CORRELATION MATRIX

PURPOSE

Compute the correlation matrix of a matrix.

DESCRIPTION

The correlation matrix computes the correlation coefficients of the columns of a matrix. That is, row i and column j of the correlation matrix is the correlation between column i and column j of the original matrix. The diagonal elements of the correlation matrix will be 1 since they are the correlation of a column with itself. The correlation matrix is also symmetric since the correlation of column i with column j is the same as the correlation of column j with column i .

SYNTAX

LET <mat2> = CORRELATION MATRIX <mat1> <SUBSET/EXCEPT/FOR qualification>
where <mat1> is a matrix for which the correlations are to be computed;
<mat2> is a matrix where the resulting correlations are saved;
and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET C = CORRELATION MATRIX A

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

CORRELATION $=\quad$ Compute the correlation of two variables.
VARIANCE-COVA MATRIX $=$ Compute the variance-covariance matrix of a matrix. PRINCIPAL COMPONENTS $=$ Compute the principal components of a matrix.

APPLICATIONS

Linear Algebra

IMPLEMENTATION DATE

87/10

PROGRAM

DIMENSION 100 COLUMNS; SKIP 25; COLUMN LIMITS 20132
READ AUTO79.DAT Y1 TO Y12
LET N = SIZE Y1
LET X = MATRIX DEFINITION Y7 N 6
LET C = CORRELATION MATRIX X
PRINT C
This command generates the following output.

$$
\begin{array}{cc}
\text { MATRIX C } & --\quad 6 \text { ROWS } \\
-- & 6 \text { COLUMNS }
\end{array}
$$

VARIABLES--C1 C2 C3 C4 C5 C6

| $0.1000 \mathrm{E}+01$ | $0.6782 \mathrm{E}+00$ | $0.7242 \mathrm{E}+00$ | $0.4095 \mathrm{E}+00$ | $0.5726 \mathrm{E}+00$ | $-0.4367 \mathrm{E}+00$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $0.6782 \mathrm{E}+00$ | $0.1000 \mathrm{E}+01$ | $0.9552 \mathrm{E}+00$ | $0.6118 \mathrm{E}+00$ | $0.8651 \mathrm{E}+00$ | $-0.6197 \mathrm{E}+00$ |
| $0.7242 \mathrm{E}+00$ | $0.9552 \mathrm{E}+00$ | $0.1000 \mathrm{E}+01$ | $0.6093 \mathrm{E}+00$ | $0.8029 \mathrm{E}+00$ | $-0.5744 \mathrm{E}+00$ |
| $0.4095 \mathrm{E}+00$ | $0.6118 \mathrm{E}+00$ | $0.6093 \mathrm{E}+00$ | $0.1000 \mathrm{E}+01$ | $0.7233 \mathrm{E}+00$ | $0.3410 \mathrm{E}-01$ |
| $0.5726 \mathrm{E}+00$ | $0.8651 \mathrm{E}+00$ | $0.8029 \mathrm{E}+00$ | $0.7233 \mathrm{E}+00$ | $0.1000 \mathrm{E}+01$ | $-0.4845 \mathrm{E}+00$ |
| $-0.4367 \mathrm{E}+00$ | $-0.6197 \mathrm{E}+00$ | $-0.5744 \mathrm{E}+00$ | $0.3410 \mathrm{E}-01$ | $-0.4845 \mathrm{E}+00$ | $0.1000 \mathrm{E}+01$ |

