.266534
9.256689
9.277542
9.248205
9.252107
9.276345
9.278694
9.267144
9.246132
9.238479
9.269058
9.248239
9.257439
9.268481
9.288454
9.258452
9.286130
9.251479
9.257405
9.268343
9.291302
9.219460
9.270386
9.218808
9.241185
9.269989
9.226585

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4283.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4283.r
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9.258556
9.286184
9.320067
9.327973
9.262963
9.248181
9.238644
9.225073
9.220878
9.271318
9.252072
9.281186
9.270624
9.294771
9.301821
9.278849
9.236680
9.233988
9.244687
9.221601
9.207325
9.258776
9.275708
9.268955
9.257269
9.264979
9.295500
9.292883
9.264188
9.280731
9.267336
9.300566
9.253089
9.261376
9.238409
9.225073
9.235526
9.239510
9.264487
9.244242
9.277542
9.310506
9.261594
9.259791
9.253089
9.245735
9.284058
9.251122
9.275385
9.254619
9.279526
9.275065
9.261952
9.275351
9.252433
9.230263
9.255150
9.268780
9.290389
9.274161
9.255707
9.261663
9.250455
9.261952
9.264041
9.264509
9.242114
9.239674
9.221553
9.241935
9.215265
9.285930
9.271559
9.266046
9.285299
9.268989
9.267987
9.246166
9.231304
9.240768
9.260506
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9.274355
9.292376
9.271170
9.267018
9.308838
9.264153
9.278822
9.255244
9.229221
9.253158
9.256292
9.262602
9.219793
9.258452
9.267987
9.267987
9.248903
9.235153
9.242933
9.253453
9.262671
9.242536
9.260803
9.259825
9.253123
9.240803
9.238712
9.263676
9.243002
9.246826
9.252107
9.261663
9.247311
9.306055
9.237646
9.248937
9.256689
9.265777
9.299047
9.244814
9.287205
9.300566
9.256621
9.271318
9.275154
9.281834
9.253158
9.269024
9.282077
9.277507
9.284910
9.239840
9.268344
9.247778
9.225039
9.230750
9.270024
9.265095
9.284308
9.280697
9.263032
9.291851
9.252072
9.244031
9.283269
9.196848
9.231372
9.232963
9.234956
9.216746
9.274107
9.273776

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


1.4.2.8.2. Graphical Output and Interpretation

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4282.htm[6/27/2012 2:03:48 PM]

 

1. Exploratory Data Analysis 
1.4. EDA Case Studies 
1.4.2. Case Studies 
1.4.2.8. Heat Flow Meter 1 

1.4.2.8.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

is appropriate and valid.

2. Determine if the typical underlying assumptions for
an "in control" measurement process are valid. These
assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location;

and
4. the distribution having a fixed scale.

3. Determine if the confidence interval

is appropriate and valid where s is the standard
deviation of the original data.

4-Plot of
Data

http://www.itl.nist.gov/div898/handbook/index.htm
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Interpretation The assumptions are addressed by the graphics shown
above:

1. The run sequence plot (upper left) indicates that the
data do not have any significant shifts in location or
scale over time.

2. The lag plot (upper right) does not indicate any non-
random pattern in the data.

3. The histogram (lower left) shows that the data are
reasonably symmetric, there does not appear to be
significant outliers in the tails, and it seems
reasonable to assume that the data are from
approximately a normal distribution.

4. The normal probability plot (lower right) verifies that
an assumption of normality is in fact reasonable.

Individual
Plots

Although it is generally unnecessary, the plots can be
generated individually to give more detail.

Run
Sequence
Plot

Lag Plot

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.4.2.8.3. Quantitative Output and
Interpretation

Summary
Statistics

As a first step in the analysis, common summary statistics
are computed from the data.

      Sample size  = 195
      Mean         =   9.261460
      Median       =   9.261952  
      Minimum      =   9.196848
      Maximum      =   9.327973
      Range        =   0.131126  
      Stan. Dev.   =   0.022789

Location One way to quantify a change in location over time is to fit
a straight line to the data using an index variable as the
independent variable in the regression. For our data, we
assume that data are in sequential run order and that the
data were collected at equally spaced time intervals. In our
regression, we use the index variable X = 1, 2, ..., N, where
N is the number of observations. If there is no significant
drift in the location over time, the slope parameter should
be zero.

      Coefficient     Estimate     Stan. Error      
t-Value
          B0           9.26699      0.3253E-02     
2849.
          B1        -0.56412E-04    0.2878E-04     
-1.960

 
      Residual Standard Deviation = 0.2262372E-01
      Residual Degrees of Freedom = 193

The slope parameter, B1, has a t value of -1.96 which is
(barely) statistically significant since it is essentially equal
to the 95 % level cutoff of -1.96. However, notice that the
value of the slope parameter estimate is -0.00056. This
slope, even though statistically significant, can essentially
be considered zero.

Variation One simple way to detect a change in variation is with a
Bartlett test after dividing the data set into several equal-
sized intervals. The choice of the number of intervals is
somewhat arbitrary, although values of four or eight are
reasonable. We will divide our data into four intervals.

2 2 2 2

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd43.htm
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      H0:  σ1  = σ2  = σ3  = σ4  
      Ha:  At least one σi

2 is not equal to the 
others.

      Test statistic:  T = 3.147
      Degrees of freedom:  k - 1 = 3
      Significance level:  α = 0.05
      Critical value:  Χ 21-α,k-1 = 7.815
      Critical region:  Reject H0 if T > 7.815 

In this case, since the Bartlett test statistic of 3.147 is less
than the critical value at the 5 % significance level of
7.815, we conclude that the variances are not significantly
different in the four intervals. That is, the assumption of
constant scale is valid.

Randomness There are many ways in which data can be non-random.
However, most common forms of non-randomness can be
detected with a few simple tests. The lag plot in the
previous section is a simple graphical technique.

Another check is an autocorrelation plot that shows the
autocorrelations for various lags. Confidence bands can be
plotted at the 95 % and 99 % confidence levels. Points
outside this band indicate statistically significant values (lag
0 is always 1).

The lag 1 autocorrelation, which is generally the one of
greatest interest, is 0.281. The critical values at the 5 %
significance level are -0.087 and 0.087. This indicates that
the lag 1 autocorrelation is statistically significant, so there
is evidence of non-randomness.

A common test for randomness is the runs test.

      H0:  the sequence was produced in a random 
manner
      Ha:  the sequence was not produced in a 
random manner  

      Test statistic:  Z = -3.2306
      Significance level:  α = 0.05
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      Critical value:  Z1-α/2 = 1.96 
      Critical region:  Reject H0 if |Z| > 1.96   


The value of the test statistic is less than -1.96, so we reject
the null hypothesis at the 0.05 significant level and
conclude that the data are not random.

Although the autocorrelation plot and the runs test indicate
some mild non-randomness, the violation of the
randomness assumption is not serious enough to warrant
developing a more sophisticated model. It is common in
practice that some of the assumptions are mildly violated
and it is a judgement call as to whether or not the
violations are serious enough to warrant developing a more
sophisticated model for the data.

Distributional
Analysis

Probability plots are a graphical test for assessing if a
particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the
correlation coefficient of the points on the probability plot.
For this data set the correlation coefficient is 0.996. Since
this is greater than the critical value of 0.987 (this is a
tabulated value), the normality assumption is not rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests
are alternative methods for assessing distributional
adequacy. The Wilk-Shapiro and Anderson-Darling tests
can be used to test for normality. The results of the
Anderson-Darling test follow.

      H0:  the data are normally distributed
      Ha:  the data are not normally distributed

      Adjusted test statistic:  A 2 = 0.129
      Significance level:  α = 0.05
      Critical value:  0.787
      Critical region:  Reject H0 if A

 2 > 0.787  


The Anderson-Darling test also does not reject the
normality assumption because the test statistic, 0.129, is
less than the critical value at the 5 % significance level of
0.787.

