|
RLPName:
For ISO 13528 multi-round proficiency studies, the relative laboratory performance (RLP) for a given laboratory with N z-scores (Zi) is defined as
where NMAT is the number of materials. An RLP near 1 indicates average performance and an RLP greater than 1.5 indicates that the laboratory may be problematic. An advantage of this statistic is that z-scores of opposite sign do not cancel each other out. A disadvantage is that this statistic is suspectible to outliers in the z-scores. The RLP statistic is discussed in Uhlig and Lischer (1998). The RLP statistic is an examples of a combination score (i.e., the statistic is a combination of many individual z-scores). Although the ISO 13528 standard recommends against using combination scores, these can be helpful in judging the overall performance of a laboratory. These combination scores can be used to identify laboratories that are potentially problematic. These laboratories can then be examined more carefully. For example: is the poor performance due to one or a few outliers? is the lab consistently high or consistently low? does the laboratory need to carefully examine their procedures? This statistic is used to compute the RLP for a single laboratory. Note that the material-id variable is only used to determine the number of materials (NMAT in the above formula). The most typical use of this statistic is with the TABULATE command or the STATISTIC PLOT command where the group-id variable is the laboratory-id variable. For example, the command
can be used to generate a plot of the RLP values for each laboratory.
where <z> is the response variable containing z-scores; <matid> is a variable containing the material-id's; <par> is a parameter where the computed rlp is saved; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The SUBSET clause can be used to specify a specific laboratory for which to compute the statistic.
LET A = RLP Z MAT SUBSET LAB = 23 TABULATE RLP Z MATID LABID RLP PLOT Z MATID LABID
To specify this value, enter the command
where <value> is typically 3 or 4 (if the reponse data are z-scores or z-score type data). Note that the value represents an absolute value. For example, if CAPVALUE is 4, values greater than 4 will be set to 4 and values less than -4 will be set to -4.
ISO 13528 (2005), "Statistical Methods for use in proficiency testing by interlaboratory comparisons," First Edition, 2005-09-01.
. Step 1: Read the data . dimension 40 columns skip 25 read turner.dat labid z year quarter matid matave skip 0 let labcoded = code labid . . Step 2: Set plot control setting . case asis title case asis title offset 2 label case asis y1label Relative Laboratory Performance x1label Laboratory title RLP Versus Laboratory for TURNER.DAT y1tic mark label decimal 1 tic mark offset units data x1tic mark offset 2 0 y1tic mark offset 0.2 0.5 ylimits 0 3 . line blank character circle character hw 0.5 0.375 character fill on . . Step 3: Generate plot of RLP vs Lab . rlp plot z matid labcoded line dash line color blue drawsdsd 15 1.5 85 1.5 line color red drawsdsd 15 3.0 85 3.0 . . Step 4: Tabulate RLP values for each laboratory . set write decimals 4 tabulate rlp z matid labidThe following output is generated Cross Tabulate RELATIVE LABORATORY PERFORMANCE (Response Variables: Z MATID ) --------------------------------------------- LABID | RELATIVE LABORA --------------------------------------------- 1.0000 | 1.2635 2.0000 | 0.5968 3.0000 | 0.6613 4.0000 | 0.9571 5.0000 | 0.7537 6.0000 | 0.8483 7.0000 | 1.0330 8.0000 | 1.2063 9.0000 | 1.3412 10.0000 | 1.0391 11.0000 | 1.1607 12.0000 | 0.9048 13.0000 | 1.1061 14.0000 | 0.6820 15.0000 | 0.9297 16.0000 | 1.2919 17.0000 | 0.9640 18.0000 | 0.7816 19.0000 | 1.3733 20.0000 | 0.9002 21.0000 | 1.2505 22.0000 | 0.6907 23.0000 | 0.6608 24.0000 | 2.2597 25.0000 | 1.2199 26.0000 | 0.6441 27.0000 | 1.4659 28.0000 | 0.8332 29.0000 | 0.7345 30.0000 | 1.1149 32.0000 | 0.9611 33.0000 | 0.7722 34.0000 | 1.0624 35.0000 | 1.1702 36.0000 | 0.9016 37.0000 | 2.7951 38.0000 | 1.1969 39.0000 | 0.9013 40.0000 | 0.7844 41.0000 | 1.7227 43.0000 | 0.6891 44.0000 | 1.0015 45.0000 | 0.6377 46.0000 | 0.7925 47.0000 | 0.4359 48.0000 | 2.2051 49.0000 | 1.3257 50.0000 | 0.5562 51.0000 | 0.7882 52.0000 | 1.2762 53.0000 | 0.8490 54.0000 | 0.7403 55.0000 | 0.6298 56.0000 | 0.4445 57.0000 | 0.8096 58.0000 | 1.4416 59.0000 | 0.9948 60.0000 | 1.1370 61.0000 | 0.9833 62.0000 | 0.7544 64.0000 | 0.7930 65.0000 | 0.4510 66.0000 | 0.9146 67.0000 | 2.2194 68.0000 | 1.4462 69.0000 | 0.9027 70.0000 | 1.0099 71.0000 | 0.5860 72.0000 | 0.6815 73.0000 | 1.0609 74.0000 | 0.8879 75.0000 | 1.1377 76.0000 | 0.6527 77.0000 | 0.5023 78.0000 | 1.2167 79.0000 | 1.0140 80.0000 | 1.0788 81.0000 | 2.1828 82.0000 | 1.1335 83.0000 | 0.4704 84.0000 | 0.6805 85.0000 | 0.5462 86.0000 | 1.2086 87.0000 | 0.7786
|
Privacy
Policy/Security Notice
NIST is an agency of the U.S.
Commerce Department.
Date created: 02/09/2015 |