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Abstract Characteristics of flow in the planetary boundary layer (PBL) strongly affect the
design of tall structures. PBLmodelling in building codes, based as it is on empirical data from
the 1960s and 1970s, differs significantly from contemporary PBL models, which account
for both “neutral” flows, and “conventionally neutral” flows. PBL heights estimated in these
relatively sophisticated models are typically approximately half as large as those obtained
using the classical asymptotic similarity approach, and are one order of magnitude larger than
those specified in North American and Japanese building codes. A simplemethod is proposed
for estimating the friction velocity and PBL height as functions of specified surface roughness
and geostrophicwind speed. Based on published results, it is tentatively determined that, even
at elevations as high as 800 m above the surface, the contribution to the resultant mean flow
velocity of the component V normal to the surface stress is negligible and the veering angle
is of the order of only 5◦. This note aims to encourage dialogue between boundary-layer
meteorologists and structural engineers.

Keywords Boundary-layer meteorology · Brunt–Väisälä frequency · Conventionally
neutral stratification · Planetary boundary layer · Tall structures

1 Introduction

For structural engineering purposes, mean wind speeds in the turbulent planetary boundary
layer (PBL) are currently modelled in North America and Japan by strictly empirical power
laws developed essentially in the 1960s (Davenport 1965; Canadian Structural Design Man-
ual 1971; AIJ recommendations for loads on buildings 2004; ASCE 7-10 Standard 2010).
According to these models, wind speeds increase monotonically within the boundary layer
up to the gradient height (the term “gradient height” being applied in such models to both
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geostrophic and cyclostrophicwinds), specified to be approximately 200–250maboveground
level for water surface exposures, 300–350 m for open terrain exposures, and 400–450 m
for suburban terrain exposures. (The term “exposure” indicates that the surface roughness
is uniform over a sufficiently long distance (the fetch) upwind of the structure of interest.)
The power-law model further assumes that above the geostrophic height the flow is free of
turbulence and the mean wind speed does not vary with height. Barotropic conditions are
assumed.

Using asymptoticmethods, the following results were obtained in the 1960s and 1970s: (1)
the PBL height H ≈ 0.25u∗/ f (u∗ is the friction velocity, f is the Coriolis parameter) (e.g.,
Csanady 1967; Blackadar and Tennekes 1968; Tennekes 1973; Simiu and Scanlan 1996), that
is, about one order of magnitude greater than given in the power-law model; (2) the mean
flow in the PBL can be represented as a spiral structure, with components U (z) and V (z)
parallel and normal to the surface stress, respectively; (3) the variation with height of the
U (z) component is logarithmic up to the geostrophic height H , i.e.,U (z) = (u∗/k) ln(z/z0)
(k ≈ 0.41 is the von Kármán constant, z0 is the aerodynamic roughness length); (4) the
component V (z) is vanishingly small throughout the surface layer, the height of which is
Hs ≈ 0.1H , implying that the resultant mean wind speed is approximately U (z) and the
logarithmic lawmay be used for structural design purposes up to an elevation Hs ; (5) at the top
of the PBL |V (H)| ≈ 5u∗/k (Csanady 1967); and (6) as an artifact of the asymptotic method
used to derive these results, at all other elevations V (z) vanishes, that is, V (z) = V (H)δ(H),
where δ(H) is the Dirac delta function (see Eq. 23, Appendix 1), a result that is physically
unrealistic and is commented upon in Appendix 1.

Recently, computational fluid dynamics (CFD) has emerged as an approach that made
possible the estimation of the variation of the component V (z) with height. Equally impor-
tantly, it is now well established that the stratification of the free flow, the flow at elevations
z > H , plays an important role in determining the characteristics of the PBL. According
to Zilitinkevich and Esau (2002) and Zilitinkevich (2012), among others, neutrally-stratified
flows can be either of the “truly neutral” or the “conventionally neutral” type. “Truly neutral”
flows are characterized by a Kazanski–Monin surface buoyancy-flux parameter μ = 0 and
a non-dimensional number μN = N/| f | = 0, where N is the Brunt–Väisäla frequency.
Zilitinkevich et al. (2007) note that “truly neutral flows are observed during comparatively
short transition periods after sunset on a background of residual layers of convective origin,
… are often treated as irrelevant because of their transitional nature, and are usually excluded
from data analysis;” “neutrally stratified PBLs are almost always conventionally neutral,” that
is, neutral and developing against a background stable stratification. They are characterized
by μ = 0, μN �= 0; typically 50 < μN < 300 (Zilitinkevich and Esau 2002; Zilitinkevich
et al. 2007). Owing to strong mechanical (as opposed to thermal) turbulent mixing within
the PBL, it is typically assumed for structural engineering purposes that, for strong winds,
μ = 0. For additional details, see Appendix 2.

