|
IGPPFName:
with and denoting the shape parameters and denoting the cumulative distribution function of the standard normal distribution. The percent point function is the inverse of the cumulative distribution function. The percent point function for the inverse Gaussian distribution does not exist in simple, closed form. It is computed by numerically inverting the inverse Gaussian cumulative distribution function using a bisection method. The inverse Gaussian distribution can be generalized with location and scale parameters in the usual way.
<SUBSET/EXCEPT/FOR qualification> where <p> is a variable or a parameter in the interval (0,1); <gamma> is number or parameter that specifies the first shape parameter; <mu> is number or parameter that specifies the second shape parameter; <loc> is number or parameter that specifies the location parameter; <scale> is number or parameter that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed inverse Gaussian ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. Note that the location and scale parameters are optional.
LET A = IGPPF(P1,2,1) PLOT IGPPF(P,2,1.5) FOR P = 0 0.01 0.99
"Statistical Distributions", Third Edition, Evans, Hastings, and Peacock, Wiley, 2000, pp. 114-116.
2003/12: Modified to treat as a shape parameter instead of a location parameter. X1LABEL Probability Y1LABEL X LABEL CASE ASIS X1LABEL DISPLACEMENT 12 Y1LABEL DISPLACEMENT 12 MULTIPLOT SCALE FACTOR 2 MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 100 95 TITLE GAMMA = 2, MU = 1 PLOT IGPPF(P,2,1) FOR P = 0 0.01 0.99 TITLE GAMMA = 5, MU = 1 PLOT IGPPF(P,5,1) FOR P = 0 0.01 0.99 TITLE GAMMA = 2, MU = 2 PLOT IGPPF(P,2,2) FOR P = 0 0.01 0.99 TITLE GAMMA = 5, MU = 2 PLOT IGPPF(P,5,2) FOR P = 0 0.01 0.99 END OF MULTIPLOT JUSTIFICATION CENTER MOVE 50 97 CASE ASIS TEXT Inverse Gaussian Percent Point
Date created: 7/7/2004 |