|
WEIGHTED ORDER STATISTIC MEANName:
with Xi and Wi denoting the response variable and the weights variable, respectively. Note that the Xi will be sorted while the Wi will not be sorted before applying this formula. That is, the Wi weight applies to the i-th order statistic, not the i-th response value. This is the main distinction between this command and the WEIGHTED MEAN command.
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable; <w> is the weights varialbe; <par> is a parameter where the weighted order statistic mean is saved; and where the <SUBSET/EXCEPT/FOR qualification> is optional.
LET WOS = WEIGHTED ORDER STATISTIC MEAN Y1 SUBSET TAG = 1
let y = data 1 4 9 16 25 let w = data 0 1 1 1 0 . let b = weighted order statistic mean y wThe computed value of the statistic is 9.666667. let b = weighted order statistic mean y w . title case asis title offset 2 title Bootstrap Plot for Weighted Order Statistic Means label case ais y1label Weighted Order Statistic Mean x1label Bootstrap Sample . bootstrap sample 1000 set write decimals 5 bootstrap weighted order statistic mean plot y w Bootstrap Analysis for the WEIGHTED ORDER STATISTICS MEAN Response Variable One: Y Response Variable Two: W Number of Bootstrap Samples: 1000 Number of Observations: 5 Mean of Bootstrap Samples: 10.55099 Standard Deviation of Bootstrap Samples: 4.92068 Median of Bootstrap Samples: 9.66666 MAD of Bootstrap Samples: 3.99999 Minimum of Bootstrap Samples: 1.00000 Maximum of Bootstrap Samples: 25.00000 Percent Points of the Bootstrap Samples ----------------------------------- Percent Point Value ----------------------------------- 0.1 = 1.00000 0.5 = 1.00000 1.0 = 2.00000 2.5 = 2.00000 5.0 = 3.66666 10.0 = 4.66666 20.0 = 5.66666 50.0 = 9.66666 80.0 = 15.00000 90.0 = 16.66666 95.0 = 19.00000 97.5 = 22.00000 99.0 = 22.00000 99.5 = 25.00000 99.9 = 25.00000 Percentile Confidence Interval for Statistic ------------------------------------------ Confidence Lower Upper Coefficient Limit Limit ------------------------------------------ 50.00 7.00000 13.66666 75.00 4.66666 16.66666 90.00 3.66666 19.00000 95.00 2.00000 22.00000 99.00 1.00000 25.00000 99.90 1.00000 25.00000 ------------------------------------------
Date created: 01/07/2013 |