The failure of the asymptotic similarity approach to consider stable stratification flow
immediately above the PBL results in the incorrect prediction in realistic (“conventional”)
neutral barotropic PBL flows of height H , the cross-isobaric (veering) angle α0 and its
variation with height, and the geostrophic drag coefficient Cg = u∗/G, where G denotes
the geostrophic wind speed. No current science-based information on the PBL is used at this
time in tall-building design.

This note has three objectives: first, it recapitulates progress achieved in recent decades in
the understanding and quantification of PBL characteristics of interest in tall-building design.
Second, it presents a contribution to the development of criteria for such design. Last, but not
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least, it identifies the needs of tall-building designers so that improved design criteria can be
developed.

2 Integral Measures of the Conventionally Neutral PBL

2.1 Geostrophic Drag Coefficient Cg and Cross-Isobaric Angle α0

For Zilitinkevich numbers typical of conventionally neutral flows (i.e., 0.5 × 102 < μN <

3 × 102), the dependence of the geostrophic drag coefficient Cg = u∗/G and the cross-
isobaric angle α0 upon the Rossby number Ro = G/(| f |z0) can be represented by the
following expressions, based on measurements by Lettau (1962),

Cg = 0.205/(log10 Ro − 0.556), (1)

α0 = (173.58/ log10 Ro) − 3.03 (2)

(Kung 1966; Hess and Garratt 2002 p. 338). Curves plotted in Fig. 2a, b of Zilitinkevich and
Esau (2002) closely match Eqs. 1 and 2. As shown in the following example, the quantities
G, Cg, and α0 are obtained for any given u∗, f , and z0 by using Eqs. 1 and 2.

Example 1 Assume z0 = 0.03m (open terrain exposure, see ASCE 7-10 2010), u∗ =
2.5m s−1, f = 10−4 s−1. Since u∗, f , and z0 are given, Cg = u∗/G, and Ro = G/(| f |z0),
the only unknown in Eq. 1 is the geostrophic wind speedG. Equation 1 yieldsG ≈ 83m s−1.
Equation 2 then yields α0 ≈ 20◦.

2.2 PBL Height H

Zilitinkevich et al. (2007) proposed the following expression applicable to flows for which
the Kazanski–Monin surface buoyancy flux parameter μ ≈ 0,

1

H2 =
[

f 2

(CR)2
+ N | f |

(CCN)2

]
1

u2∗
, (3)

where CR ≈ 0.6 and CCN ≈ 1.36. The non-dimensional form of H is

Ch(N , f ) = H f/u∗. (4)

The application of Eqs. 3 and 4 is illustrated in the following example.

Example 2 For u∗ = 2.5m s−1, f = 10−4 s−1 and μN = 100 (i.e., N = 0.01 s−1), Eq. 3
yields H ≈ 3300m and Ch ≈ 0.13. In contrast, according to asymptotic estimates (e.g.,
Csanady 1967), H ≈ 0.25 × 2.5/10−4 = 6250m (see Appendix 1, Eq. 9).

3 PBL Flows for Different Surface Roughness Regimes

Wind-speed fields are developed for structural engineering purposes under the assumption
that the terrain has z0 ≈ 0.03m over a sufficiently long fetch (i.e., that it corresponds
in structural engineering terms to the category “open terrain exposure,” see, e.g., Simiu
and Scanlan 1996). Since structures commonly do not have “open terrain exposure,” it is
necessary to estimate, as functions of the surface roughness z01 �= z0, the friction velocity
u∗1 and the geostrophic height H1 in a storm event that induces in terrain with open exposure
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a friction velocity u∗. Such estimates are based on the fact that, in large-scale storms, the
geostrophic wind speedG is the same in both roughness regimes. Examples 3 and 4 consider,
respectively, the cases of suburban and ocean versus open exposure.

Example 3 It was shown in the previous section that, given a surface with open exposure
(z0 = 0.03m), with f = 10−4 s−1, to a storm that produces a friction velocity u∗ =
2.5m s−1 there corresponds a geostrophic wind speed G ≈ 83m s−1. In accordance with
the definition of Ro, for suburban terrain exposure (z01 = 0.3m over a sufficiently long
fetch), to G = 83m s−1 there corresponds log10 Ro = log10[83/(10−4 × 0.3)] = 6.44.
From Eq. 1, Cg = 0.035, so u∗1 = 83 × 0.035 ≈ 2.9m s−1, and the cross-isobaric angle is
α01 ≈ 24◦. From Eq. 3 there follows Ch1 = 0.13 and H1 = 2.9× 0.13/10−4 ≈ 3800m, vs.
the asymptotic estimate H = 7250m (Eq. 9).

