SINGULAR VALUE FACTORIZATION

PURPOSE

Compute the singular value factorization of a matrix.

DESCRIPTION

If X is a matrix with row and column dimensions n and p respectively, then an n by n orthogonal matrix U and ap by p orthogonal matrix V can be found such that:

$$
\mathrm{U}^{\mathrm{T}} \mathrm{XV}=\left[\begin{array}{c}
\Sigma \tag{EQ4-76}\\
0
\end{array}\right]
$$

where Σ is a m by m diagonal matrix (m is the minimum of n and p). The diagonal elements of Σ are the singular values of X and they are stored from largest to smallest. The above assumes that $\mathrm{n}>=\mathrm{p}$. A right hand side becomes [$\Sigma 0$] if $\mathrm{N}<\mathrm{p}$. Singular values of zero (or near zero) indicate that the matrix is singular (i.e., not of full rank) or ill-conditioned. Chapters 2 and 14 of the Numerical Recipes book describe some applications of the SVD.

Since U and V are orhogonal (and so their inverses are equal to their transpose), the above equation can also be written as:

$$
\mathrm{X}=\mathrm{U}\left[\begin{array}{l}
\Sigma \\
0
\end{array}\right] \mathrm{V}^{\mathrm{T}}
$$

(EQ 4-77)

For large matrices, it can be impractical to compute U (which is n by n). However, U can be partitioned into

$$
\mathrm{U}=(\mathrm{U} 1, \mathrm{U} 2)
$$

where U 1 is n by p . Then

$$
\mathrm{X}=\mathrm{U} 1 \Sigma \mathrm{~V}^{\prime}
$$

is called the singular value factorization of X. Several multivariate statistical techniques are based on this factorization. The program example demonstrates the biplot proposed by Ruben Gabriel.

SYNTAX

LET <u> <s> <v> = SINGULAR VALUE FACTORIZATION <mat> <SUBSET/EXCEPT/FOR qualification>
where <mat> is a matrix for which the singular values are to be computed;
$<\mathrm{u}>$ is an n by p matrix where U is saved;
<s> is a variable where the singular values are saved (length is minimum of n and p);
$\langle v\rangle$ is an p by p matrix where V is saved.
and where the <SUBSET/EXCEPT/FOR qualification> is optional and rarely used in this context.

EXAMPLES

LET U S V = SINGULAR VALUE DECOMPOSITION A
NOTE 1
DATAPLOT uses the LINPACK routine SSVDC to calculate the singular value factorization.
NOTE 2
DATAPLOT will calculate the singular value decomposition even if $\mathrm{N}<=\mathrm{p}$. However, in practice this is almost never done.
DEFAULT
None

SYNONYMS

None
RELATED COMMANDS
MATRIX EIGENVALUES $\quad=\quad$ Compute the matrix eigenvalues.
MATRIX EIGENVECTORS $=$ Compute the matrix eigenvectors.

```
MATRIX MULTIPLICATION = Perform a matrix multiplication.
MATRIX SOLUTION = Solve a system of linear equations.
CORRELATION MATRIX = Compute the correlation matrix of a matrix.
VARIANCE-COVA MATRIX = Compute the variance-covariance matrix of a matrix.
SINGULAR VALUES = Compute the singular values of a matrix.
SINGULAR VALUE DECOM = Compute the singular value decomposition of a matrix.
```


REFERENCE

"LINPACK User’s Guide," Dongarra, Bunch, Moler, Stewart. Siam, 1979.
"Numerical Recipes: The Art of Scientific Programming (FORTRAN Version)," Press, Flannery, Teukolsky, and Vetterling, Cambridge University Press, 1989 (chapter 2).

APPLICATIONS

Linear Algebra, Multivariate Analysis

IMPLEMENTATION DATE

93/8

PROGRAM

. Generate a biplot (derived from the singular value factorization)
. SOURCE: "THE BIPLOT AS A DIAGNOSTIC TOOL FOR MODELS OF TWO-WAY
. TABLES", BRANDU, GABRIEL, TECHNOMETRICS, FEB. 1978.
. DATA IS YIELDS OF COTTON, ROWS ARE VARIETY, COLUMNS ARE CENTER
DIMENSION 100 COLUMNS
READ MATRIX X
1.551 .261 .411 .78
3.393 .472 .823 .89
1.951 .911 .742 .29
10.479 .129 .5517 .78
1.451 .511 .411 .70
3.723 .553 .094 .27
4.474 .073 .984 .47

END OF DATA
LET N = SIZE X1
FEEDBACK OFF
LET $\mathrm{P}=$ MATRIX NUMBER OF COLUMNS X
LOOP FOR K = 11 P
LET X^K = LOG10 ($\mathrm{X}^{\wedge} \mathrm{K}$)
END OF LOOP
LET SUM1 $=0$
LOOP FOR K = 11 P
LET TEMP $=$ SUM X ${ }^{\wedge}$ K
LET SUM1 = SUM1 + TEMP
END OF LOOP
LET GMEAN = SUM1/(N*P)
LET X = MATRIX SUBTRACTION X GMEAN
LET U S V = SINGULAR VALUE FACTORIZATION X
LET DENOM = MATRIX EUCLIDEAN NORM X
LET S1 = S(1)
LET S2 $=\mathrm{S}$ (2)
LET GF $=\left(\mathrm{S}^{*} * 2+\mathrm{S} 2 * * 2\right) / \mathrm{DENOM}^{* *} 2$
LET B = MATRIX TRANSPOSE V
LET U1 $=\mathrm{U} 1 * \operatorname{SQRT}(\mathrm{~S} 1)$
LET U2 $=$ U2*SQRT(S2)
LET B1 $=$ B1 $1 * S Q R T(S 1)$

LET B2 $=$ B2 ${ }^{*}$ SQRT(S2)
LET TAG = SEQUENCE 11 N
LET TAG2 = SEQUENCE 11 P
CHARACTER CIRCLE SQUARE
CHARACTER FILL SOLID ALL
LINE BLANK ALL
TITLE BIPLOT
X1LABEL GOODNESS OF FIT $={ }^{\wedge}$ GF
LEGEND FILL SOLID
LEGEND FONT SIMPLEX
LEGEND 1 SQUA() - COLUMN MARKERS
LEGEND 2 CIRC() - ROW MARKERS
PLOT U2 U1 AND
PLOT B2 B1
LEGEND 1
LEGEND 2
LIMITS FREEZE
PRE-ERASE OFF
CHARACTER 1234567891011121314151617181920
CHARACTER OFFSET 1.2 0 ALL
PLOT U2 U1 TAG
PLOT B2 B1 TAG2