Outlier
Analysis

A test for outliers is the Grubbs' test.

      H0:  there are no outliers in the data
      Ha:  the maximum value is an outlier

      Test statistic:  G = 2.918673
      Significance level:  α = 0.05
      Critical value for an upper one-tailed 
test:  3.597898
      Critical region:  Reject H0 if G > 3.597898

For this data set, Grubbs' test does not detect any outliers at
the 0.05 significance level.

Model Since the underlying assumptions were validated both

http://www.itl.nist.gov/div898/handbook/eda/section3/probplot.htm
http://www.itl.nist.gov/div898/handbook/prc/section2/prc242.htm
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graphically and analytically, with a mild violation of the
randomness assumption, we conclude that a reasonable
model for the data is:

We can express the uncertainty for C, here estimated by
9.26146, as the 95 % confidence interval
(9.258242,9.26479).

Univariate
Report

It is sometimes useful and convenient to summarize the
above results in a report. The report for the heat flow meter
data follows.

  
 Analysis for heat flow meter data
  
 1: Sample Size                           = 195
  
 2: Location
    Mean                                  = 
9.26146
    Standard Deviation of Mean            = 
0.001632
    95 % Confidence Interval for Mean     = 
(9.258242,9.264679)
    Drift with respect to location?       = NO
  
 3: Variation
    Standard Deviation                    = 
0.022789
    95 % Confidence Interval for SD       = 
(0.02073,0.025307)
    Drift with respect to variation?
    (based on Bartlett's test on quarters
    of the data)                          = NO
  
 4: Randomness
    Autocorrelation                       = 
0.280579
    Data are Random?
      (as measured by autocorrelation)    = NO
  
 5: Data are Normal?
      (as tested by Anderson-Darling)     = YES
  
 6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is 
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control?   = YES
  
 7: Outliers?
    (as determined by Grubbs' test)        = NO
  

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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1.4.2.8.4. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.

                              


 1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. 4-plot of the data.

   1. 4-plot of Y.  1. Based on the 4-
plot, there are no 
shifts
    in location or 
scale, and the data 
seem to
    follow a normal 
distribution.

3. Generate the individual plots.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/zarr13.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/zarr13.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/zarr13.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/zarr13.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/zarr13.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/4plot.dp
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   1. Generate a run sequence plot.

   2. Generate a lag plot.

   3. Generate a histogram with an
      overlaid normal pdf.

   4. Generate a normal probability
      plot.

 1. The run sequence 
plot indicates that
    there are no 
shifts of location or
    scale.

 2. The lag plot 
does not indicate any
    significant 
patterns (which would
    show the data 
were not random).

 3. The histogram 
indicates that a 
    normal 
distribution is a 
good
    distribution for 
these data.

 4. The normal 
probability plot 
verifies
    that the normal 
distribution is a
    reasonable 
distribution for 
these data.

4. Generate summary statistics, 
quantitative
   analysis, and print a univariate 
report.

   1. Generate a table of summary
      statistics.

   2. Generate the mean, a confidence
      interval for the mean, and compute
      a linear fit to detect drift in
      location.

   3. Generate the standard deviation, a
      confidence interval for the 
standard
      deviation, and detect drift in 
variation
      by dividing the data into quarters 
and
      computing Bartlett's test for 
equal
      standard deviations.

   4. Check for randomness by generating 
an
      autocorrelation plot and a runs 
test.

   5. Check for normality by computing 
the
      normal probability plot 
correlation
      coefficient.

   6. Check for outliers using Grubbs' 
test.

   7. Print a univariate report (this 

 1. The summary 
statistics table 
displays
    25+ statistics.

 2. The mean is 
9.261 and a 95%
    confidence 
interval is 
(9.258,9.265).
    The linear fit 
indicates no drift in
    location since 
the slope parameter
    estimate is 
essentially zero.

 3. The standard 
deviation is 0.023 
with
    a 95% confidence 
interval of 
(0.0207,0.0253).
    Bartlett's test 
indicates no 
significant
    change in 
variation.

 4. The lag 1 
autocorrelation is 
0.28.
    From the 
autocorrelation plot, 
this is
    statistically 
significant at the 
95%
    level.

http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/runseq.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/lagplot.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/hist.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/hist.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/normprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/normprpl.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/location.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/variatio.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/random.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/distribu.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/distribu.dp
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http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/report.dp


1.4.2.8.4. Work This Example Yourself

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4284.htm[6/27/2012 2:03:50 PM]

assumes
      steps 2 thru 6 have already been 
run).

 5. The normal 
probability plot 
correlation
    coefficient is 
0.999.  At the 5% 
level,
    we cannot reject 
the normality 
assumption.

 6. Grubbs' test 
detects no outliers 
at the
    5% level.

 7. The results are 
summarized in a
    convenient 
report.

http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/report.dp
http://www.itl.nist.gov/div898/handbook/eda/section4/zarr13/dpmacros/report.dp
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1.4.2.9. Fatigue Life of Aluminum Alloy
Specimens

Fatigue
Life of
Aluminum
Alloy
Specimens

This example illustrates the univariate analysis of the fatigue
life of aluminum alloy specimens.

1. Background and Data
2. Graphical Output and Interpretation
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1.4.2.9.1. Background and Data

Generation This data set comprises measurements of fatigue life
(thousands of cycles until rupture) of rectangular strips of
6061-T6 aluminum sheeting, subjected to periodic loading
with maximum stress of 21,000 psi (pounds per square inch),
as reported by Birnbaum and Saunders (1958).

Purpose of
Analysis

The goal of this case study is to select a probabilistic model,
from among several reasonable alternatives, to describe the
dispersion of the resulting measured values of life-length.

The original study, in the field of statistical reliability analysis,
was concerned with the prediction of failure times of a
material subjected to a load varying in time. It was well-
known that a structure designed to withstand a particular static
load may fail sooner than expected under a dynamic load.

If a realistic model for the probability distribution of lifetime
can be found, then it can be used to estimate the time by
which a part or structure needs to be replaced to guarantee
that the probability of failure does not exceed some maximum
acceptable value, for example 0.1 %, while it is in service.

The chapter of this eHandbook that is concerned with the
assessment of product reliability contains additional material
on statistical methods used in reliability analysis. This case
study is meant to complement that chapter by showing the use
of graphical and other techniques in the model selection stage
of such analysis.

When there is no cogent reason to adopt a particular model, or
when none of the models under consideration seems adequate
for the purpose, one may opt for a non-parametric statistical
method, for example to produce tolerance bounds or
confidence intervals.

A non-parametric method does not rely on the assumption that
the data are like a sample from a particular probability
distribution that is fully specified up to the values of some
adjustable parameters. For example, the Gaussian probability
distribution is a parametric model with two adjustable
parameters.

http://www.itl.nist.gov/div898/handbook/index.htm
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The price to be paid when using non-parametric methods is
loss of efficiency, meaning that they may require more data
for statistical inference than a parametric counterpart would, if
applicable. For example, non-parametric confidence intervals
for model parameters may be considerably wider than what a
confidence interval would need to be if the underlying
distribution could be identified correctly. Such identification is
what we will attempt in this case study.

It should be noted --- a point that we will stress later in the
development of this case study --- that the very exercise of
selecting a model often contributes substantially to the
uncertainty of the conclusions derived after the selection has
been made.

Software The analyses used in this case study can be generated using R
code.

Data The following data are used for this case study.