Example 4 For ocean surfaces, assuming G = 83m s−1 and z0 = 0.003m, log10Ro =
log10[83/(10−4 × 0.003)] = 8.44, and Cg ≈ 0.026, so u∗1 = 83 × 0.026 = 2.15m s−1,
and α01 ≈ 18◦. It follows that H1 = 2800m and Ch = 0.13 (vs. the asymptotic estimate
H = 5400m). Note that a structure built near the coastline and exposed to a wind direction
from the ocean will be subjected to winds corresponding to ocean surface exposure.

The calculated heights H of the PBL are approximately half their counterparts obtained
by using asymptotic methods, and an order of magnitude greater than their counterparts
specified in the ASCE 7-10 and other standards on wind loads.

4 Effect of Veering on PBL Flow: A Case Study

Information on the variation with height z of the velocity components U (z) and V (z) (and
therefore of their resultant) and of the angle α(z) = tan−1[V (z)/U (z)]) is currently obtained
from CFD simulations. We now consider a simulation reported in Hess (2004), in which the
coefficient Ch and the height H are denoted by h∗ and zi , respectively (see Eq. 27, p. 320,
and p. 321 therein), and Ch ≡ h∗ = 0.10. Figures 1 and 2 show the dependence on height z
of U (z) and V (z), of their resultant, and of the angle α(z), as represented in Fig. 6 of Hess
(2004).

Example 5 Consider the following parameters: f = 10−4 s−1, N = 0.018 s−1, so μN =
180, and z0 = 0.3m, u∗ = 1.5m s−1. It can be verified by using Eq. 3 that Ch ≈ 0.10, so
H = 0.10×1.5/10−4 = 1500m. Further, the valueG = 41m s−1 yields log10(Ro) = 6.14,
u∗/G ≈ 0.037, to which corresponds G = 41m s−1, and α0 ≈ 25◦. For z = 300m,
z/H = 0.20, and for z = 800m, z/H = 0.53. Figure 1 shows that the component V (800
m) and, a fortiori, the component V (300 m), have negligible contributions to the resultant
mean wind speed, and that the veering angles α (300 m) and α (800 m) are approximately 2◦
and 6◦, respectively. Results forCh = 0.19, based on Fig. 7 of Hess (2004), are also included
in Figs. 1 and 2.

5 Conclusions

Numerical results obtained for cases of interest for tall structure design and believed to be
reasonably representative suggest that:
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Fig. 2 Dependence of veering angle α on z/H

1. Mean wind speeds increase monotonically with height up to considerably higher eleva-
tions than those inherent in power-law models specified by current codes and standards.
This can affect the design of structures with heights greater than the gradient heights
specified in the ASCE 7-10 and other standards on wind loads.
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2. The contribution to the resultant mean wind speed of the component V (z) normal to the
surface stress is negligible for elevations of the order of, say, 1 km and lower.

3. The veering angle was found to be small (e.g., approximately 2◦ and 6◦ for 300 m and
800 m elevations z, respectively).

4. Given a storm with winds characterized by the friction velocity u∗ at a location with
surface roughness z0, simple calculations allow the estimation of the friction velocity
induced by the same storm at a nearby location where the surface roughness differs from
z0.

Numerical examples presented herein illustrate these points. In the authors’ view efforts to
improve current tall-building structural design practices would benefit from the dialogue this
note attempts to initiate between PBL meteorologists and structural engineers.

Acknowledgments The authors wish to express their appreciation to the reviewers for their thorough review
and helpful comments.

Appendix 1: Mean Velocity Field Model Based on Classical Asymptotic
Approach

The purpose of this Appendix is to show that the asymptotic approach yields a physically
unrealistic representation of the variation of the velocity component V with height.

The starting point of the asymptotic approach is the partitioning of the neutral boundary
layer into two regions, an (inner) surface layer and an outer layer. In the surface layer the
shear stress τ0 induced by the boundary-layer flow at the Earth’s surface must depend upon
the flow velocity at a distance z from the surface, the roughness length z0, and the density ρ

of the air, that is,

τ0i = F (U i + V j, z, z0, ρ) , (5)

where U and V are the components of the mean wind velocity along the x and y directions
and i, j are unit vectors. Equation 5 can be written in non-dimensional form

U i + V j
u∗

= ψ1x

(
z

z0

)
i + ψ1y

(
z

z0

)
j, (6)

where

u∗ =
(

τ0

ρ

)1/2

(7)

is the friction velocity and�1 = Ψ1x i+ Ψ1yj is a vector function to be determined. Equation 6
is known as the law of the wall, which is applicable in the surface layer, and can be written
in the form

