 Dataplot Vol 2 Vol 1

# DEBYE

Name:
DEBYE (LET)
Type:
Library Function
Purpose:
Compute the Debye function.
Description:
The Debye function is defined as: where n, a non-negative integer, is the order of the Debye function. Dataplot supports values of 0, 1, 2, 3, and 4 for n.

Dataplot computes this function using ACM Algorithm 757 (see Reference: below).

Syntax:
LET <y> = DEBYE(<x>,<ord>)             <SUBSET/EXCEPT/FOR qualification>
where <x> is a non-negative number, variable or parameter;
<ord> is a non-negative integer number, parameter, or variable in the range 0 to 4;
<y> is a variable or a parameter (depending on what <x> and <ord> are) where the computed Debye function values are stored;
and where the <SUBSET/EXCEPT/FOR qualification> is optional.
Examples:
LET A = DEBYE(2.3,1)
LET A = DEBYE(X,A1)
LET X2 = DEBYE(X1,4) FOR X1 = 0.1 0.1 3.0
Default:
None
Synonyms:
None
Related Commands:
 ABRAM = Compute the Abramowitz function. CLAUSN = Compute the Clausen integral. EXP3 = Compute the cubic exponential integral. GOODST = Compute the Goodwin and Stanton integral. LOBACH = Compute the Lobachevski integral. SYNCH1 = Compute the synchrotron radiation function. SYNCH2 = Compute the synchrotron radiation function. STROM = Compute the Stromgren integral. TRAN = Compute the transport integral.
Reference:
"ACM Transactions of Mathematical Software", Allan MacLead, Vol. 22, No. 3, September, 1996, pp. 288-301.
Applications:
Special Functions
Implementation Date:
1999/6
Program:
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 5 5 95 95
TITLE ORDER 0
PLOT DEBYE(X,0) FOR X = 0 0.01 10
TITLE ORDER 1
PLOT DEBYE(X,1) FOR X = 0 0.01 10
TITLE ORDER 2
PLOT DEBYE(X,2) FOR X = 0 0.01 10
TITLE ORDER 3
PLOT DEBYE(X,3) FOR X = 0 0.01 10
END OF MULTIPLOT
MOVE 50 97
CENTER JUSTIFICATION
TEXT DEBYE FUNCTIONS

Date created: 6/5/2001
Last updated: 4/4/2003