  370 1016 1235 1419 1567 1820
  706 1018 1238 1420 1578 1868
  716 1020 1252 1420 1594 1881
  746 1055 1258 1450 1602 1890
  785 1085 1262 1452 1604 1893
  797 1102 1269 1475 1608 1895
  844 1102 1270 1478 1630 1910
  855 1108 1290 1481 1642 1923
  858 1115 1293 1485 1674 1940
  886 1120 1300 1502 1730 1945
  886 1134 1310 1505 1750 2023
  930 1140 1313 1513 1750 2100
  960 1199 1315 1522 1763 2130
  988 1200 1330 1522 1768 2215
  990 1200 1355 1530 1781 2268
 1000 1203 1390 1540 1782 2440
 1010 1222 1416 1560 1792

http://www.itl.nist.gov/div898/handbook/eda/section4/eda4292.r
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1.4.2.9.2. Graphical Output and Interpretation

Goal The goal of this analysis is to select a probabilistic model to describe the dispersion
of the measured values of fatigue life of specimens of an aluminum alloy described
in [1.4.2.9.1], from among several reasonable alternatives.

Initial Plots
of the Data

Simple diagrams can be very informative about location, spread, and to detect
possibly anomalous data values or particular patterns (clustering, for example).
These include dot-charts, boxplots, and histograms. Since building an effective
histogram requires that a choice be made of bin size, and this choice can be
influential, one may wish to examine a non-parametric estimate of the underlying
probability density.

These several plots variously show that the measurements range from a value

http://www.itl.nist.gov/div898/handbook/index.htm
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slightly greater than 350,000 to slightly less than 2,500,000 cycles. The boxplot
suggests that the largest measured value may be an outlier.

A recommended first step is to check consistency between the data and what is to be
expected if the data were a sample from a particular probability distribution.
Knowledge about the underlying properties of materials and of relevant industrial
processes typically offer clues as to the models that should be entertained. Graphical
diagnostic techniques can be very useful at this exploratory stage: foremost among
these, for univariate data, is the quantile-quantile plot, or QQ-plot (Wilk and
Gnanadesikan, 1968).

Each data point is represented by one point in the QQ-plot. The ordinate of each of
these points is one data value; if this data value happens to be the kth order statistic
in the sample (that is, the kth largest value), then the corresponding abscissa is the
"typical" value that the kth largest value should have in a sample of the same size as
the data, drawn from a particular distribution. If F denotes the cumulative
probability distribution function of interest, and the sample comprises n values, then
F -1 [(k - 1/2) / (n + 1/2)] is a reasonable choice for that "typical" value, because it is
an approximation to the median of the kth order statistic in a sample of size n from
this distribution.

The following figure shows a QQ-plot of our data relative to the Gaussian (or,
normal) probability distribution. If the data matched expectations perfectly, then the
points would all fall on a straight line.
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In practice, one needs to gauge whether the deviations from such perfect alignment
are commensurate with the natural variability associated with sampling. This can
easily be done by examining how variable QQ-plots of samples from the target
distribution may be.

The following figure shows, superimposed on the QQ-plot of the data, the QQ-plots
of 99 samples of the same size as the data, drawn from a Gaussian distribution with
the same mean and standard deviation as the data.

The fact that the cloud of QQ-plots corresponding to 99 samples from the Gaussian
distribution effectively covers the QQ-plot for the data, suggests that the chances are
better than 1 in 100 that our data are inconsistent with the Gaussian model.

This proves nothing, of course, because even the rarest of events may happen.
However, it is commonly taken to be indicative of an acceptable fit for general
purposes. In any case, one may naturally wonder if an alternative model might not
provide an even better fit.

Knowing the provenance of the data, that they portray strength of a material,
strongly suggests that one may like to examine alternative models, because in many
studies of reliability non-Gaussian models tend to be more appropriate than
Gaussian models.

Candidate
Distributions

There are many probability distributions that could reasonably be entertained as
candidate models for the data. However, we will restrict ourselves to consideration
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of the following because these have proven to be useful in reliability studies.

Normal distribution
Gamma distribution
Birnbaum-Saunders distribution
3-parameter Weibull distribution

Approach A very simple approach amounts to comparing QQ-plots of the data for the
candidate models under consideration. This typically involves first fitting the models
to the data, for example employing the method of maximum likelihood [1.3.6.5.2].

The maximum likelihood estimates are the following:

Gaussian: mean 1401, standard deviation 389
Gamma: shape 11.85, rate 0.00846
Birnbaum-Saunders: shape 0.310, scale 1337
3-parameter Weibull: location 181, shape 3.43, scale 1357

The following figure shows how close (or how far) the best fitting probability
densities of the four distributions approximate the non-parametric probability
density estimate. This comparison, however, takes into account neither the fact that
our sample is fairly small (101 measured values), nor that the fitted models
themselves have been estimated from the same data that the non-parametric estimate
was derived from.
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These limitations notwithstanding, it is worth examining the corresponding QQ-
plots, shown below, which suggest that the Gaussian and the 3-parameter Weibull
may be the best models.

Model
Selection

A more careful comparison of the merits of the alternative models needs to take into
account the fact that the 3-parameter Weibull model (precisely because it has three
parameters), may be intrinsically more flexible than the others, which all have two
adjustable parameters only.

Two criteria can be employed for a formal comparison: Akaike's Information
Criterion (AIC), and the Bayesian Information Criterion (BIC) (Hastie et. al., 2001).
The smaller the value of either model selection criterion, the better the model:

      AIC  BIC
 GAU 1495 1501
 GAM 1499 1504
 BS  1507 1512
 WEI 1498 1505

On this basis (and according both to AIC and BIC), there seems to be no cogent
reason to replace the Gaussian model by any of the other three. The values of BIC
can also be used to derive an approximate answer to the question of how strongly
the data may support each of these models. Doing this involves the application of
Bayesian statistical methods [8.1.10].

We start from an a priori assignment of equal probabilities to all four models,

http://www.itl.nist.gov/div898/handbook/apr/section1/apr1a.htm
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indicating that we have no reason to favor one over another at the outset, and then
update these probabilities based on the measured values of lifetime. The updated
probabilities of the four models, called their posterior probabilities, are
approximately proportional to exp(-BIC(GAU)/2), exp(-BIC(GAM)/2), exp(-
BIC(BS)/2), and exp(-BIC(WEI)/2). The values are 76 % for GAU, 16 % for GAM,
0.27 % for BS, and 7.4 % for WEI.

One possible use for the selected model is to answer the question of the age in
service by which a part or structure needs to be replaced to guarantee that the
probability of failure does not exceed some maximum acceptable value, for example
0.1 %.The answer to this question is the 0.1st percentile of the fitted distribution,
that is G -1 (0.001) = 198 thousand cycles, where, in this case, G -1 denotes the
inverse of the fitted, Gaussian probability distribution.

To assess the uncertainty of this estimate one may employ the statistical bootstrap
[1.3.3.4]. In this case, this involves drawing a suitably large number of bootstrap
samples from the data, and for each of them applying the model fitting and model
selection exercise described above, ending with the calculation of G -1 (0.001) for
the best model (which may vary from sample to sample).

The bootstrap samples should be of the same size as the data, with each being drawn
uniformly at random from the data, with replacement. This process, based on 5,000
bootstrap samples, yielded a 95 % confidence interval for the 0.1st percentile
ranging from 40 to 366 thousands of cycles. The large uncertainty is not surprising
given that we are attempting to estimate the largest value that is exceeded with
probability 99.9 %, based on a sample comprising only 101 measured values.

Prediction
Intervals

One more application in this analysis is to evaluate prediction intervals for the
fatigue life of the aluminum alloy specimens. For example, if we were to test three
new specimens using the same process, we would want to know (with 95 %
confidence) the minimum number of cycles for these three specimens. That is, we
need to find a statistical interval [L, ∞] that contains the fatigue life of all three
future specimens with 95 % confidence. The desired interval is a one-sided, lower
95 % prediction interval. Since tables of factors for constructing L, are widely
available for normal models, we use the results corresponding to the normal model
here for illustration. Specifically, L is computed as

where factor r is given in Table A.14 of Hahn and Meeker (1991) or can be
obtained from an R program.
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Ceramic
Strength

This case study analyzes the effect of machining factors on the
strength of ceramics.

