EXTEND

PURPOSE

Extend a variable by another variable. The first variable will have the second variable appended onto it.

SYNTAX

EXTEND <var1> <var2> where <var1> is the variable that will be extended; and <var2> is the variable that is added onto <var1>.

EXAMPLES

EXTEND Y1 Y2 EXTEND Y DEL EXTEND X X

DEFAULT

None

SYNONYMS

APPEND is a synonym to EXTEND, but with the arguments reversed. If you have 2 variables X1 and X2 and wish to append the contents of X2 onto the end of X1, then the following 2 commands are equivalent:

EXTEND X1 X2 APPEND X2 X1

RELATED COMMANDS

APPEND	=	Appends a variable to another variable.
DELETE	=	Deletes all or part of a variable.
LET	=	Creates or transforms a variable.

APPLICATIONS

Data transformation

IMPLEMENTATION DATE

Pre-1987

PROGRAM

```
. PURPOSE--PLOT OUT THE COMPLEX ROOTS FROM THE FAMILY OF FUNCTIONS K + 1*X + 1*X**2
. ANALYSIS TECHNIQUE -- COMPLEX ROOTS + PLOT
DIMENSION 20 VARIABLES
   STEP 1--DEFINE THE BASE POLYNOMIAL 1 + 1*X + 1*X**2. IT WILL BE UPDATED LATER
LET P = DATA 1 1 1
LET X2 = DATA -999 -999; LET Y2 = DATA -999 -999; LET D2 = DATA -999 -999
   STEP 2--EXECUTE A LOOP. FOR EACH ITERATION, CHANGE THE BASE POLYNOMIAL TO
          K + 1*X + 1*X**2. COMPUTE AND STORE THE 2 COMPLEX ROOTS.
LOOP FOR K = 1 \ 1 \ 10
    LET P(1) = K
    LET X Y = COMPLEX ROOTS P
    LET D = K FOR I = 112
    EXTEND X2 X
    EXTEND Y2 Y
    EXTEND D2 D
END OF LOOP
   STEP 3--PLOT THE ROOTS
CHAR 1 2 3 4 5 6 7 8 9 0; LINES BLANK ALL
TITLE K + X + X^{**2} (FOR K = 1 \ 1 \ 10); TITLE SIZE 4
X1LABEL REAL COMPONENT; Y1LABEL COMPLEX COMPONENT
PLOT Y2 X2 D2 EXCEPT D2 = -999
```