
DIWPPFName:
with q and denoting the shape parameters.
<SUBSET/EXCEPT/FOR qualification> where <p> is a positive integer variable, number, or parameter in the interval (0,1); <q> is a number, parameter, or variable in the range (0,1) that specifies the first shape parameter; <beta> is a number, parameter, or variable that specifies the second shape parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed discrete Weibull ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.
LET Y = DIWPPF(P,0.3,0.7) PLOT DIWPPF(P,0.6,0.4) FOR P = 0 0.01 0.99
Nakagawa and Osaki (1975), "The Discrete Weibull Distribution", IEEE Transactions on Reliability, R24, pp. 300301.
title size 3 tic label size 3 label size 3 legend size 3 height 3 x1label displacement 12 y1label displacement 15 . multiplot corner coordinates 0 0 100 95 multiplot scale factor 2 label case asis title case asis case asis tic offset units screen tic offset 3 3 title displacement 2 x1label Probability y1label X . xlimits 0 1 major xtic mark number 6 minor xtic mark number 3 line blank spike on . multiplot 2 2 . title Q = 0.3, Beta = 0.3 plot diwppf(p,0.3,0.3) for p = 0 0.01 0.99 . title Q = 0.5, Beta = 0.5 plot diwppf(p,0.5,0.5) for p = 0 0.01 0.99 . title Q = 0.7, Beta = 0.7 plot diwppf(p,0.7,0.7) for p = 0 0.01 0.99 . title Q = 0.9, Beta = 0.9 plot diwppf(p,0.9,0.9) for p = 0 0.01 0.99 . end of multiplot . justification center move 50 97 text Percent Point Functions for Discrete Weibull
Date created: 11/16/2006 