QUANTILE-QUANTILE PLOT

PURPOSE

Generates a quantile-quantile plot.

DESCRIPTION

A quantile-quantile plot (or q-q plot) is a graphical data analysis technique for comparing the distributions of 2 data sets. The quantilequantile plot is a graphical alternative for the various classical 2-sample tests (e.g., t for location, F for dispersion). The plot consists of the following:

Vertical axis $=$ estimated quantiles from data set 1 ;
Horizontal axis $=$ estimated quantiles from data set 2.
The "quantiles" of a distribution are the distribution's "percent points" (e.g., the .5 quantile $=$ the 50% point $=$ the median). The advantage of the quantile-quantile plot is 2 -fold:

1. the sample sizes do not need to be identical;
2. many distributional aspects can be simultaneously tested. For example, shifts in location, shifts in dispersion, changes in symmetry/skewness, outliers, etc.
The quantile-quantile plot has 2 components:
3. the quantile points themselves;
4. a 45 degree reference line.

The appearance of these 2 components is controlled by the first 2 settings of the CHARACTERS and LINES commands. It is typical for the quantile points to be represented as, say, X 's with no connecting line, and the reference line to have no plot characters but to be solid. This is demonstrated in the sample program below.

SYNTAX

QUANTILE-QUANTILE PLOT <y1> <y2> <SUBSET/EXCEPT/FOR qualification>
where $\langle\mathrm{y} 1>$ is the first response variable;
<y2> is the second response variable;
and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

QUANTILE-QUANTILE PLOT Y1 Y2
QUANTILE-QUANTILE PLOT RUN1 RUN2
QUANTILE-QUANTILE PLOT Y1 Y2 SUBSET STATE 25

NOTE 1

One of the distributions can be a theoretical distribution. For example, the following program generates a quantile-quantile plot of a data set against a normal distribution (this is called a normal quantile plot).

```
LET Y1 = NORMAL RANDOM NUMBERS FOR I = 11100
LET X = SEQUENCE .01 .01 .99
LET Y2 = NORPPF(X)
QUANTILE-QUANTILE PLOT Y1 Y2
```

This same technique can be used for other distributions (use the proper PPF function). This is essentially what a probability plot does (DATAPLOT has a PROBABILITY PLOT command for 38 distributions).

NOTE 2

The Tukey mean-difference (or m-d plot) can be generated after the quantile-quantile plot. It takes the coordinates of the quantilequantile plot (saved in the DATAPLOT internal variables YPLOT and XPLOT and plots their difference (YPLOT - XPLOT) against their average $((\mathrm{YPLOT}+\mathrm{XPLOT}) / 2)$ The advantage of this plot is that it converts the interpretation of a quantile-quantile plot to differences from a horizontal (rather than a diagonal) zero line. The program example below generates a quantile-quantile plot and then the corresponding m - d plot. The m -d plot should only be used if the two variables are on a common scale.

DEFAULT

None

SYNONYMS

None

```
RELATED COMMANDS
    CHARACTERS = Sets the type for plot characters.
    LINES = Sets the type for plot lines.
    BOX PLOT = Generates a box plot.
    PLOT = Generates a data or function plot.
    HISTOGRAM = Generates a histogram.
    PROBABILITY PLOT = Generates a probability plot.
    T-TEST = Carries out a 2-sample t test.
    ANOVA
    = Carries out an ANOVA
    MULTIPLOT = Allows multiple plots per page.
    LOOP = Starts a loop (iteration).
```


REFERENCE

```
"Graphical Methods of Data Analysis," Chambers, Cleveland, Kleiner, and Tukey, Wadsworth, 1983 (pp. 48-57).
"Visualizing Data," William Cleveland, Hobart Press, 1993.
```


APPLICATIONS

Exploratory Data Analysis
IMPLEMENTATION DATE
88/3

PROGRAM

SKIP 25
READ AUTO83B.DAT Y1 Y2
DELETE Y2 SUBSET Y2 < 0
LINE BLANK SOLID
CHARACTER CIRCLE BLANK
CHARACTER SIZE 1.0
TITLE AUTOMATIC
QUANTILE-QUANTILE PLOT Y1 Y2

LET YMEAN $=($ YPLOT + XPLOT $) / 2$
LET YDIFF = YPLOT - XPLOT
LET AMIN = MINIMUM YMEAN
LET AMAX = MAXIMUM YMEAN
LET XZERO = DATA AMIN AMAX
LET YZERO = DATA 00
TITLE TUKEY M-D PLOT
X1LABEL MEAN
Y1LABEL DIFFERENCE
YLIMITS -15 0
YTIC OFFSET 11
PLOT YDIFF YMEAN AND
PLOT YZERO XZERO

