|
RATIO OF MEANS CONFIDENCE INTERVALName:
It is often desired to generate the confidence interval for this ratio. Note that computing a standard confidence interval for R does not generate satisfactory results. This is due to the fact that, assuming Y and X are independent,
However, \( E[1/\hat{X}] \) is not equal to \( 1/E[\hat{X}] \). There have been a number of approaches to this problem. This command supports three different methods. Fieller derived confidence intervals for the case where Y and X are distributed as bivariate normal. Define the quantities
The test statistic is
For Fieller's confidence limits, we first compute
If this quantity is less than or equal to \( t_{q}^2 \) then an unbounded interval results and Dataplot will not generate the confidence interval. Basically, this results if the confidence interval for X contains zero. If this quantity is less than or equal to \( t_{q}^2 \) then the following confidence interval is obtained
\( \mbox{Upper Limit} = \frac{(\bar{X} \bar{Y} - t_{q}^{2} \hat{\sigma}_{\bar{X} \bar{Y}}) + \sqrt{ (\bar{X} \bar{Y} - t_{q}^{2} \hat{\sigma}_{\bar{X} \bar{Y}})^2 - (\bar{X}^2 - t_{q}^{2} \hat{\sigma}_{\bar{X}}^{2}) (\bar{Y}^2 - t_{q}^{2} \hat{\sigma}_{\bar{Y}}^{2})}} {\bar{X}^2 - t_{q}^{2} \hat{\sigma}_{\bar{X}}^{2}} \) The large sample approximation method (this is called the Taylor or delta method in the Franz paper) generates the following confidence interval
\( \mbox{Upper Limit} = \hat{R} + t_{(\alpha/2,n-1)} \hat{R} \sqrt{C_{\bar{Y}\bar{Y}} + C_{\bar{X}\bar{X}} - 2 C_{\bar{Y}\bar{X}}} \) where
The log ratio method generates the following confidence interval
\( \mbox{Upper Limit} = \hat{R} \exp{(t_{(\alpha/2,n-1)} \sqrt{C_{\bar{Y} \bar{Y}} + C_{\bar{X} \bar{X}} - 2 C_{\bar{Y} \bar{X}}})} \) The large sample approximation and the log ratio method do not generate unbounded intervals. Also, the log ratio method can generate asymmetric intervals. Note that there is some disagreement in the literature about the appropriateness of these methods. For example, Franz argues that the unbounded intervals are a result of the denominator being close to zero with the consequence that the ratio can assume arbitrarily large values. Therefore any method that does not allow for unbounded intervals is not valid. On the other hand, Sherman argues that the unbounded Fieler intervals are simply nonsensical and advocates the use of the large sample approximation and log ratio methods. To specify the method to use, enter the command
<SUBSET/EXCEPT/FOR qualification> where <y1> is the first (numerator) response variable; <y2> is the second (denominator) response variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The variables <y1> and <y2> must be of the same length and are assumed to be paired.
RATIO OF MEANS CONFIDENCE INTERVAL Y X SUBSET TAG > 2 RATIO OF MEANS CONFIDENCE INTERVAL Y1 Y2 SUBSET Y1 > 0
LET ALPHA = <value> These statistics can be used in a number of commands. For details, enter
E. C. Fieler (1940), "The Biological Standardization of Insulin," Supplement to the Journal of the Royal Statistical Society, Vol. 7, No. 1, pp. 1-64. E. C. Fieler (1940), "A Fundamental Formula in the Statistics of Biological Assays and Some Applications", Quarterly Journal of Pharmacy and Pharmacology, Vol. 17, pp. 117-123. E. C. Fieler (1940), "Some Problems in Interval Estimation," Journal of the Royal Statistical Society (B), Vol. 16, No. 2, pp. 175-185. Sherman, Maity, and Wang (2011), "Inferences for the Ratio: Fieller's Interval, Log Ratio, and Large Sample Based Confidence Intervals", AStA Adv Stat Anal 95:313–323. Cochran (1977), "Sampling Techniques," Wiley, New York. Lohr (2009), "Sampling: Design and Analysis," Second Edition, Brooks/Cole, Pacific Grove.
