F TEST

PURPOSE

Perform a two sample F test to determine whether the two standard deviation are equal.

DESCRIPTION

The hypothesis test is:

H0: $\sigma_1 = \sigma_2$ Ha: $\sigma <> \sigma_2$ Test Statistic: $F = S1^2/S2^2$ where S1 and S2 are the sample standard deviations Significance level: Typically set to .05 Critical Region: $F < f(1-\alpha/2)(v1,v2)$ and $F > f(\alpha/2)(v1,v2)$

```
1^{\circ} > 1(0/2)(v1,v2)
```

where the critical region is determined from the F distribution function with (N1-1) and (N2-1) degrees of freedom and a significance level of 0.05.

Conclusion: Reject null hypothesis if T in critical region

DATAPLOT states the acceptance interval in terms of the F cumulative distribution function and calculates the F cdf value for the computed statistic.

SYNTAX

F TEST <y1> <y2> where <y1> is the first response variable; <SUBSET/EXCEPT/FOR qualification>

<y2> is the second response variable;

and where the \langle SUBSET/EXCEPT/FOR qualification \rangle is optional.

EXAMPLES

F TEST Y1 Y2 F TEST Y1 Y2 SUBSET Y2 > 0

NOTE 1

To use an alternate value of alpha, simply compare the value on the line labeled F TESTD CDF VALUE to the proper acceptance interval. For example, for alpha = .10, the acceptance interval is:

(0.000, 0.900)

NOTE 2

The various values printed by the F TEST command are saved as parameters

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

CONFIDENCE LIMITS	=	Compute the confidence limits for the mean of a sample.
T TEST	=	Performs a two-sample t test.
CHI-SQUARE TEST	=	Performs a one sample chi-square test that the standard deviation is equal to a given value.
STANDARD DEVIATION	=	Computes the standard deviation of a variable.

REFERENCE

F tests are discussed in most introductory statistics books.

APPLICATIONS

Confirmatory Data Analysis

IMPLEMENTATION DATE

94/2 (the automatic saving of the parameters was implemented 94/12)

PROGRAM

SKIP 25 READ AUTO83B.DAT Y1 Y2 DELETE Y2 SUBSET Y2 < 0

F TEST Y1 Y2 STATUS PARAMETERS

The following output is generated.

F TEST					
HYPOTHESIS BEING	; TESTINGSIC	GMA1 = S	SIGMA2		
SAMPLE 1:					
NUMBER OF OBSERVATIONS			249		
MEAN			20.14458		
STANDARD DEVIATION =			6.414700		
_					
SAMPLE 2:					
NUMBER OF OBSERVATIONS =			79		
MEAN =			30.48101		
STANDARD DEVIATION =			6.107710		
TEST:					
STANDARD DEV.	6.414700				
STANDARD DEV.	6.107710				
F TEST STATIS	1.103052				
DEG. OF FREEL	248.0000				
DEG. OF FREEL	OOM (DENOM.)	=	78.00000		
F TEST STATIS	STIC CDF VALUE	E =	0.690318		
HYPOTHESIS	CONCLUSION				
SIGMA1 = SIGMA2	ACCEPT				
PARAMETER INFINI	TY HAS THE V	/ALUE:	0.3402823E+39		
PARAMETER PI	HAS THE V	/ALUE:	0.3141593E+01		
PARAMETER STATVA	L HAS THE V	/ALUE:	0.1103052E+01		
PARAMETER STATNI	J1 HAS THE V	/ALUE:	0.2480000E+03		
PARAMETER STATNI	12 HAS THE V	/ALUE:	0.7800000E+02		
PARAMETER POOLS	$) \qquad HAS THE V$	/ALUE:	0.6342600E+01		
PARAMETER STATCI	DF HAS THE V	/ALUE:	0.6903184E+00		
PARAMETER CUTLON	195 HAS THE V	/ALUE:	0.0000000E+00		
PARAMETER CUTUPE	95 HAS THE V	/ALUE:	0.1373470E+01		
PARAMETER CUTLOW	199 HAS THE V	/ALUE:	0.0000000E+00		
PARAMETER CUTUPE	99 HAS THE V	/ALUE:	0.1571454E+01		