1. Background and Data
2. Analysis of the Response Variable
3. Analysis of Batch Effect
4. Analysis of Lab Effect
5. Analysis of Primary Factors
6. Work This Example Yourself
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1.4.2.10.1. Background and Data

Generation The data for this case study were collected by Said Jahanmir
of the NIST Ceramics Division in 1996 in connection with a
NIST/industry ceramics consortium for strength optimization
of ceramic strength

The motivation for studying this data set is to illustrate the
analysis of multiple factors from a designed experiment

This case study will utilize only a subset of a full study that
was conducted by Lisa Gill and James Filliben of the NIST
Statistical Engineering Division

The response variable is a measure of the strength of the
ceramic material (bonded Si nitrate). The complete data set
contains the following variables:

1. Factor 1 = Observation ID, i.e., run number (1 to 960)
2. Factor 2 = Lab (1 to 8)
3. Factor 3 = Bar ID within lab (1 to 30)
4. Factor 4 = Test number (1 to 4)
5. Response Variable = Strength of Ceramic
6. Factor 5 = Table speed (2 levels: 0.025 and 0.125)
7. Factor 6 = Down feed rate (2 levels: 0.050 and 0.125)
8. Factor 7 = Wheel grit size (2 levels: 150 and 80)
9. Factor 8 = Direction (2 levels: longitudinal and

transverse)
10. Factor 9 = Treatment (1 to 16)
11. Factor 10 = Set of 15 within lab (2 levels: 1 and 2)
12. Factor 11 = Replication (2 levels: 1 and 2)
13. Factor 12 = Bar Batch (1 and 2)

The four primary factors of interest are:

1. Table speed (X1)
2. Down feed rate (X2)
3. Wheel grit size (X3)
4. Direction (X4)

For this case study, we are using only half the data.
Specifically, we are using the data with the direction
longitudinal. Therefore, we have only three primary factors

http://www.itl.nist.gov/div898/handbook/index.htm
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In addition, we are interested in the nuisance factors

1. Lab
2. Batch

Purpose of
Analysis

The goals of this case study are:

1. Determine which of the four primary factors has the
strongest effect on the strength of the ceramic material

2. Estimate the magnitude of the effects
3. Determine the optimal settings for the primary factors
4. Determine if the nuisance factors (lab and batch) have

an effect on the ceramic strength

This case study is an example of a designed experiment. The
Process Improvement chapter contains a detailed discussion of
the construction and analysis of designed experiments. This
case study is meant to complement the material in that chapter
by showing how an EDA approach (emphasizing the use of
graphical techniques) can be used in the analysis of designed
experiments

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following are the data used for this case study

 Run  Lab  Batch   Y      X1   X2   X3
   1    1    1   608.781  -1   -1   -1
   2    1    2   569.670  -1   -1   -1
   3    1    1   689.556  -1   -1   -1
   4    1    2   747.541  -1   -1   -1
   5    1    1   618.134  -1   -1   -1
   6    1    2   612.182  -1   -1   -1
   7    1    1   680.203  -1   -1   -1
   8    1    2   607.766  -1   -1   -1
   9    1    1   726.232  -1   -1   -1
  10    1    2   605.380  -1   -1   -1
  11    1    1   518.655  -1   -1   -1
  12    1    2   589.226  -1   -1   -1
  13    1    1   740.447  -1   -1   -1
  14    1    2   588.375  -1   -1   -1
  15    1    1   666.830  -1   -1   -1
  16    1    2   531.384  -1   -1   -1
  17    1    1   710.272  -1   -1   -1
  18    1    2   633.417  -1   -1   -1
  19    1    1   751.669  -1   -1   -1
  20    1    2   619.060  -1   -1   -1
  21    1    1   697.979  -1   -1   -1
  22    1    2   632.447  -1   -1   -1
  23    1    1   708.583  -1   -1   -1
  24    1    2   624.256  -1   -1   -1
  25    1    1   624.972  -1   -1   -1
  26    1    2   575.143  -1   -1   -1
  27    1    1   695.070  -1   -1   -1
  28    1    2   549.278  -1   -1   -1
  29    1    1   769.391  -1   -1   -1
  30    1    2   624.972  -1   -1   -1
  61    1    1   720.186  -1    1    1
  62    1    2   587.695  -1    1    1
  63    1    1   723.657  -1    1    1
  64    1    2   569.207  -1    1    1
  65    1    1   703.700  -1    1    1
  66    1    2   613.257  -1    1    1
  67    1    1   697.626  -1    1    1
  68    1    2   565.737  -1    1    1