. Step 1: Define data (taken from Sherman article, original source . . Lehtonen and Pahkinen (2004), "Practical Methods for . Design and Analysis of Complex Surveys," 2nd Edition, . New York: Wiley. . read y x 4123 26881 760 4896 721 3730 142 556 187 1463 331 1946 127 834 219 932 end of data . . Step 2: Large sample interval . let alpha = 0.95 set write decimals 4 set ratio of means method large sample let r1 = ratio of means y x let r1ll = ratio of means lower confidence limit y x let r1ul = ratio of means upper confidence limit y x . ratio of means confidence limit y x pauseThe following output is generated PARAMETERS AND CONSTANTS-- R1 -- 0.1603 R1LL -- 0.1452 R1UL -- 0.1754 Confidence Limits for the Ratio of Means (Large Sample Approximation Method) Numerator Variable: Y Denominator Variable: X Summary Statistics for Numerator Variable: Number of Observations: 8 Sample Mean: 826.2500 Sample Standard Deviation: 1355.6149 Sample Coefficient of Variation: 1.6407 Summary Statistics for Variable 2: Number of Observations: 8 Sample Mean: 5154.7500 Sample Standard Deviation: 8909.8733 Sample Coefficient of Variation: 1.7285 Correlation: 0.9991 --------------------------------------------------------- Confidence Lower Upper Value (%) Ratio Limit Limit --------------------------------------------------------- 50.000 0.1603 0.1558 0.1648 75.000 0.1603 0.1523 0.1683 90.000 0.1603 0.1482 0.1724 95.000 0.1603 0.1452 0.1754 99.000 0.1603 0.1380 0.1826 99.900 0.1603 0.1258 0.1948 99.990 0.1603 0.1102 0.2104 99.999 0.1603 0.0895 0.2311. set ratio of means method log ratio let r2 = ratio of means y x let r2ll = ratio of means lower confidence limit y x let r2ul = ratio of means upper confidence limit y x . ratio of means confidence limit y x pause The following output is generated PARAMETERS AND CONSTANTS-- R2 -- 0.1603 R2LL -- 0.1459 R2UL -- 0.1761 Confidence Limits for the Ratio of Means (Log Ratio Method) Numerator Variable: Y Denominator Variable: X Summary Statistics for Numerator Variable: Number of Observations: 8 Sample Mean: 826.2500 Sample Standard Deviation: 1355.6149 Sample Coefficient of Variation: 1.6407 Summary Statistics for Variable 2: Number of Observations: 8 Sample Mean: 5154.7500 Sample Standard Deviation: 8909.8733 Sample Coefficient of Variation: 1.7285 Correlation: 0.9991 --------------------------------------------------------- Confidence Lower Upper Value (%) Ratio Limit Limit --------------------------------------------------------- 50.000 0.1603 0.1558 0.1649 75.000 0.1603 0.1525 0.1685 90.000 0.1603 0.1486 0.1728 95.000 0.1603 0.1459 0.1761 99.000 0.1603 0.1394 0.1842 99.900 0.1603 0.1293 0.1987 99.990 0.1603 0.1173 0.2191 99.999 0.1603 0.1031 0.2493. set ratio of means method fieler let r3 = ratio of means y x let r3ll = ratio of means lower confidence limit y x let r3ul = ratio of means upper confidence limit y x . ratio of means confidence limit y x The following output is generated PARAMETERS AND CONSTANTS-- R3 -- 0.1603 R3LL --*************** R3UL --*************** ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 90.00000 ), THE FIELLER INTERVAL IS UNBOUNDED. ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 95.00000 ), THE FIELLER INTERVAL IS UNBOUNDED. ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 99.00000 ), THE FIELLER INTERVAL IS UNBOUNDED. ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 99.90000 ), THE FIELLER INTERVAL IS UNBOUNDED. ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 99.99000 ), THE FIELLER INTERVAL IS UNBOUNDED. ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 99.99900 ), THE FIELLER INTERVAL IS UNBOUNDED. Confidence Limits for the Ratio of Means (Fieller Method) Numerator Variable: Y Denominator Variable: X Summary Statistics for Numerator Variable: Number of Observations: 8 Sample Mean: 826.2500 Sample Standard Deviation: 1355.6149 Sample Coefficient of Variation: 1.6407 Summary Statistics for Variable 2: Number of Observations: 8 Sample Mean: 5154.7500 Sample Standard Deviation: 8909.8733 Sample Coefficient of Variation: 1.7285 Correlation: 0.9991 --------------------------------------------------------- Confidence Lower Upper Value (%) Ratio Limit Limit --------------------------------------------------------- 50.000 0.1603 0.1568 0.1676 75.000 0.1603 0.1549 0.1892 90.000 0.1603 ** ** 95.000 0.1603 ** ** 99.000 0.1603 ** ** 99.900 0.1603 ** ** 99.990 0.1603 ** ** 99.999 0.1603 ** **Program 2: . Step 1: Define data . read y x 0.1268825E+10 0.1246669E+10 0.1295448E+10 0.1246669E+10 0.1295448E+10 0.1268825E+10 0.1168487E+08 0.1014325E+08 0.1141398E+08 0.1014325E+08 0.1168487E+08 0.1141398E+08 0.3298360E+06 0.2902920E+06 0.3298360E+06 0.1718490E+06 0.2902920E+06 0.1718490E+06 0.2415666E+07 0.1637297E+07 0.2415666E+07 0.1347629E+07 0.1637297E+07 0.1347629E+07 0.9904356E+08 0.9530938E+08 0.1049126E+09 0.9530938E+08 0.1049126E+09 0.9904356E+08 0.4930919E+08 0.4662120E+08 0.4934958E+08 0.4662120E+08 0.4934958E+08 0.4930919E+08 0.1278483E+08 0.1232513E+08 0.1286868E+08 0.1232513E+08 0.1286868E+08 0.1278483E+08 0.7029193E+07 0.4878485E+07 0.7029193E+07 0.3244763E+07 0.4878485E+07 0.3244763E+07 0.1490000E+07 0.1040000E+07 0.1860000E+07 0.1040000E+07 0.1860000E+07 0.1490000E+07 0.2680523E+07 0.2601516E+07 0.2724237E+07 0.2601516E+07 0.2724237E+07 0.2680523E+07 0.8905137E+07 0.8303097E+07 0.8905137E+07 0.8271071E+07 0.8303097E+07 0.8271071E+07 0.6956520E+06 0.6798450E+06 0.6921780E+06 0.6798450E+06 0.6956520E+06 0.6921780E+06 0.3290000E+09 0.2890000E+09 0.3300000E+09 0.2890000E+09 0.3300000E+09 0.3290000E+09 0.7091179E+05 0.6553055E+05 0.7443393E+05 0.6553055E+05 0.7443393E+05 0.7091179E+05 0.8031739E+08 0.5416613E+08 0.8031739E+08 0.4975062E+08 0.5416613E+08 0.4975062E+08 0.6830980E+07 0.6738330E+07 0.6973430E+07 0.6738330E+07 0.6973430E+07 0.6830980E+07 0.2010000E+07 0.1980000E+07 0.2600000E+07 0.2010000E+07 0.2600000E+07 0.1980000E+07 0.3193846E+08 0.3059341E+08 0.3222820E+08 0.3059341E+08 0.3222820E+08 0.3193846E+08 0.1784258E+08 0.1460987E+08 0.1784258E+08 0.1099276E+08 0.1460987E+08 0.1099276E+08 0.3150562E+09 0.3052555E+09 0.3150562E+09 0.2994084E+09 0.3052555E+09 0.2994084E+09 0.7998000E+08 0.7574000E+08 0.8017000E+08 0.7574000E+08 0.8017000E+08 0.7998000E+08 0.3983000E+08 0.3886000E+08 0.4086000E+08 0.3886000E+08 0.4086000E+08 0.3983000E+08 0.2334030E+07 0.1387010E+07 0.2544590E+07 0.2334030E+07 0.2544590E+07 0.1387010E+07 0.3126721E+09 0.2310785E+09 0.2490103E+09 0.2310785E+09 0.3126721E+09 0.2490103E+09 0.1000900E+03 0.9977000E+02 0.1255000E+03 0.9977000E+02 0.1255000E+03 0.1000900E+03 0.9860323E+04 0.9400626E+04 0.9882525E+04 0.9400626E+04 0.9882525E+04 0.9860323E+04 0.2548997E+04 0.2482806E+04 0.2640000E+08 0.2510000E+08 0.2680000E+08 