U i + V j
u∗

= ψ1x

(
z

H

H

z0

)
i + ψ1y

(
z

H

H

z0

)
j, (8)

where

H = cu∗/ f, (9)

and H denotes the boundary-layer depth, and on the basis of data available in the 1960s it
was assumed in Csanady (1967) c ≈ 0.25.
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The mean velocity componentsU (H) and V (H) are denoted byUg and Vg, respectively.
Their resultant, denoted by G, is the magnitude of the geostrophic velocity. In the outer layer
it can be asserted that, at height z, the velocity reduction with respect to G must depend
upon the surface shear stress τ0, and the air density ρ. The expression for this dependence in
non-dimensional form is known as the velocity defect law,

U i + V j
u∗

= Ugi + Vgj
u∗

+ ψ2x

( z

H

)
i + ψ2y

( z

H

)
j, (10)

where �2 is a vector function to be determined.
Consider, in Eqs. 6 and 10, the x components

U i
u∗

= ψ1x

(
z

H

H

z0

)
i, (11)

U i
u∗

= Ugi
u∗

+ ψ2x

( z

H

)
i. (12)

From the observation that a multiplying factor inside the function Ψ1x must be equivalent to
an additive function outside the function Ψ2x the following are obtained,

U

u∗
= 1

k

(
ln

z

h
+ ln

H

z0

)
, (13)

U

u∗
= Ug

u∗
+ 1

k

(
ln

z

h

)
, (14)

for the surface layer and the outer layer, respectively. From Eq. 13 it follows immediately

U

u∗
= 1

k
ln

(
z

z0

)
. (15)

By equating Eqs. 13 and 14 in the overlap region there results

Ug

u∗
= 1

k
ln

(
H

z0

)
. (16)

The logarithmic law is seen to apply to the U component of the wind velocity throughout
the depth of the boundary layer.

Consider now the components

V j
u∗

= ψ1y

(
z

H

H

z0

)
j, (17)

V j
u∗

= Vgj
u∗

+ ψ2y

( z

H

)
j (18)

Csanady (1967), Blackadar and Tennekes (1968) and Tennekes (1973) assume Ψ1y ≡ 0.
Then, Eqs. 17 and 18 yield, in the overlap region,

Vg
u∗

+ ψ2y

( z

H

)
= 0, (19)

that is,

ψ2y

( z

H

)
= −Vg

u∗
, (20a)

ψ2y

( z

H

)
= B

k
, (20b)
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where, based onmeasurements available in the 1960s, it is assumed B/k ≈ 12 (e.g., Csanady
1967). It follows from Eqs. 18 and 20a that

V (z) = 0 (z < H) . (21)

Since, for z = H, V (H) = Vg, Eq. 18 yields

Ψ2y (H/H) = 0 (z = H) , (22)

and, by virtue of Eqs. 19 and 21,

V (z) = Vgδ (H) , (23)

where δ denotes the Dirac delta function. This physically unrealistic result is an artifact of
the asymptotic approach, which transforms the actual profile V (z) (of which two CFD-based
estimates are represented in Fig. 1) into the non-physical profile represented by Eq. 23.

Appendix 2: Brunt–Väisäla Frequency and ‘Conventionally Neutral’ PBL
Flow

According to research results cited by, among others, Zilitinkevich et al. (2007), the stratifi-
cation, characterized by the free-flow Brunt–Väisäla frequency N , has a significant effect on
the PBL. Based on the dependence of PBL flow upon both the buoyancy flux μ at the Earth’s
surface and the free-flow Brunt–Väisäla frequency N , Zilitinkevich et al. (2007) classify
neutral and stable PBL flows into four categories: (i) “truly neutral” (μ = 0, N = 0); (ii)
“conventionally neutral” (μ = 0, N > 0), (iii) “short-lived stable,” (μ < 0, N = 0), and
(iv) “long-lived stable” (μ < 0, N > 0). Of these four categories it is the “conventionally
neutral” flow that is, in practice, of interest in structural engineering applications.

An air parcel moving vertically is subjected to a gravitational force due to the variation
of the air density with height, and the differential equation describing the vertical motion of
the air parcel has an oscillatory solution. In the presence of a horizontal flow, the vertical
oscillations result in a transport of momentum between the free flow and the PBL flow. As a
result of this transport the PBL flow velocities are increased, thus causing a reduction in the
height of the PBL with respect to the height of the “truly neutral” PBL. The decrease of the
height H as N (i.e., the strength of the stratification) increases is reflected in Eq. 3.
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