http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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  69    1    1   714.980  -1    1    1
  70    1    2   662.131  -1    1    1
  71    1    1   657.712  -1    1    1
  72    1    2   543.177  -1    1    1
  73    1    1   609.989  -1    1    1
  74    1    2   512.394  -1    1    1
  75    1    1   650.771  -1    1    1
  76    1    2   611.190  -1    1    1
  77    1    1   707.977  -1    1    1
  78    1    2   659.982  -1    1    1
  79    1    1   712.199  -1    1    1
  80    1    2   569.245  -1    1    1
  81    1    1   709.631  -1    1    1
  82    1    2   725.792  -1    1    1
  83    1    1   703.160  -1    1    1
  84    1    2   608.960  -1    1    1
  85    1    1   744.822  -1    1    1
  86    1    2   586.060  -1    1    1
  87    1    1   719.217  -1    1    1
  88    1    2   617.441  -1    1    1
  89    1    1   619.137  -1    1    1
  90    1    2   592.845  -1    1    1
 151    2    1   753.333   1    1    1
 152    2    2   631.754   1    1    1
 153    2    1   677.933   1    1    1
 154    2    2   588.113   1    1    1
 155    2    1   735.919   1    1    1
 156    2    2   555.724   1    1    1
 157    2    1   695.274   1    1    1
 158    2    2   702.411   1    1    1
 159    2    1   504.167   1    1    1
 160    2    2   631.754   1    1    1
 161    2    1   693.333   1    1    1
 162    2    2   698.254   1    1    1
 163    2    1   625.000   1    1    1
 164    2    2   616.791   1    1    1
 165    2    1   596.667   1    1    1
 166    2    2   551.953   1    1    1
 167    2    1   640.898   1    1    1
 168    2    2   636.738   1    1    1
 169    2    1   720.506   1    1    1
 170    2    2   571.551   1    1    1
 171    2    1   700.748   1    1    1
 172    2    2   521.667   1    1    1
 173    2    1   691.604   1    1    1
 174    2    2   587.451   1    1    1
 175    2    1   636.738   1    1    1
 176    2    2   700.422   1    1    1
 177    2    1   731.667   1    1    1
 178    2    2   595.819   1    1    1
 179    2    1   635.079   1    1    1
 180    2    2   534.236   1    1    1
 181    2    1   716.926   1   -1   -1
 182    2    2   606.188   1   -1   -1
 183    2    1   759.581   1   -1   -1
 184    2    2   575.303   1   -1   -1
 185    2    1   673.903   1   -1   -1
 186    2    2   590.628   1   -1   -1
 187    2    1   736.648   1   -1   -1
 188    2    2   729.314   1   -1   -1
 189    2    1   675.957   1   -1   -1
 190    2    2   619.313   1   -1   -1
 191    2    1   729.230   1   -1   -1
 192    2    2   624.234   1   -1   -1
 193    2    1   697.239   1   -1   -1
 194    2    2   651.304   1   -1   -1
 195    2    1   728.499   1   -1   -1
 196    2    2   724.175   1   -1   -1
 197    2    1   797.662   1   -1   -1
 198    2    2   583.034   1   -1   -1
 199    2    1   668.530   1   -1   -1
 200    2    2   620.227   1   -1   -1
 201    2    1   815.754   1   -1   -1
 202    2    2   584.861   1   -1   -1
 203    2    1   777.392   1   -1   -1
 204    2    2   565.391   1   -1   -1
 205    2    1   712.140   1   -1   -1
 206    2    2   622.506   1   -1   -1
 207    2    1   663.622   1   -1   -1
 208    2    2   628.336   1   -1   -1
 209    2    1   684.181   1   -1   -1
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 210    2    2   587.145   1   -1   -1
 271    3    1   629.012   1   -1    1
 272    3    2   584.319   1   -1    1
 273    3    1   640.193   1   -1    1
 274    3    2   538.239   1   -1    1
 275    3    1   644.156   1   -1    1
 276    3    2   538.097   1   -1    1
 277    3    1   642.469   1   -1    1
 278    3    2   595.686   1   -1    1
 279    3    1   639.090   1   -1    1
 280    3    2   648.935   1   -1    1
 281    3    1   439.418   1   -1    1
 282    3    2   583.827   1   -1    1
 283    3    1   614.664   1   -1    1
 284    3    2   534.905   1   -1    1
 285    3    1   537.161   1   -1    1
 286    3    2   569.858   1   -1    1
 287    3    1   656.773   1   -1    1
 288    3    2   617.246   1   -1    1
 289    3    1   659.534   1   -1    1
 290    3    2   610.337   1   -1    1
 291    3    1   695.278   1   -1    1
 292    3    2   584.192   1   -1    1
 293    3    1   734.040   1   -1    1
 294    3    2   598.853   1   -1    1
 295    3    1   687.665   1   -1    1
 296    3    2   554.774   1   -1    1
 297    3    1   710.858   1   -1    1
 298    3    2   605.694   1   -1    1
 299    3    1   701.716   1   -1    1
 300    3    2   627.516   1   -1    1
 301    3    1   382.133   1    1   -1
 302    3    2   574.522   1    1   -1
 303    3    1   719.744   1    1   -1
 304    3    2   582.682   1    1   -1
 305    3    1   756.820   1    1   -1
 306    3    2   563.872   1    1   -1
 307    3    1   690.978   1    1   -1
 308    3    2   715.962   1    1   -1
 309    3    1   670.864   1    1   -1
 310    3    2   616.430   1    1   -1
 311    3    1   670.308   1    1   -1
 312    3    2   778.011   1    1   -1
 313    3    1   660.062   1    1   -1
 314    3    2   604.255   1    1   -1
 315    3    1   790.382   1    1   -1
 316    3    2   571.906   1    1   -1
 317    3    1   714.750   1    1   -1
 318    3    2   625.925   1    1   -1
 319    3    1   716.959   1    1   -1
 320    3    2   682.426   1    1   -1
 321    3    1   603.363   1    1   -1
 322    3    2   707.604   1    1   -1
 323    3    1   713.796   1    1   -1
 324    3    2   617.400   1    1   -1
 325    3    1   444.963   1    1   -1
 326    3    2   689.576   1    1   -1
 327    3    1   723.276   1    1   -1
 328    3    2   676.678   1    1   -1
 329    3    1   745.527   1    1   -1
 330    3    2   563.290   1    1   -1
 361    4    1   778.333  -1   -1    1
 362    4    2   581.879  -1   -1    1
 363    4    1   723.349  -1   -1    1
 364    4    2   447.701  -1   -1    1
 365    4    1   708.229  -1   -1    1
 366    4    2   557.772  -1   -1    1
 367    4    1   681.667  -1   -1    1
 368    4    2   593.537  -1   -1    1
 369    4    1   566.085  -1   -1    1
 370    4    2   632.585  -1   -1    1
 371    4    1   687.448  -1   -1    1
 372    4    2   671.350  -1   -1    1
 373    4    1   597.500  -1   -1    1
 374    4    2   569.530  -1   -1    1
 375    4    1   637.410  -1   -1    1
 376    4    2   581.667  -1   -1    1
 377    4    1   755.864  -1   -1    1
 378    4    2   643.449  -1   -1    1
 379    4    1   692.945  -1   -1    1
 380    4    2   581.593  -1   -1    1
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 381    4    1   766.532  -1   -1    1
 382    4    2   494.122  -1   -1    1
 383    4    1   725.663  -1   -1    1
 384    4    2   620.948  -1   -1    1
 385    4    1   698.818  -1   -1    1
 386    4    2   615.903  -1   -1    1
 387    4    1   760.000  -1   -1    1
 388    4    2   606.667  -1   -1    1
 389    4    1   775.272  -1   -1    1
 390    4    2   579.167  -1   -1    1
 421    4    1   708.885  -1    1   -1
 422    4    2   662.510  -1    1   -1
 423    4    1   727.201  -1    1   -1
 424    4    2   436.237  -1    1   -1
 425    4    1   642.560  -1    1   -1
 426    4    2   644.223  -1    1   -1
 427    4    1   690.773  -1    1   -1
 428    4    2   586.035  -1    1   -1
 429    4    1   688.333  -1    1   -1
 430    4    2   620.833  -1    1   -1
 431    4    1   743.973  -1    1   -1
 432    4    2   652.535  -1    1   -1
 433    4    1   682.461  -1    1   -1
 434    4    2   593.516  -1    1   -1
 435    4    1   761.430  -1    1   -1
 436    4    2   587.451  -1    1   -1
 437    4    1   691.542  -1    1   -1
 438    4    2   570.964  -1    1   -1
 439    4    1   643.392  -1    1   -1
 440    4    2   645.192  -1    1   -1
 441    4    1   697.075  -1    1   -1
 442    4    2   540.079  -1    1   -1
 443    4    1   708.229  -1    1   -1
 444    4    2   707.117  -1    1   -1
 445    4    1   746.467  -1    1   -1
 446    4    2   621.779  -1    1   -1
 447    4    1   744.819  -1    1   -1
 448    4    2   585.777  -1    1   -1
 449    4    1   655.029  -1    1   -1
 450    4    2   703.980  -1    1   -1
 541    5    1   715.224  -1   -1   -1
 542    5    2   698.237  -1   -1   -1
 543    5    1   614.417  -1   -1   -1
 544    5    2   757.120  -1   -1   -1
 545    5    1   761.363  -1   -1   -1
 546    5    2   621.751  -1   -1   -1
 547    5    1   716.106  -1   -1   -1
 548    5    2   472.125  -1   -1   -1
 549    5    1   659.502  -1   -1   -1
 550    5    2   612.700  -1   -1   -1
 551    5    1   730.781  -1   -1   -1
 552    5    2   583.170  -1   -1   -1
 553    5    1   546.928  -1   -1   -1
 554    5    2   599.771  -1   -1   -1
 555    5    1   734.203  -1   -1   -1
 556    5    2   549.227  -1   -1   -1
 557    5    1   682.051  -1   -1   -1
 558    5    2   605.453  -1   -1   -1
