CHI-SQUARE TEST

PURPOSE

Perform a one sample chi-square test that the standard deviation (the σ below) is equal to a user specified value (the σ_0 below).

DESCRIPTION

The hypothesis test is:

H0:	$\sigma = \sigma_0$	
Ha:	$\sigma < \sigma_0$	(lower one tail test)
	$\sigma <> \sigma_0$	(two tailed test)
	$\sigma > \sigma_0$	(upper one tail test)
Test Sta	tistic:	
	T = (N-1)*(sample st	tandard deviation/ σ_0 ²
	where N is the sampl	le size.
Signific	ance level: Typically se	et to 0.05
Critical	Region:	
	T < 0.95	(lower one tail test)
	0.025 < T < 0.975	(two tailed test)
	T > 0.05	(upper one tail test)
	where the critical reg	ion is determined from the chi-square cumulative distribution function with (N-1) degrees of
	freedom and a signifi	icance level of 0.05.
Conclus	sion: Reject null hypoth	nesis if T is in the critical region.

The standard output generates the test for all 3 cases (two tailed, lower one tail, upper one tail).

DATAPLOT tests the hypothesis that the standard deviation is equal to a given value. Be aware that many statistical textbooks state the hypothesis test in terms of the variance. These tests are equivalent, just be sure to specify the σ_0 value in terms of the standard deviation for DATAPLOT purposes.

SYNTAX 1

CHI-SQUARE TEST <y> <sigma0> <SUBSET/EXCEPT/FOR qualification> where <y> is a response variable; <sigma0> is a number or parameter that is the value to test against; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

SYNTAX 2

CHI-SQUARE TEST <sigma0> <y> <SUBSET/EXCEPT/FOR qualification> where <sigma0> is a number or parameter that is the value to test against; <y> is a response variable;

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

CHI-SQUARE TEST Y1 8.5 CHI-SQUARE TEST Y1 A CHI-SQUARE TEST Y1 A SUBSET Y > 0

NOTE 1

To use a different significance level, simply compare the value on the line labeled CHI-SQUARED CDF VALUE to the proper acceptance interval. For example, for alpha = 0.10, the acceptance intervals are:

(0.000,0.900) - lower one tail case (0.050,0.950) - two tail case 0.100,1.000) - upper one tail case

NOTE 2

A chi-square test for independence for a two-way table can be generated with the CROSS TABULATE command. See the documentation for CROSS TABULATE for details.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

CONFIDENCE LIMITS	=	Compute the confidence limits for the mean of a sample
T TEST	=	Performs a two-sample t test.
F TEST	=	Performs an F test for the ratio of 2 variances.
STANDARD DEVIATION	=	Computes the standard deviation of a variable.

REFERENCE

Chi-square tests are discussed in most introductory statistics books.

APPLICATIONS

Confirmatory Data Analysis

IMPLEMENTATION DATE

94/2

PROGRAM

SKIP 25 READ GEAR.DAT DIAMETER BATCH LET A = 0.1 CHI-SQUARE TEST DIAMETER A

SIGMA > .1000000 (0.050,1.000)

The following output is generated:

CHI-SQUARED TEST SIGMA0 = 0.1000000 HYPOTHESIS BEING TESTED--STANDARD DEVIATION SIGMA = .1000000 SAMPLE: NUMBER OF OBSERVATIONS 100 = = 0.9976400 MEAN STANDARD DEVIATION S = 0.6278908E-02 TEST: S/SIGMA0 = 0.6278908E-01 = 0.3903044 CHI-SQUARED STATISTIC = 99.00000 DEGREES OF FREEDOM CHI-SQUARED CDF VALUE = 0.000000 HYPOTHESIS ACCEPTANCE INTERVAL CONCLUSION $SIGMA < .1000000 \quad (0.000, 0.950)$ ACCEPT SIGMA = .1000000 (0.025,0.975) REJECT

REJECT