0.2510000E+08 0.2680000E+08 0.2640000E+08 end of data . set write decimals 4 . . Step 2: Large sample interval . set ratio of means method large sample ratio of means confidence limit y xThe following output is generated Confidence Limits for the Ratio of Means (Large Sample Approximation Method) Numerator Variable: Y Denominator Variable: X Summary Statistics for Numerator Variable: Number of Observations: 82 Sample Mean: 98726120.5989 Sample Standard Deviation: 251637033.8336 Sample Coefficient of Variation: 2.5488 Summary Statistics for Variable 2: Number of Observations: 82 Sample Mean: 92451883.4744 Sample Standard Deviation: 243574789.7088 Sample Coefficient of Variation: 2.6346 Correlation: 0.9988 --------------------------------------------------------- Confidence Lower Upper Value (%) Ratio Limit Limit --------------------------------------------------------- 50.000 1.0679 1.0557 1.0800 75.000 1.0679 1.0470 1.0887 90.000 1.0679 1.0380 1.0978 95.000 1.0679 1.0321 1.1036 99.000 1.0679 1.0205 1.1153 99.900 1.0679 1.0065 1.1292 99.990 1.0679 0.9943 1.1414 99.999 1.0679 0.9832 1.1525. set ratio of means method log ratio ratio of means confidence limit y x The following output is generated Confidence Limits for the Ratio of Means (Log Ratio Method) Numerator Variable: Y Denominator Variable: X Summary Statistics for Numerator Variable: Number of Observations: 82 Sample Mean: 98726120.5989 Sample Standard Deviation: 251637033.8336 Sample Coefficient of Variation: 2.5488 Summary Statistics for Variable 2: Number of Observations: 82 Sample Mean: 92451883.4744 Sample Standard Deviation: 243574789.7088 Sample Coefficient of Variation: 2.6346 Correlation: 0.9988 --------------------------------------------------------- Confidence Lower Upper Value (%) Ratio Limit Limit --------------------------------------------------------- 50.000 1.0679 1.0558 1.0801 75.000 1.0679 1.0472 1.0889 90.000 1.0679 1.0384 1.0982 95.000 1.0679 1.0327 1.1042 99.000 1.0679 1.0215 1.1163 99.900 1.0679 1.0082 1.1310 99.990 1.0679 0.9968 1.1440 99.999 1.0679 0.9865 1.1560. set ratio of means method fieler ratio of means confidence limit y x The following output is generated ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 99.99000 ), THE FIELLER INTERVAL IS UNBOUNDED. ***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS-- FOR ALPHA ( 99.99900 ), THE FIELLER INTERVAL IS UNBOUNDED. Confidence Limits for the Ratio of Means (Fieller Method) Numerator Variable: Y Denominator Variable: X Summary Statistics for Numerator Variable: Number of Observations: 82 Sample Mean: 98726120.5989 Sample Standard Deviation: 251637033.8336 Sample Coefficient of Variation: 2.5488 Summary Statistics for Variable 2: Number of Observations: 82 Sample Mean: 92451883.4744 Sample Standard Deviation: 243574789.7088 Sample Coefficient of Variation: 2.6346 Correlation: 0.9988 --------------------------------------------------------- Confidence Lower Upper Value (%) Ratio Limit Limit --------------------------------------------------------- 50.000 1.0679 1.0568 1.0818 75.000 1.0679 1.0499 1.0951 90.000 1.0679 1.0430 1.1148 95.000 1.0679 1.0386 1.1334 99.000 1.0679 1.0293 1.2096 99.900 1.0679 1.0154 6.5994 99.990 1.0679 ** ** 99.999 1.0679 ** **
Date created: 02/04/2020 |
Last updated: 12/11/2023 Please email comments on this WWW page to alan.heckert@nist.gov. |