 559    5    1   701.341  -1   -1   -1
 560    5    2   569.599  -1   -1   -1
 561    5    1   759.729  -1   -1   -1
 562    5    2   637.233  -1   -1   -1
 563    5    1   689.942  -1   -1   -1
 564    5    2   621.774  -1   -1   -1
 565    5    1   769.424  -1   -1   -1
 566    5    2   558.041  -1   -1   -1
 567    5    1   715.286  -1   -1   -1
 568    5    2   583.170  -1   -1   -1
 569    5    1   776.197  -1   -1   -1
 570    5    2   345.294  -1   -1   -1
 571    5    1   547.099   1   -1    1
 572    5    2   570.999   1   -1    1
 573    5    1   619.942   1   -1    1
 574    5    2   603.232   1   -1    1
 575    5    1   696.046   1   -1    1
 576    5    2   595.335   1   -1    1
 577    5    1   573.109   1   -1    1
 578    5    2   581.047   1   -1    1
 579    5    1   638.794   1   -1    1
 580    5    2   455.878   1   -1    1
 581    5    1   708.193   1   -1    1
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 582    5    2   627.880   1   -1    1
 583    5    1   502.825   1   -1    1
 584    5    2   464.085   1   -1    1
 585    5    1   632.633   1   -1    1
 586    5    2   596.129   1   -1    1
 587    5    1   683.382   1   -1    1
 588    5    2   640.371   1   -1    1
 589    5    1   684.812   1   -1    1
 590    5    2   621.471   1   -1    1
 591    5    1   738.161   1   -1    1
 592    5    2   612.727   1   -1    1
 593    5    1   671.492   1   -1    1
 594    5    2   606.460   1   -1    1
 595    5    1   709.771   1   -1    1
 596    5    2   571.760   1   -1    1
 597    5    1   685.199   1   -1    1
 598    5    2   599.304   1   -1    1
 599    5    1   624.973   1   -1    1
 600    5    2   579.459   1   -1    1
 601    6    1   757.363   1    1    1
 602    6    2   761.511   1    1    1
 603    6    1   633.417   1    1    1
 604    6    2   566.969   1    1    1
 605    6    1   658.754   1    1    1
 606    6    2   654.397   1    1    1
 607    6    1   664.666   1    1    1
 608    6    2   611.719   1    1    1
 609    6    1   663.009   1    1    1
 610    6    2   577.409   1    1    1
 611    6    1   773.226   1    1    1
 612    6    2   576.731   1    1    1
 613    6    1   708.261   1    1    1
 614    6    2   617.441   1    1    1
 615    6    1   739.086   1    1    1
 616    6    2   577.409   1    1    1
 617    6    1   667.786   1    1    1
 618    6    2   548.957   1    1    1
 619    6    1   674.481   1    1    1
 620    6    2   623.315   1    1    1
 621    6    1   695.688   1    1    1
 622    6    2   621.761   1    1    1
 623    6    1   588.288   1    1    1
 624    6    2   553.978   1    1    1
 625    6    1   545.610   1    1    1
 626    6    2   657.157   1    1    1
 627    6    1   752.305   1    1    1
 628    6    2   610.882   1    1    1
 629    6    1   684.523   1    1    1
 630    6    2   552.304   1    1    1
 631    6    1   717.159  -1    1   -1
 632    6    2   545.303  -1    1   -1
 633    6    1   721.343  -1    1   -1
 634    6    2   651.934  -1    1   -1
 635    6    1   750.623  -1    1   -1
 636    6    2   635.240  -1    1   -1
 637    6    1   776.488  -1    1   -1
 638    6    2   641.083  -1    1   -1
 639    6    1   750.623  -1    1   -1
 640    6    2   645.321  -1    1   -1
 641    6    1   600.840  -1    1   -1
 642    6    2   566.127  -1    1   -1
 643    6    1   686.196  -1    1   -1
 644    6    2   647.844  -1    1   -1
 645    6    1   687.870  -1    1   -1
 646    6    2   554.815  -1    1   -1
 647    6    1   725.527  -1    1   -1
 648    6    2   620.087  -1    1   -1
 649    6    1   658.796  -1    1   -1
 650    6    2   711.301  -1    1   -1
 651    6    1   690.380  -1    1   -1
 652    6    2   644.355  -1    1   -1
 653    6    1   737.144  -1    1   -1
 654    6    2   713.812  -1    1   -1
 655    6    1   663.851  -1    1   -1
 656    6    2   696.707  -1    1   -1
 657    6    1   766.630  -1    1   -1
 658    6    2   589.453  -1    1   -1
 659    6    1   625.922  -1    1   -1
 660    6    2   634.468  -1    1   -1
 721    7    1   694.430   1    1   -1
 722    7    2   599.751   1    1   -1
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 723    7    1   730.217   1    1   -1
 724    7    2   624.542   1    1   -1
 725    7    1   700.770   1    1   -1
 726    7    2   723.505   1    1   -1
 727    7    1   722.242   1    1   -1
 728    7    2   674.717   1    1   -1
 729    7    1   763.828   1    1   -1
 730    7    2   608.539   1    1   -1
 731    7    1   695.668   1    1   -1
 732    7    2   612.135   1    1   -1
 733    7    1   688.887   1    1   -1
 734    7    2   591.935   1    1   -1
 735    7    1   531.021   1    1   -1
 736    7    2   676.656   1    1   -1
 737    7    1   698.915   1    1   -1
 738    7    2   647.323   1    1   -1
 739    7    1   735.905   1    1   -1
 740    7    2   811.970   1    1   -1
 741    7    1   732.039   1    1   -1
 742    7    2   603.883   1    1   -1
 743    7    1   751.832   1    1   -1
 744    7    2   608.643   1    1   -1
 745    7    1   618.663   1    1   -1
 746    7    2   630.778   1    1   -1
 747    7    1   744.845   1    1   -1
 748    7    2   623.063   1    1   -1
 749    7    1   690.826   1    1   -1
 750    7    2   472.463   1    1   -1
 811    7    1   666.893  -1    1    1
 812    7    2   645.932  -1    1    1
 813    7    1   759.860  -1    1    1
 814    7    2   577.176  -1    1    1
 815    7    1   683.752  -1    1    1
 816    7    2   567.530  -1    1    1
 817    7    1   729.591  -1    1    1
 818    7    2   821.654  -1    1    1
 819    7    1   730.706  -1    1    1
 820    7    2   684.490  -1    1    1
 821    7    1   763.124  -1    1    1
 822    7    2   600.427  -1    1    1
 823    7    1   724.193  -1    1    1
 824    7    2   686.023  -1    1    1
 825    7    1   630.352  -1    1    1
 826    7    2   628.109  -1    1    1
 827    7    1   750.338  -1    1    1
 828    7    2   605.214  -1    1    1
 829    7    1   752.417  -1    1    1
 830    7    2   640.260  -1    1    1
 831    7    1   707.899  -1    1    1
 832    7    2   700.767  -1    1    1
 833    7    1   715.582  -1    1    1
 834    7    2   665.924  -1    1    1
 835    7    1   728.746  -1    1    1
 836    7    2   555.926  -1    1    1
 837    7    1   591.193  -1    1    1
 838    7    2   543.299  -1    1    1
 839    7    1   592.252  -1    1    1
 840    7    2   511.030  -1    1    1
 901    8    1   740.833  -1   -1    1
 902    8    2   583.994  -1   -1    1
 903    8    1   786.367  -1   -1    1
 904    8    2   611.048  -1   -1    1
 905    8    1   712.386  -1   -1    1
 906    8    2   623.338  -1   -1    1
 907    8    1   738.333  -1   -1    1
 908    8    2   679.585  -1   -1    1
 909    8    1   741.480  -1   -1    1
 910    8    2   665.004  -1   -1    1
 911    8    1   729.167  -1   -1    1
 912    8    2   655.860  -1   -1    1
 913    8    1   795.833  -1   -1    1
 914    8    2   715.711  -1   -1    1
 915    8    1   723.502  -1   -1    1
 916    8    2   611.999  -1   -1    1
 917    8    1   718.333  -1   -1    1
 918    8    2   577.722  -1   -1    1
 919    8    1   768.080  -1   -1    1
 920    8    2   615.129  -1   -1    1
 921    8    1   747.500  -1   -1    1
 922    8    2   540.316  -1   -1    1
 923    8    1   775.000  -1   -1    1
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 924    8    2   711.667  -1   -1    1
 925    8    1   760.599  -1   -1    1
 926    8    2   639.167  -1   -1    1
 927    8    1   758.333  -1   -1    1
 928    8    2   549.491  -1   -1    1
 929    8    1   682.500  -1   -1    1
 930    8    2   684.167  -1   -1    1
 931    8    1   658.116   1   -1   -1
 932    8    2   672.153   1   -1   -1
 933    8    1   738.213   1   -1   -1
 934    8    2   594.534   1   -1   -1
 935    8    1   681.236   1   -1   -1
 936    8    2   627.650   1   -1   -1
 937    8    1   704.904   1   -1   -1
 938    8    2   551.870   1   -1   -1
 939    8    1   693.623   1   -1   -1
 940    8    2   594.534   1   -1   -1
 941    8    1   624.993   1   -1   -1
 942    8    2   602.660   1   -1   -1
 943    8    1   700.228   1   -1   -1
 944    8    2   585.450   1   -1   -1
 945    8    1   611.874   1   -1   -1
 946    8    2   555.724   1   -1   -1
 947    8    1   579.167   1   -1   -1
 948    8    2   574.934   1   -1   -1
 949    8    1   720.872   1   -1   -1
 950    8    2   584.625   1   -1   -1
 951    8    1   690.320   1   -1   -1
 952    8    2   555.724   1   -1   -1
 953    8    1   677.933   1   -1   -1
 954    8    2   611.874   1   -1   -1
 955    8    1   674.600   1   -1   -1
 956    8    2   698.254   1   -1   -1
 957    8    1   611.999   1   -1   -1
 958    8    2   748.130   1   -1   -1
 959    8    1   530.680   1   -1   -1
 960    8    2   689.942   1   -1   -1

