|
MUTPDFName:
with denoting the shape parameter. This distribution can be generalized with location and scale parameters in the usual way using the relation
with <loc> and <scale> denoting the location and scale parameters, respectively.
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <y> is a variable or a parameter (depending on what <x> is) where the computed Muth pdf value is stored; <beta> is a number, parameter, or variable that specifies the shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET Y = MUTPDF(X,0.5,0,5) PLOT MUTPDF(X,0.7,0,3) FOR X = 0 0.01 5
LET Y = MUTH RANDOM NUMBERS FOR I = 1 1 N MUTH PROBABILITY PLOT Y MUTH PROBABILITY PLOT Y2 X2 MUTH PROBABILITY PLOT Y3 XLOW XHIGH MUTH KOLMOGOROV SMIRNOV GOODNESS OF FIT Y MUTH CHI-SQUARE GOODNESS OF FIT Y2 X2 MUTH CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the shape parameter for the Muth distribution:
LET BETA2 = <value> MUTH PPCC PLOT Y MUTH PPCC PLOT Y2 X2 MUTH PPCC PLOT Y3 XLOW XHIGH MUTH KS PLOT Y MUTH KS PLOT Y2 X2 MUTH KS PLOT Y3 XLOW XHIGH The default values for BETA1 and BETA2 are 0 and 1. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the ppcc and ks plots.
Muth (1977), "Reliability Models with Positive Memory Derived from the Mean Residual Life Function", in The Theory and Applications of Reliability, Eds. Tsokos and Shimi, New York: Academic Press Inc., pp. 401-435.
LABEL CASE ASIS TITLE CASE ASIS TITLE OFFSET 2 . MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 100 95 MULTIPLOT SCALE FACTOR 2 . LET BETA = 0.2 TITLE BETA = ^BETA PLOT MUTPDF(X,BETA) FOR X = 0.01 0.01 5 . LET BETA = 0.5 TITLE BETA = ^BETA PLOT MUTPDF(X,BETA) FOR X = 0.01 0.01 5 . LET BETA = 0.7 TITLE BETA = ^BETA PLOT MUTPDF(X,BETA) FOR X = 0.01 0.01 5 . LET BETA = 1 TITLE BETA = ^BETA PLOT MUTPDF(X,BETA) FOR X = 0.01 0.01 5 . END OF MULTIPLOT . JUSTIFICATION CENTER MOVE 50 97 TEXT Muth Probability Density Functions let beta = 0.65 let betasav = beta . let y = muth random numbers for i = 1 1 200 let y = 10*y let amax = maximum y . label case asis title case asis . y1label Correlation Coefficient x1label Beta muth ppcc plot y let beta = shape justification center move 50 6 text Betahat = ^beta (BETA = ^betasav) move 50 2 text Maximum PPCC = ^maxppcc . y1label Data x1label Theoretical char x line bl muth prob plot y move 50 6 text Location = ^ppa0, Scale = ^ppa1 char bl line so . y1label Relative Frequency x1label relative hist y limits freeze pre-erase off line color blue plot mutpdf(x,beta,ppa0,ppa1) for x = 0.01 .01 amax line color black limits pre-erase on . let ksloc = ppa0 let ksscale = ppa1 muth kolmogorov smirnov goodness of fit y
Date created: 2/14/2008 |