CONFIDENCE LIMITS

PURPOSE

Generates a confidence interval for the mean.

DESCRIPTION

The confidence interval for the mean is defined by:

 $\bar{x} - \frac{t_{\alpha/2}s}{\sqrt{n}} < \mu < \bar{x} + \frac{t_{\alpha/2}s}{\sqrt{n}}$ (EQ 3-40)

where \bar{x} is the sample mean, *s* is the sample standard deviation, *n* is the sample size, and μ is the population mean. The quantity *s*/sqrt(*n*) is the standard deviation of the mean.

<SUBSET/EXCEPT/FOR qualification>

SYNTAX

CONFIDENCE LIMITS <y1> where <y1> is the response variable;

ariable;

and where the \langle SUBSET/EXCEPT/FOR qualification \rangle is optional.

EXAMPLES

CONFIDENCE LIMITS Y1 CONFIDENCE LIMITS Y1 SUBSET TAG > 2

NOTE

A table of confidence intervals is printed for α levels of 50.0, 75.0, 90.0, 95.0, 99.0, 99.9, 99.99, and 99.999. The sample mean, sample standard deviation, and sample standard deviation of the mean are also printed. In addition to the lower and upper confidence limits, the t-value and t-value times standard deviation of the mean are printed in the table. These numbers can be used to construct the equivalent hypothesis test if desired (DATAPLOT does not currently support a hypothesis test command). The corresponding hypothesis test is constructed as follows (\bar{x} = sample mean, S = sample standard deviation, N=sample size):

H0: population mean = u0 Ha: population mean <> u0 Test Statistic: T=(\bar{x} - u0)/(S/sqrt(N)) Alpha: .05 (corresponds to confidence value of 95.0%) Critical Region: T < -t(α /2,N-1), T > t(α /2,N-1) Conclusion: Rejec t null hypothesis if T in critical region

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

T-TEST	=	Perform a t-test.
CHI-SQUARE TEST	=	Perform a chi-square for the variance of a variable being equal to a given value
F TEST	=	Perform an F test for the variances of two variables being equal.

REFERENCE

Consult any introductory statistics textbook.

APPLICATIONS

Confirmatory Data Analysis

IMPLEMENTATION DATE

Pre-1987 (the output from this command was reformatted 94/1)

PROGRAM

SKIP 25 READ GEAR.DAT DIAMETER BATCH CONFIDENCE LIMITS DIAMETER

This command generates the following output.

CONFIDENCE LIMITS FOR MEAN								
(2-SIDED)								
NUMBER OF OBSERVATIONS				100				
MEAN				= .9976400				
STANDARD DEVIATION = .6278908E-02								
STANDARD DEVIATION OF MEAN = .6278908E-03								
CONFIDENCE	Т	T X SD(MEAN)	LC	OWER	UPPER			
VALUE (%) V	/ALUE		LI	IMIT	LIMIT			
50.000 0).677 (0.425067E-03	0.9972	215 0	.998065			
75.000 1	L.157 (D.726557E-03	0.9969	913 0	.998367			
90.000 1	L.660 (0.104254E-02	0.9965	597 0	.998683			
95.000 1	L.984 (D.124587E-02	0.9963	394 C	.998886			
99.000 2	2.626 (D.164910E-02	0.9959	991 0	.999289			
99.900 3	3.392 (0.212952E-02	0.9955	511 0	.999770			
99.990 4	1.055 (D.254609E-02	0.9950	94	1.00019			
99.999 4	1.656 (D.292371E-02	0.9947	716	1.00056			