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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1.4.2.10.2. Analysis of the Response Variable

Numerical
Summary

As a first step in the analysis, common summary statistics are
computed for the response variable.

      Sample size  = 480
      Mean         =   650.0773
      Median       =   646.6275  
      Minimum      =   345.2940  
      Maximum      =   821.6540  
      Range        =   476.3600  
      Stan. Dev.   =    74.6383  

4-Plot The next step is generate a 4-plot of the response variable.

This 4-plot shows:

1. The run sequence plot (upper left corner) shows that the
location and scale are relatively constant. It also shows a
few outliers on the low side. Most of the points are in
the range 500 to 750. However, there are about half a
dozen points in the 300 to 450 range that may require
special attention.

A run sequence plot is useful for designed experiments
in that it can reveal time effects. Time is normally a
nuisance factor. That is, the time order on which runs
are made should not have a significant effect on the
response. If a time effect does appear to exist, this

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
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means that there is a potential bias in the experiment that
needs to be investigated and resolved.

2. The lag plot (the upper right corner) does not show any
significant structure. This is another tool for detecting
any potential time effect.

3. The histogram (the lower left corner) shows the
response appears to be reasonably symmetric, but with a
bimodal distribution.

4. The normal probability plot (the lower right corner)
shows some curvature indicating that distributions other
than the normal may provide a better fit.

http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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1.4.2.10.3. Analysis of the Batch Effect

Batch is a
Nuisance
Factor

The two nuisance factors in this experiment are the batch
number and the lab. There are two batches and eight labs.
Ideally, these factors will have minimal effect on the
response variable.

We will investigate the batch factor first.

Bihistogram

This bihistogram shows the following.

1. There does appear to be a batch effect.

2. The batch 1 responses are centered at 700 while the
batch 2 responses are centered at 625. That is, the
batch effect is approximately 75 units.

3. The variability is comparable for the 2 batches.

4. Batch 1 has some skewness in the lower tail. Batch 2
has some skewness in the center of the distribution, but
not as much in the tails compared to batch 1.

5. Both batches have a few low-lying points.

Although we could stop with the bihistogram, we will show a
few other commonly used two-sample graphical techniques

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/bihistog.htm
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for comparison.

Quantile-
Quantile
Plot

This q-q plot shows the following.

1. Except for a few points in the right tail, the batch 1
values have higher quantiles than the batch 2 values.
This implies that batch 1 has a greater location value
than batch 2.

2. The q-q plot is not linear. This implies that the
difference between the batches is not explained simply
by a shift in location. That is, the variation and/or
skewness varies as well. From the bihistogram, it
appears that the skewness in batch 2 is the most likely
explanation for the non-linearity in the q-q plot.

Box Plot

This box plot shows the following.

1. The median for batch 1 is approximately 700 while the
median for batch 2 is approximately 600.

http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm
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2. The spread is reasonably similar for both batches,
maybe slightly larger for batch 1.

3. Both batches have a number of outliers on the low side.
Batch 2 also has a few outliers on the high side. Box
plots are a particularly effective method for identifying
the presence of outliers.

Block Plots A block plot is generated for each of the eight labs, with "1"
and "2" denoting the batch numbers. In the first plot, we do
not include any of the primary factors. The next 3 block plots
include one of the primary factors. Note that each of the 3
primary factors (table speed = X1, down feed rate = X2,
wheel grit size = X3) has 2 levels. With 8 labs and 2 levels
for the primary factor, we would expect 16 separate blocks on
these plots. The fact that some of these blocks are missing
indicates that some of the combinations of lab and primary
factor are empty.

These block plots show the following.

1. The mean for batch 1 is greater than the mean for batch
2 in all of the cases above. This is strong evidence that
the batch effect is real and consistent across labs and
primary factors.

Quantitative
Techniques

We can confirm some of the conclusions drawn from the
above graphics by using quantitative techniques. The F-test
can be used to test whether or not the variances from the two
batches are equal and the two sample t-test can be used to
test whether or not the means from the two batches are equal.
Summary statistics for each batch are shown below.

Batch 1:
    NUMBER OF OBSERVATIONS =  240
    MEAN                   =  688.9987

http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm
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    STANDARD DEVIATION     =   65.5491
    VARIANCE               = 4296.6845 
 
Batch 2:
    NUMBER OF OBSERVATIONS =  240
    MEAN                   =  611.1559
    STANDARD DEVIATION     =   61.8543
    VARIANCE               = 3825.9544

F-Test The two-sided F-test indicates that the variances for the two
batches are not significantly different at the 5 % level.

H0:  σ1
2 = σ2

2 
Ha:  σ1

2 ≠ σ2
2

Test statistic:  F = 1.123 
Numerator degrees of freedom:  ν1 = 239
Denominator degrees of freedom:  ν2 = 239
Significance level:  α = 0.05
Critical values:  F1-α/2,ν1,ν2 = 0.845
                  Fα/2,ν1,ν2 = 1.289
Critical region:  Reject H0 if F < 0.845 or F > 
1.289

Two Sample
t-Test

Since the F-test indicates that the two batch variances are
equal, we can pool the variances for the two-sided, two-
sample t-test to compare batch means.

H0:  μ1 = μ2
Ha:  μ1 ≠ μ2

Test statistic:  T = 13.3806 
Pooled standard deviation:  sp = 63.7285
Degrees of freedom:  ν = 478
Significance level:  α = 0.05
Critical value:  t1-α/2,ν = 1.965
Critical region: Reject H0 if |T| > 1.965

The t-test indicates that the mean for batch 1 is larger than
the mean for batch 2 at the 5 % significance level.

Conclusions We can draw the following conclusions from the above
analysis.

1. There is in fact a significant batch effect. This batch
effect is consistent across labs and primary factors.

2. The magnitude of the difference is on the order of 75 to
100 (with batch 2 being smaller than batch 1). The
standard deviations do not appear to be significantly
different.

3. There is some skewness in the batches.

This batch effect was completely unexpected by the scientific
investigators in this study.

Note that although the quantitative techniques support the
conclusions of unequal means and equal standard deviations,
they do not show the more subtle features of the data such as
the presence of outliers and the skewness of the batch 2 data.
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1.4.2.10.4. Analysis of the Lab Effect

Box Plot The next matter is to determine if there is a lab effect. The
first step is to generate a box plot for the ceramic strength
based on the lab.

This box plot shows the following.

1. There is minor variation in the medians for the 8 labs.

2. The scales are relatively constant for the labs.

3. Two of the labs (3 and 5) have outliers on the low side.

Box Plot for
Batch 1

Given that the previous section showed a distinct batch
effect, the next step is to generate the box plots for the two
batches separately.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
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This box plot shows the following.

1. Each of the labs has a median in the 650 to 700 range.

2. The variability is relatively constant across the labs.

3. Each of the labs has at least one outlier on the low side.

Box Plot for
Batch 2

This box plot shows the following.

1. The medians are in the range 550 to 600.

2. There is a bit more variability, across the labs, for
batch2 compared to batch 1.

3. Six of the eight labs show outliers on the high side.
Three of the labs show outliers on the low side.

Conclusions We can draw the following conclusions about a possible lab

http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
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effect from the above box plots.

1. The batch effect (of approximately 75 to 100 units) on
location dominates any lab effects.

2. It is reasonable to treat the labs as homogeneous.

http://www.itl.nist.gov/div898/handbook/search.htm
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1.4.2.10.5. Analysis of Primary Factors

Main effects The first step in analyzing the primary factors is to determine which factors
are the most significant. The DOE scatter plot, DOE mean plot, and the DOE
standard deviation plots will be the primary tools, with "DOE" being short
for "design of experiments".

Since the previous pages showed a significant batch effect but a minimal lab
effect, we will generate separate plots for batch 1 and batch 2. However, the
labs will be treated as equivalent.

DOE
Scatter Plot
for Batch 1

This DOE scatter plot shows the following for batch 1.

1. Most of the points are between 500 and 800.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsplot.htm
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2. There are about a dozen or so points between 300 and 500.

3. Except for the outliers on the low side (i.e., the points between 300
and 500), the distribution of the points is comparable for the 3 primary
factors in terms of location and spread.

DOE Mean
Plot for
Batch 1

This DOE mean plot shows the following for batch 1.

1. The table speed factor (X1) is the most significant factor with an
effect, the difference between the two points, of approximately 35
units.

2. The wheel grit factor (X3) is the next most significant factor with an
effect of approximately 10 units.

3. The feed rate factor (X2) has minimal effect.

DOE SD
Plot for
Batch 1
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This DOE standard deviation plot shows the following for batch 1.

1. The table speed factor (X1) has a significant difference in variability
between the levels of the factor. The difference is approximately 20
units.

2. The wheel grit factor (X3) and the feed rate factor (X2) have minimal
differences in variability.

DOE
Scatter Plot
for Batch 2
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This DOE scatter plot shows the following for batch 2.

1. Most of the points are between 450 and 750.

2. There are a few outliers on both the low side and the high side.

3. Except for the outliers (i.e., the points less than 450 or greater than
750), the distribution of the points is comparable for the 3 primary
factors in terms of location and spread.

DOE Mean
Plot for
Batch 2
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This DOE mean plot shows the following for batch 2.

1. The feed rate (X2) and wheel grit (X3) factors have an approximately
equal effect of about 15 or 20 units.

2. The table speed factor (X1) has a minimal effect.

DOE SD
Plot for
Batch 2
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This DOE standard deviation plot shows the following for batch 2.

1. The difference in the standard deviations is roughly comparable for the
three factors (slightly less for the feed rate factor).

Interaction
Effects

The above plots graphically show the main effects. An additonal concern is
whether or not there any significant interaction effects.

Main effects and 2-term interaction effects are discussed in the chapter on
Process Improvement.

In the following DOE interaction plots, the labels on the plot give the
variables and the estimated effect. For example, factor 1 is table speed and it
has an estimated effect of 30.77 (it is actually -30.77 if the direction is taken
into account).

DOE
Interaction
Plot for
Batch 1

http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm


1.4.2.10.5. Analysis of Primary Factors

http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a5.htm[6/27/2012 2:03:59 PM]

The ranked list of factors for batch 1 is:

1. Table speed (X1) with an estimated effect of -30.77.

2. The interaction of table speed (X1) and wheel grit (X3) with an
estimated effect of -20.25.

3. The interaction of table speed (X1) and feed rate (X2) with an
estimated effect of 9.7.

4. Wheel grit (X3) with an estimated effect of -7.18.

5. Down feed (X2) and the down feed interaction with wheel grit (X3)
are essentially zero.

DOE
Interaction
Plot for
Batch 2



1.4.2.10.5. Analysis of Primary Factors

http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a5.htm[6/27/2012 2:03:59 PM]

The ranked list of factors for batch 2 is:

1. Down feed (X2) with an estimated effect of 18.22.

2. The interaction of table speed (X1) and wheel grit (X3) with an
estimated effect of -16.71.

3. Wheel grit (X3) with an estimated effect of -14.71

4. Remaining main effect and 2-factor interaction effects are essentially
zero.

Conclusions From the above plots, we can draw the following overall conclusions.

1. The batch effect (of approximately 75 units) is the dominant primary
factor.

2. The most important factors differ from batch to batch. See the above
text for the ranked list of factors with the estimated effects.
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1.4.2.10.6. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to use Dataplot to repeat the analysis
outlined in the case study description on the previous page. It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.  1. You have read 1 
column of numbers 
    into Dataplot, 
variable Y.

2. Plot of the response variable

   1. Numerical summary of Y.

   2. 4-plot of Y.

 1. The summary shows 
the mean strength
    is 650.08 and the 
standard deviation
    of the strength 
is 74.64.

 2. The 4-plot shows 
no drift in
    the location and 
scale and a
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    bimodal 
distribution.

3. Determine if there is a batch effect.

   1. Generate a bihistogram based on
      the 2 batches.

   2. Generate a q-q plot.

   3. Generate a box plot.

   4. Generate block plots.

   5. Perform a 2-sample t-test for
      equal means.

   6. Perform an F-test for equal
      standard deviations.

 1. The bihistogram 
shows a distinct
    batch effect of 
approximately
    75 units.

 2. The q-q plot 
shows that batch 1
    and batch 2 do 
not come from a
    common 
distribution.

 3. The box plot 
shows that there is
    a batch effect of 
approximately
    75 to 100 units 
and there are
    some outliers.

 4. The block plot 
shows that the batch
    effect is 
consistent across 
labs
    and levels of the 
primary factor.

 5. The t-test 
confirms the batch
    effect with 
respect to the means.

 6. The F-test does 
not indicate any
    significant batch 
effect with
    respect to the 
standard deviations.

4. Determine if there is a lab effect.

   1. Generate a box plot for the labs
      with the 2 batches combined.

   2. Generate a box plot for the labs
      for batch 1 only.

   3. Generate a box plot for the labs
      for batch 2 only.

 1. The box plot 
does not show a
    significant lab 
effect.

 2. The box plot 
does not show a
    significant lab 
effect for batch 1.

 3. The box plot 
does not show a
    significant lab 
effect for batch 2.

5. Analysis of primary factors.

   1. Generate a DOE scatter plot for
      batch 1.

 1. The DOE scatter 
plot shows the
    range of the 
points and the
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   2. Generate a DOE mean plot for
      batch 1.

   3. Generate a DOE sd plot for
      batch 1.

   4. Generate a DOE scatter plot for
      batch 2.

   5. Generate a DOE mean plot for
      batch 2.

   6. Generate a DOE sd plot for
      batch 2.

   7. Generate a DOE interaction
      effects matrix plot for
      batch 1.

   8. Generate a DOE interaction
      effects matrix plot for
      batch 2.

    presence of 
outliers.

 2. The DOE mean 
plot shows that
    table speed is 
the most
    significant 
factor for batch 1.

 3. The DOE sd plot 
shows that
    table speed has 
the most
    variability for 
batch 1.

 4. The DOE scatter 
plot shows
    the range of the 
points and
    the presence of 
outliers.

 5. The DOE mean 
plot shows that
    feed rate and 
wheel grit are
    the most 
significant factors
    for batch 2.

 6. The DOE sd plot 
shows that
    the variability 
is comparable
    for all 3 factors 
for batch 2.

 7. The DOE 
interaction effects
    matrix plot 
provides a ranked
    list of factors 
with the 
    estimated 
effects.

 8. The DOE 
interaction effects
    matrix plot 
provides a ranked
    list of factors 
with the 
    estimated 
effects.
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